Spherical VLS grating RIXS spectrometers: From basics to the hv 2 concept
|
|
|
- Claud Mathews
- 10 years ago
- Views:
Transcription
1 Spherical VLS grating RIXS spectrometers: From basics to the hv 2 concept Vladimir N. Strocov (ADRESS beamline, Swiss Light Source) Outline: 1. Optical design of spherical VLS grating spectrometers: - maximal resolution and transmission 2. Principles of the hv 2 spectrometer - parallel detection in hv in and hv out
2 Basics of RIXS instrumentation: Spherical VLS grating spectrometer CCD detector γ source α β ω r 2 r 1 spherical VLS grating Spherical VLS grating combining the focusing and energy dispersing actions Workhorse of RIXS instrumentation (ESRF, SLS, DLS, Elettra ) Design goal: maximal resolution and maximal transmission
3 1. Optimization at E ref : Spectrometer geometry total linewidth E = ( E ) ( ) 2 aberr + E 2 G aberrations Gaussian broadening Step 1: Entrance and exit arms r 1 and r 2 = L-r 1 to minimize E G E G = S cosα E r1 a0kλ 2 + SE tan E (( β α )/ 2) 2 + D cos β sin γ E r 2a0kλ 2 source slope errors detector Minimization d dr 1 E G = 0 r 1 = D L sin γ cos β cos S α 2 / flexible r 1 : minimal E G or, slightly relaxing E G, small r 1 larger acceptance
4 1. Optimization at E ref : Grating Step 2: Grating parameters a 2 3 ( ω) = a + a ω + a ω + a ω to achieve correct focal plane and minimize E aberr R and a 1 : the focal distance r 2 and focal curve inclination γ (analytically) inclination reduces the effective detector pixel size optimal focal plane inclination a 2 : profile asymmetry (coma) cancellation (numerically) bug in SHADOW fixed in 2010! a 3 : reduction of symmetric broadening (numerically) increase of aberration-free α by a factor >3 E (mev) a 2, a 3 = 0 a 2 0 a 3 =0 optimized a 3 a 2, a α (mrad)
5 Realization: 1500 l/mm spherical VLS grating for the SAXES spectrometer T. Schmitt, V.N.S. et al, J. Electr. Spectr. Relat. Phen., 2013 grating optimized at O 1s edge RIXS with E/ E ~ 10K grating manufactured by Shimadzu FWHM = const towards the full grating illumination of 130 mm a 3 increased aberration-free α by 3
6 TraceVLS: Spectrometer geometry/ spherical VLS grating parameters ray-tracing restricted by the 2D dispersion plane reduced dimensionality + Matlab code vectorization fast optimization loops the optimal grating parameters in a few seconds 3 increase of the Rowland spectrometers acceptance with a 3
7 2. Optimization of the spectrometer geometry away from E ref How do we adjust r 1, α, r 2 to keep the best resolution and maximal acceptance? - symmetric-profile conditions E = 530 ev symmetric profile can be maintained for any energy by adjustment of r 1 or α
8 2. Optimization of the spectrometer geometry away from E ref - fixed focal inclination (FI) and maximal acceptance (MA) modes FI mode α ( o ) α (E) r 1 (E) r1 (mm) E (mev) E E G E (ev) E (ev) symmetric profile by different combinations of r 1 and α: the remaining DOF to keep either focal curve inclination or maximal acceptance for any energy MA mode α ( o ) (b) α (E) r 1 (E) E (ev) r1 (mm) E (mev) γ(e) E E G E (ev) γ ( o )
9 TraceVLS software: Spectrometer settings vs energy the focal and symmetric-profile focal α, r 1 and r 2 in a fraction of second
10 fluorescence Prospects of RIXS instrumentation: hv 2 concept crystal field bi-magnons dd-excitations L 3 RIXS of Sr 14 Cu 24 O 41 (J. Schlappa et al) hv in (ev) hv in - hv out (ev) dramatic variations of RIXS intensity with hv in due to intermediate state presently setting hv in and acquisition of I(hv out ) one-by-one full 2D map I(hv in,hv out ) in one shot?
