Spherical Beam Volume Holograms Recorded in Reflection Geometry for Diffuse Source Spectroscopy
|
|
|
- Meagan McGee
- 10 years ago
- Views:
Transcription
1 Spherical Beam Volume Holograms Recorded in Reflection Geometry for Diffuse Source Spectroscopy Sundeep Jolly A Proposal Presented to the Academic Faculty in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Electrical Engineering with Research Option Author:... Sundeep Jolly Undergraduate Student School of Electrical and Computer Engineering School of Physics Certified by:... Dr. Ali Adibi Faculty Advisor Associate Professor School of Electrical and Computer Engineering Accepted by:... Dr. Douglass Williams Associate Chair for Undergraduate Affairs Professor School of Electrical and Computer Engineering School of Electrical and Computer Engineering College of Engineering Georgia Institute of Technology Atlanta, Georgia December 2006
2 Spherical Beam Volume Holograms Recorded in Reflection Geometry for Diffuse Source Spectroscopy Sundeep Jolly Faculty Advisor: Dr. Ali Adibi A Proposal Presented to the Academic Faculty in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Electrical Engineering with Research Option School of Electrical and Computer Engineering College of Engineering Georgia Institute of Technology Atlanta, Georgia December 2006 ABSTRACT Recent developments in volume holographic materials, methods, and techniques have allowed for the development of novel data storage, optical processing, imaging, interferometric, and spectroscopic technologies [1-4, 6, 8]. Multimodal multiplex spectroscopy (MMS) has been demonstrated to increase the optical throughput of a spectrometer as opposed to that of conventional optical spectrometers [5] and has been implemented using three-dimensional photonic crystals [5] and spherical-beam volume holograms [6-7, 9] as spectral diversity filters. While such efforts have resulted in compact and sensitive Fourier-transform holographic spectrometers [8], there still remains much room for performance improvements. Previous studies [6,7,9] have proven the utility of spherical-beam volume holograms recorded in the transmission geometry as spectral diversity filters for spectrometers; however, limited work has been done with spherical-beam volume holograms recorded in the reflection geometry. It is the major goal of the current study to gauge the potential of reflection geometry holograms recorded on photopolymer film for compact, efficient, and sensitive spectrometers as compared to that of transmission geometry holograms. For a baseline comparison, studies of the spectral operating range and resolution of holograms for the spectroscopic application recorded in both geometries will be performed. Time permitting, studies of the efficacy of reflection geometry holograms in an implementation of a compact Fourier-transform holographic spectrometer will be performed.
3 Table of Contents 1 Introduction and Literature Review 4 2 Problem Statement 6 3 Research Goals Low-Target Goals Ideal-Target Goals High-Target Goals Project Timetable Implications and Future Research 11 5 References 12
4 1 Introduction and Literature Review Recent developments in volume holographic materials, methods, and techniques have allowed for the development of novel data storage [1,4], optical processing [4], imaging [2,4], interferometric [4], and spectroscopic [8] technologies. Because of the demand for novel optical technologies employing holographic techniques (especially applications in data storage and integrated optical systems), there has been a recent surge of research activity in the area. It is of notice that holographic technologies are already replacing more conventional optical technologies in applications such as data storage and spectroscopy. Highly sensitive and portable spectrometers are desirable for applications in biological and environmental sensing especially because the optical sources of interest are diffuse in nature. Conventional spectrometers generally operate by employing gratings for wavelength dispersion and demultiplexing. The intermediate signal achieved by the grating is then usually retrieved by a photodetector for data collection. Because the overlap of multiple spatial modes in some incident signals (for instance, as occurs with diffuse sources) can result in false output patterns, spatial filtering is necessary and is accomplished in conventional spectrometers by means of a slit-lens collimating setup. Although spatial filtering in such a manner can effectively increase the resolution which can be achieved with a grating-based conventional spectrometer, the slit-lens collimator blocks most of the intensity of the original light source [5]. Because of the resolution-throughput tradeoff caused by spatial filtering, conventional spectrometers are highly limited when used with diffuse, incoherent light sources, such as those often encountered in biological and environmental sensing applications. Multimodal multiplex spectroscopy (MMS) has been developed as a method of spectroscopy particularly useful when dealing with diffuse sources [5]. In MMS, an input light source is projected 4