11 Concept of the hv 2 spectrometer: Optical scheme monochromator focal plane hv in V.N.S., J. Synchr. Rad. 17 (2014) 103 plane-elliptical KB refocusers sample imaging in vert plane + dispersion in horiz plane full 2D-map of RIXS intensity in hv in and hv out coordinates (hv 2 spectrometer) critical: extreme refocusing in horiz plane to achieve high source source resolution in hv out ( E x ) out requires XFEL (round beam) or diffraction-limited synchrotron source constant optical length r 1 +r 2 under energy changes: grating pitch + translation to cancel defocus and coma hv in plane-elliptical focuser hv out VLS grating CCD detector
12 hv 2 spectrometer: Properties monochromator focal plane hv in plane-elliptical KB refocusers sample one-shot XAS data acquisition (TFY) in zero diffr. order sample homogeneity within ~100 µm (not important for liquids and gases) RZP-variant: J. Rehanek et al, J. of Physics: Conf. Series 425 (2013) use of the whole hv in bandwidth 2 orders in efficiency hv in within the XAS linewidth returns identical RIXS spectra 30 in efficiency hv in plane-elliptical focuser hv out VLS grating CCD detector BUT: Extended source incompatible with inclined field of view of grazing-incidence optics resolution degradation beyond hv in ~5 E
13 Way out: Imaging optics Talk of Joseph Nordgren, D Imaging RIXS Spectrometer Wolter optics delivers flat field of view acceptance of the extended source without resolution degradation
14 Wolter imaging optics in hv 2 spectrometer T. Warwick et al, J. Synchr. Rad. 21 (2014) 736 E/ E = 30K in hv out for a 5-m long spectrometer Almost no resolution degradation within ±1 mm Slope errors of the non-spherical optics reduced e.g. by ion milling techniques (talk of F. Siewert)
15 Summary ADRESS Spherical VLS grating spectrometer optimization of VLS parameters at E ref : a 2 to cancel the lineshape asymmetry; a 3 to minimize broadening at large illuminations maximal aberration-limited α away from E ref : corrections of r 1 and α to maintain the exactly symmetric lineshape; coordinated r 1 and α to maintain, e.g., maximal aberration-limited α (MA mode) flexible r 1, any focal plane inclination, 3 increase of aberration-limited α hv 2 spectrometer imaging/dispersion actions in two orthogonal planes 2D-map of RIXS in one shot of parallel hv in /hv out detection extreme demagnification or imaging Wolter-type optics transmission increase hv in bandwidth up to ~50 diffraction-limited or XFEL source required Future of RIXS instrumentation along the general trend from slits to imaging principles
16 Acknowledgments Thorsten Schmitt (RIXS science) and Uwe Flechsig (optics) Swiss Light Source, Paul Scherrer Institute Giacomo Ghiringhelli and Lucio Braicovich Politechnico di Milano Ke Jin Zhou Diamond Light Source Gheorghe S. Chiuzbăian Université de Paris 06 Michail Yablonski BESSY and the audience!
Wir schaffen Wissen heute für morgen
Diffractive optics for photon beam diagnostics at hard XFELs Wir schaffen Wissen heute für morgen PSI: SLAC: ESRF: SOLEIL: APS: SACLA: EuroXFEL C. David, S. Rutishauser, P. Karvinen, Y. Kayser, U. Flechsig,
Electrostatic electron analyzer with 90 deflection angle
REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 73, NUMBER 11 NOVEMBER 2002 Electrostatic electron analyzer with 90 deflection angle L. Vattuone a) and M. Rocca Istituto Nazionale per la Fisica della Materia and
View of ΣIGMA TM (Ref. 1)
Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF
Fig.1. The DAWN spacecraft
Introduction Optical calibration of the DAWN framing cameras G. Abraham,G. Kovacs, B. Nagy Department of Mechatronics, Optics and Engineering Informatics Budapest University of Technology and Economics
Endoscope Optics. Chapter 8. 8.1 Introduction
Chapter 8 Endoscope Optics Endoscopes are used to observe otherwise inaccessible areas within the human body either noninvasively or minimally invasively. Endoscopes have unparalleled ability to visualize
Fraunhofer Diffraction
Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity
Powder diffraction and synchrotron radiation
Powder diffraction and synchrotron radiation Gilberto Artioli Dip. Geoscienze UNIPD CIRCe Center for Cement Materials single xl diffraction powder diffraction Ideal powder Powder averaging Textured sample
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM
WAVELENGTH OF LIGHT - DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
Introduction to reflective aberration corrected holographic diffraction gratings
Introduction to reflective aberration corrected holographic diffraction gratings By Steve Slutter, Wu Jiang, and Olivier Nicolle The reflective diffraction grating is the heart of most spectroscopy systems
Anamorphic imaging with three mirrors: a survey
Anamorphic imaging with three mirrors: a survey Joseph M. Howard Optics Branch (Code 551), NASA Goddard Space Flight Center, Greenbelt, MD 20771 Ph: 301-286-0690 Fax: 301-286-0204 [email protected]
Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
Status of Radiation Safety System at
Status of Radiation Safety System at Taiwan Photon Source Joseph C. Liu Radiation and Operation Safety Division National Synchrotron Radiation Research Center, Taiwan NSRRC layout 1.5 GeV, 120m, 400 ma
Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red
Changing the economics of space Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red J. Fernandez-Saldivar 1, F. Culfaz 1,
Status of the FERMI@Elettra Free Electron Laser
Status of the FERMI@Elettra Free Electron Laser E. Allaria on behalf of the FERMI team Work partially supported by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
Beam shaping to generate uniform Laser Light Sheet and Linear Laser Spots
Beam shaping to generate uniform Laser Light Sheet and Linear Laser Spots Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Generation of Laser Light Sheet
STUDY OF THE TRANSVERSE BEAM EMITTANCE OF THE BERN MEDICAL CYCLOTRON
Proceedings of IBIC15, Melbourne, Australia - Pre-Release Snapshot 17-Sep-15 1:3 MOPB41 STUDY OF THE TRANSVERSE BEAM EMITTANCE OF THE BERN MEDICAL CYCLOTRON K. P. Nesteruka,, M. Augera, S. Braccinia, T.
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
Improving Chromatic Dispersion and PMD Measurement Accuracy
Improving Chromatic Dispersion and PMD Measurement Accuracy White Paper Michael Kelly Agilent Technologies Signal transmission over optical fibers relies on preserving the waveform from transmitter to
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
Electronic Supplementary Information
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Electronic Supplementary Information Achieving High Resolution and Controlling
ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante
LUCI DI SINCROTRONE CNR, ROMA 22 APRILE 2014 ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante Sakura Pascarelli [email protected] Page 2 INCREASE IN BRILLIANCE H emittance V emittance
α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
X-ray thin-film measurement techniques
Technical articles X-ray thin-film measurement techniques II. Out-of-plane diffraction measurements Toru Mitsunaga* 1. Introduction A thin-film sample is two-dimensionally formed on the surface of a substrate,
PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW
OVERVIEW Exact mass LC/MS analysis using an orthogonal acceleration time of flight (oa-tof) mass spectrometer is a well-established technique with a broad range of applications. These include elemental
Three-dimensional vision using structured light applied to quality control in production line
Three-dimensional vision using structured light applied to quality control in production line L.-S. Bieri and J. Jacot Ecole Polytechnique Federale de Lausanne, STI-IPR-LPM, Lausanne, Switzerland ABSTRACT
Polarization of Light
Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights
Modern Classical Optics
Modern Classical Optics GEOFFREY BROOKER Department of Physics University of Oxford OXPORD UNIVERSITY PRESS Contents 1 Electromagnetism and basic optics 1 1.1 Introduction 1 1.2 The Maxwell equations 1
Lecture L5 - Other Coordinate Systems
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates
Laue lens for Nuclear Medicine
Laue lens for Nuclear Medicine PhD in Physics Gianfranco Paternò Ferrara, 6-11-013 Supervisor: prof. Vincenzo Guidi Sensors and Semiconductors Lab, Department of Physics and Earth Science, University of
Optical Communications
Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF
Color holographic 3D display unit with aperture field division
Color holographic 3D display unit with aperture field division Weronika Zaperty, Tomasz Kozacki, Malgorzata Kujawinska, Grzegorz Finke Photonics Engineering Division, Faculty of Mechatronics Warsaw University
Micro-Raman Investigation of Mechanical Stress in Si Device Structures and Phonons in SiGe