5 onto a spectral diversity filter (SDF), which converts the input spatial-spectral signal into an output spectral diversity pattern. In this way, the SDF acts analogously to a more general wavelength dispersive element (such as a prism or holographic grating) but is readily more flexible and eliminates the resolution-efficiency tradeoff of conventional spectrometers. An MMS system would employ a Fourier-transforming lens and a charge-coupled device for processing and capturing of the intermediate signal achieved by the SDF. Post-processing of the output signal retrieved by the CCD can successfully estimate the spectrum of the input signal [5]. To date, SDFs have been implemented using three-dimensional photonic crystals [5] and spherical-beam volume holograms (SBVHs) [6,7]; MMS systems based on both of these two SDF implementations have been proposed, prototyped, and studied for sensitivity [5,8,9]. Recently, MMS systems for laboratory settings have entered the marketplace, demonstrating the capabilities and promise of this new technology. Of high interest, however, are compact and inexpensive spectrometers employing spherical-beam volume holograms as SDFs for their low cost and high robustness as compared to conventional optical spectrometers. Incident Beam Diffracted Crescent Fourier-Transforming Lens CCD Imager Hologram To PC Interface Fig. 1. Configuration for the holographic spectrometer. The diffracted crescent from the hologram is retrieved by the CCD for post-processing and spectrum retrieval. Currently, volume holographic Fourier-transform spectrometers consisting of one of more volume holograms recorded in a piece of photopolymer along with a Fourier-transforming lens and a detector array have been demonstrated [8]. A typical slitless holographic spectrometer configuration is portrayed in Fig. 1. The key operating feature of the holographic spectrometer is the retrieval of the intermediate spatial-spectral signal achieved by the holographic spectral diversity filter (i.e., the diffracted crescent) by the detector array. 5
6 2 Problem Statement Optimizing the parameters that define the spectral diversity filter is essential to improving the sensitivity and resolution of holographic spectrometers. Spherical-beam volume holograms have been shown to be usable for spectral diversity filtering [6] and a compact Fourier-transform spectrometer has been demonstrated using a SBVH as the SDF [8]. Plane Wave \ L Point Source θ 1 θ 2 d (a) L Plane Wave Point Source θ 1 θ 2 d (b) Fig. 2. Recording geometries for spherical beam volume holograms. In the transmission geometry (a), the plane wave and the spherical beam enter the hologram from the front face. In the reflection geometry, the plane wave and the spherical beam enter the hologram from opposing sides. 6
7 Recording geometries for spherical beam volume holograms are shown in Fig. 2. The recording of a SBVH involves the interference of a plane wave (i.e., the signal beam) and a spherical beam (i.e., the reference beam) in the plane of the photopolymer being used. In the transmission geometry, the plane wave enters the photopolymer from the same direction as the spherical beam. In the reflection geometry, the plane wave and the spherical beam enter the photopolymer from opposing directions. Both recording geometries offer unique transmission and diffraction characteristics for recorded holograms. Previous studies have determined the efficacy of SBVHs recorded in the transmission geometry as SDFs [6,9]. A preliminary study has indicated the potential of SBVHs recorded in the reflection geometry as SDFs and for implementation in compact Fourier-transform spectrometers [7]. However, while the potential of reflection geometry SBVHs for spectral diversity filtering has been asserted, studies of the performance of reflection geometry holograms in spectral diversity filtering and as the key element for a compact holographic spectrometer have not been conducted. It is the major goal of the current study to gauge the potential of reflection geometry holograms recorded on photopolymer film for compact and highly sensitive spectrometers as compared to that of transmission geometry holograms. For a baseline comparison, studies of the spectral operating range and output holograms recorded in both geometries will be performed. Time permitting, studies of the efficacy of reflection geometry holograms in an implementation of a compact, Fourier-transform spectrometer will be performed. 7
8 3 Research Goals In order to characterize the performance of spherical beam volume holograms recorded in reflection geometry as spectral diversity filters in a holographic spectrometer, several criteria will be examined. The examination of such criteria will be accomplished through a reading setup mimicking the configuration for the holographic spectrometer given in Fig Low-Target Goals The spectral operating range for a given spectrometer is an important parameter which defines the range of incident wavelengths for which the spectrometer is able to perform most accurately. More specifically, the spectral operating range defines the range of incident wavelengths for which the spectrometer is most sensitive and offers the best resolution and hence the best performance. As a primary goal, the spectral operating range for holographic SDFs recorded in both the transmission geometry and the reflection geometry will be characterized. Similar recording parameters (i.e., recording time, angle between signal and reference beams, recording beam intensities) will be used to record holograms in both geometries on separate pieces of photopolymer. A monochromator will be used to provide the incident light source. By varying the incident wavelength of the incident source, the spectral operating range for the holograms can be characterized. 3.2 Ideal-Target Goals Sensitivity, resolution, and the signal-to-noise-ratio are important for characterization of the total performance of a holographic spectrometer. Measurements of sensitivity and resolution will be accomplished by using a reading setup in conjunction with a monochromator for wavelength tunablility of the input source. The resolution can be 8