Micro-Raman Investigation of Mechanical Stress in Si Device Structures and Phonons in SiGe Von der Fakultät für Mathematik, Naturwissenschaften und Informatik der Brandenburgischen Technischen Universität
Fiber Optics: Fiber Basics
Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded
Microlenses immersed in nematic liquid crystal with electrically. controllable focal length
Microlenses immersed in nematic liquid crystal with electrically controllable focal length L.G.Commander, S.E. Day, C.H. Chia and D.R.Selviah Dept of Electronic and Electrical Engineering, University College
ESRF OPTICAL METROLOGY APPLIED TO BENDABLE OPTICAL SURFACES
ESRF OPTICAL METROLOGY APPLIED TO BENDABLE OPTICAL SURFACES ACTOP8 Trieste Italy, October 9-11, 28 Amparo Rommeveaux Raymond Barrett Robert Baker Slide: 1 Amparo Rommeveaux ACTOP8, Trieste 1 October, 28
Measuring Line Edge Roughness: Fluctuations in Uncertainty
Tutor6.doc: Version 5/6/08 T h e L i t h o g r a p h y E x p e r t (August 008) Measuring Line Edge Roughness: Fluctuations in Uncertainty Line edge roughness () is the deviation of a feature edge (as
Raman spectroscopy Lecture
Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy
Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
GRID AND PRISM SPECTROMETERS
FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing
Advanced Research Raman System Raman Spectroscopy Systems
T600 Advanced Research Raman System Raman Spectroscopy Systems T600 Advanced Research Raman System T600 Triple stage Raman Spectrometer: The only solution for unprecedented stability and performance! Robust
CeSOX sensitivity studies
CeSOX sensitivity studies Ma#hieu VIVIER, Guillaume MENTION CEA- Saclay, DSM/IRFU/SPP CeSOX kick- off meecng Paris, February 5 th CeSOX experimental parameters L/E spectrum modeling and χ 2 Model computes
SGS: Das Scanning Grating Spektrometer Ein kleines, günstiges Spektrometermodul auf Basis eines dispersiven Mikrosystems
the leading supplier of Micro Scanning Devices Your Micro Optical Solution IPHT-Workshop 11.-12.03.08 We move the light for you! SGS: Das Scanning Grating Spektrometer Ein kleines, günstiges Spektrometermodul
Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices
berlin Nanoscale Resolution Options for Optical Localization Techniques C. Boit TU Berlin Chair of Semiconductor Devices EUFANET Workshop on Optical Localization Techniques Toulouse, Jan 26, 2009 Jan 26,
Acoustic GHz-Microscopy: Potential, Challenges and Applications
Acoustic GHz-Microscopy: Potential, Challenges and Applications A Joint Development of PVA TePLa Analytical Systems GmbH and Fraunhofer IWM-Halle Dr. Sebastian Brand (Ph.D.) Fraunhofer CAM Fraunhofer Institute
PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUMBER OF REFERENCE SYMBOLS
PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUM OF REFERENCE SYMBOLS Benjamin R. Wiederholt The MITRE Corporation Bedford, MA and Mario A. Blanco The MITRE
High-resolution Imaging System for Omnidirectional Illuminant Estimation
High-resolution Imaging System for Omnidirectional Illuminant Estimation Shoji Tominaga*, Tsuyoshi Fukuda**, and Akira Kimachi** *Graduate School of Advanced Integration Science, Chiba University, Chiba
Spherical Aberration Corrections for an Electrostatic Gridded Lens
BNL-8 1593-2008-IR C-AlAPl#3 12 May 2008 Spherical Aberration Corrections for an lectrostatic Gridded Lens Alexander Pikin Collider-Accelerator Department Brookhaven National Laboratory Upton, NY 11973
Performance of the Vidar Red LED Dosimetry Pro Advantage : A scanner optimized for use with GAFCHROMIC EBT Dosimetry Film.
INTERNATIONAL SPECIALTY PRODUCTS 1361 Alps Road Wayne NJ 07470 Tel: 973-628-4000 Performance of the Vidar Red LED Dosimetry Pro Advantage : A scanner optimized for use with GAFCHROMIC EBT Dosimetry Film.
Damping Wigglers in PETRA III
Damping Wigglers in PETRA III WIGGLE2005, Frascati 21-22.2.2005 Winni Decking, DESY-MPY Introduction Damping Wiggler Parameters Nonlinear Dynamics with DW Operational Aspects Summary DESY and its Accelerators
Equations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
ON-LINE MONITORING OF AN HADRON BEAM FOR RADIOTHERAPEUTIC TREATMENTS
ON-LINE MONITORING OF AN HADRON BEAM FOR RADIOTHERAPEUTIC TREATMENTS INFN-Laboratori Nazionali del Sud Via S. Sofia 44, Catania, Italy Patient positioned for treatment System under consideration (experimental
ING LA PALMA TECHNICAL NOTE No. 130. Investigation of Low Fringing Detectors on the ISIS Spectrograph.
ING LA PALMA TECHNICAL NOTE No. 130 Investigation of Low Fringing Detectors on the ISIS Spectrograph. Simon Tulloch (ING) June 2005 Investigation of Low Fringing Detectors on the ISIS Spectrograph. 1.
RELAX: Resolution Enhancement by Laser-spectrum Adjusted Exposure
RELAX: Resolution Enhancement by Laser-spectrum Adjusted Exposure Ivan Lalovic a+, Nigel Farrar* b, Kazuhiro Takahashi c, Eric Kent a, Daniel Colon b, German Rylov b, Alden Acheta a, Koji Toyoda d, Harry
Limiting factors in fiber optic transmissions
Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 [email protected] eportal.pwr.wroc.pl Copying and processing permitted for noncommercial
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
IMPROVED CCD DETECTORS FOR HIGH SPEED, CHARGE EXCHANGE SPECTROSCOPY STUDIES ON THE DIII D TOKAMAK
IMPROVED CCD DETECTORS FOR HIGH SPEED, CHARGE EXCHANGE SPECTROSCOPY STUDIES ON THE TOKAMAK by K.H. Burrell P. Gohil, R.J. Groebner, D.H. Kaplan, D.G. Nilson,* J.I. Robinson, and D.M. Thomas General Atomics,
a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a
Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.
Length, Finland, MIKES (VTT Technical Research Centre of Finland Ltd, Centre for Metrology / Mittatekniikan keskus)
absolute mise en pratigue: mise en pratigue: absolute absolute Level or Range 633 633 nm 0.04 fm 2 95% No 1 474 474 THz 24 khz 2 95% No 1 532 532 nm 0.08 fm 2 95% No 50 563 563 THz 0.08 MHz 2 95% No 51
Measuring the Point Spread Function of a Fluorescence Microscope
Frederick National Laboratory Measuring the Point Spread Function of a Fluorescence Microscope Stephen J Lockett, PhD Principal Scientist, Optical Microscopy and Analysis Laboratory Frederick National
B4 Computational Geometry
3CG 2006 / B4 Computational Geometry David Murray [email protected] www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation
Spherical Beam Volume Holograms Recorded in Reflection Geometry for Diffuse Source Spectroscopy
Spherical Beam Volume Holograms Recorded in Reflection Geometry for Diffuse Source Spectroscopy Sundeep Jolly A Proposal Presented to the Academic Faculty in Partial Fulfillment of the Requirements for
Looking through the fish-eye the Electron Ronchigram. Duncan T.L. Alexander CIME seminar May 24, 2012
Looking through the fish-eye the Electron Ronchigram Duncan T.L. Alexander CIME seminar May 24, 2012 Introduction Aim of the seminar: open a discussion on the Electron Ronchigram How is it formed? What
Preface Light Microscopy X-ray Diffraction Methods
Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective
Measurement of Charge-to-Mass (e/m) Ratio for the Electron
Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic
MICROFOCUSING OF THE FERMI@ELETTRA FEL BEAM WITH A K-B ACTIVE OPTICS SYSTEM: SPOT SIZE PREDICTIONS. Lorenzo Raimondi
MICROFOCUSING OF THE FERMI@ELETTRA FEL BEAM WITH A K-B ACTIVE OPTICS SYSTEM: SPOT SIZE PREDICTIONS Lorenzo Raimondi PADReS Group Sincrotrone Trieste SCpA 1 FERMI@Elettra seeded FEL FEL 1 FEL 2 FEL 1 from
Meteor Spectroscopy First Steps
Meteor Spectroscopy First Steps Martin Dubs AGG, FMA Content Introduction Hardware Software Spectrum extraction Summary Martin Dubs, Meteor Spectroscopy, Nov. 2014 page 2 Meteor spectroscopy Additional
A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source
A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam Jonathan Lang Advanced Photon Source APS Upgrade - MBA Lattice ε ο = 3100 pm ε ο = 80 pm What is emi7ance? I don t
S2000 Spectrometer Data Sheet
Description The Ocean Optics OEM S2000 Spectrometer includes the linear CCD-array optical bench, plus the circuits necessary for spectrometer operation. The result is a compact, flexible system with no
Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror
Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror Stephen B. Robie scintag, Inc. 10040 Bubb Road Cupertino, CA 95014 Abstract Corundum
AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS
AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS Frazier L. Bronson CHP Canberra Industries, Inc. 800 Research Parkway,
Proton tracking for medical imaging and dosimetry
Proton tracking for medical imaging and dosimetry J.Taylor, P.Allport, G.Casse For the PRaVDA Consortium 1 Background and motivation - What is the PRaVDA experiment? - Why are we using Monte Carlo? GEANT4
Introduction to the EXAFS data analysis
Introduction to the EXAFS data analysis Giuliana Aquilanti Elettra Sincrotrone Trieste Material almost integrally taken from Carlo Meneghini: EXAFS tutorial at Synchrotron Radiation school of Duino 2011
Optical Design using Fresnel Lenses
Optical Design using Fresnel Lenses Basic principles and some practical examples Arthur Davis and Frank Kühnlenz Reflexite Optical Solutions Business Abstract The fresnel lens can be used in a wide variety
PoS(PhotoDet 2012)068
Characterization of the Hamamatsu R11265 multi-anode photomultiplier tube with single photon signals Luca CADAMURO, Marta CALVI, Andrea GIACHERO,, Matteo MAINO, Clara MATTEUZZI, Gianluigi PESSINA Dipartimento
Raman Spectroscopy Basics
Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that
Fundamentals of modern UV-visible spectroscopy. Presentation Materials
Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms
Physics 40 Lab 1: Tests of Newton s Second Law
Physics 40 Lab 1: Tests of Newton s Second Law January 28 th, 2008, Section 2 Lynda Williams Lab Partners: Madonna, Hilary Clinton & Angie Jolie Abstract Our primary objective was to test the validity
The Fabry-Pérot Interferometer
The Fabry-Pérot Interferometer Exercises: 1. Mounting the beam expander optics on the He Ne laser and adjustment. 2. Alignment of the total optical setup (laser, interferometer, monochromator). 3. Observing
CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler [email protected]
CBERS Program Update Jacie 2011 Frederico dos Santos Liporace AMS Kepler [email protected] Overview CBERS 3 and 4 characteristics Differences from previous CBERS satellites (CBERS 1/2/2B) Geometric
Acousto-optic modulator
1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).
Introduction to Powder X-Ray Diffraction History Basic Principles
Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for
The Fundamentals of MTF, Wiener Spectra, and DQE. Motivation
The Fundamentals of MTF, Wiener Spectra, and DQE Robert M Nishikawa Kurt Rossmann Laboratories for Radiologic Image Research Department of Radiology, The University of Chicago Motivation Goal of radiology:
19 - RAY OPTICS Page 1 ( Answers at the end of all questions )
19 - RAY OPTICS Page 1 1 ) A ish looking up through the water sees the outside world contained in a circular horizon. I the reractive index o water is 4 / 3 and the ish is 1 cm below the surace, the radius
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving
DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED
DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED Abstract: There are a number of sources of information that give a mathematical description of the terms used in light scattering. However, these will not
Scanning Electron Microscopy: an overview on application and perspective
Scanning Electron Microscopy: an overview on application and perspective Elvio Carlino Center for Electron Microscopy - IOM-CNR Laboratorio Nazionale TASC - Trieste, Italy Location of the Center for Electron
LINES AND PLANES CHRIS JOHNSON
LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance
Projection Center Calibration for a Co-located Projector Camera System
Projection Center Calibration for a Co-located Camera System Toshiyuki Amano Department of Computer and Communication Science Faculty of Systems Engineering, Wakayama University Sakaedani 930, Wakayama,
SPECTROSCOPY. Light interacting with matter as an analytical tool
SPECTROSCOPY Light interacting with matter as an analytical tool Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations
PARALLEL BEAM METHODS IN POWDER DIFFRACTION AND TEXTURE IN THE LABORATORY.
Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 135 PARALLEL BEAM METHODS IN POWDER DIFFRACTION AND TEXTURE IN THE LABORATORY. R.A. Clapp and M.Halleti