9 directly determined from the relationship between a change in incident wavelength and the structure of the output pattern retrieved by the CCD imager. The sensitivity can be determined by quantifying the quality of the output pattern retrieved by the CCD and relating such a quantity to the incident wavelength. The signal-to-noise-ratio can be determined by directly comparing the quality of the output pattern retrieved by the CCD to the incident light intensity on the face of the hologram and using signal-processing tools to determine the amount of noise contained within the output. Since it is expected that the measurements for the above quantities will not be without error (for, at least, the first few measurements taken), appropriate corrections will be taken to perfect the measurement schemes for these quantities. It is expected that the development of proper measurement techniques for the quantities above will take several weeks. 3.3 High-Target Goals The application of the holographic spectrometers for diffuse source spectroscopy is of particular interest. Using a diffuser along with an incident wavelength-tunable light source (i.e., a monochromator), studies of all the parameters discussed before (spectral operating range, sensitivity, resolution, and signal-to-noise-ratio) will be performed for holograms recorded in both geometries to determine the performance of these holograms under diffuse incident source conditions. Multiplexing in volume holograms has been shown [4] to allow for increased performance for holographic spectrometers utilizing holograms recorded in the transmission geometry. Multiplexing involves the recording of multiple holograms in a single piece of photopolymer which, in the case of the holographic spectrometers, allows for greater output resolution while retaining the same photon throughput (and therefore not damaging the efficiency of the holograms). As a high-target goal, studies to determine the ideal multiplexing scheme for holograms recorded in the reflection geometry will be performed and will allow for a comparison of the performance of multiplexed holograms recorded in reflection geometry and that of multiplexed holograms recorded in transmission geometry. 9
10 3.4 Project Timetable January 2007 February 2007 March 2007 April 2007 May 2007 August 2007 September 2007 October 2007 November 2007 December 2007 background reading, create recording / reading setup finalize recording / reading setups, record holograms, preliminary analysis of hologram characteristics (e.g., diffraction efficiency) record holograms, analyze spectral diversity characteristics roughly, characterize spectral operating range for all holograms begin measurements of sensitivity, resolution, and signal-to-noiseratio for holograms work on measurements of sensitivity, resolution, and signal-tonoise-ratio for holograms complete measurements for sensitivity, resolution, and signal-tonoise-ratio begin writing of final thesis, begin measurements for diffuse sources, look into multiplexing methods thesis writing, high-target goals thesis writing, high-target goals complete thesis and thesis presentation Note that this timetable will be developed into a more formal Gannt Chart detailing a breakdown of tasks before work on the project begins. This timetable will be modified and update to suit the dynamic, developing needs of the project. 10
11 4 Implications and Future Research It is the goal of this research to produce the parameters which will eventually lead to a viable, robust, and versatile volume holographic spectral diversity filter for inclusion as part of a commercially-viable, compact, efficient, and inexpensive MMS-based holographic spectrometer. Such spectrometers have tremendous applications when dealing with diffuse input light sources and where portability and robustness in a spectrometer is highly desirable. The successful implementation of a spectral diversity filter using a spherical beam volume hologram recorded in the reflection geometry would invariably be followed up by studies to improve the efficacy of such an SDF by further investigation into, for instance, multiplexing methods for overcoming the resolution tradeoff that occurs when using photopolymers of varying thicknesses for better throughput. 11
12 5 References 1. D. Brady and D. Psaltis, Control of Volume Holograms, Journal of Optical Society of America A 9, 1167 (1992) 2. A. Sinha, G. Barbastathis, W. Liu, and D. Psaltis, Imaging using volume holograms, Optical Engineering 43(9), 1959 (2004) 3. Y. Yang, A. Adibi, and D. Psaltis, Comparison of transmission and the 90-degree holographic recording geometry, Applied Optics 42, 3418 (2003) 4. G. Barbastahis and D. Psaltis, Volume holographic multiplexing methods, Holographic Data Storage, Eds: H. Coufal, D. Psaltis, and G. Sincerbox. Springer, New York, Z. Xu, Z. Wang, M. Sullivan, D. Brady, S. Foulger, and A. Adibi, Multimodal multiplex spectroscopy using photonic crystals, Optics Express 11, 2126 (2003) 6. A. Karbaschi, C. Hsieh, O. Momtahan, A. Adibi, M. Sullivan, and D. Brady, Qualitative demonstration of spectral diversity filtering using spherical beam volume holograms, Optics Express 12, 3018 (2004) 7. C. Hsieh, O. Momtahan, A. Karbaschi, A. Adibi, M. Sullivan, and D. Brady, Role of recording geometry in the performance of spectral diversity filters with spherical beam volume holograms, Optics Letters 30, 2, 186 (2005) 8. C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, Compact Fourier-transform volume holographic spectrometer for diffuse source spectroscopy, Optics Letters 30, 8, 836 (2005) 9. O. Momtahan, C. Hsieh, A. Karbaschi, A. Adibi, M. Sullivan, and D. Brady, Spherical beam volume holograms for spectroscopic applications: modeling and implementation, Applied Optics 43, 6557 (2004) 12
13 10. O. Momtahan, C. Hsieh, A. Adibi, and D. Brady, Analysis of slitless holographic spectrometers implemented by spherical beam volume holograms, Applied Optics 45, 2955 (2006) 13
Modern Classical Optics
Modern Classical Optics GEOFFREY BROOKER Department of Physics University of Oxford OXPORD UNIVERSITY PRESS Contents 1 Electromagnetism and basic optics 1 1.1 Introduction 1 1.2 The Maxwell equations 1
A down-under undergraduate optics and photonics laboratory
A down-under undergraduate optics and photonics laboratory Barry Perczuk and Michael Gal School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia ABSTRACT Our senior undergraduate
RAY TRACING UNIFIED FIELD TRACING
RAY TRACING Start to investigate the performance of your optical system using 3D ray distributions, dot diagrams of ray positions and directions, and optical path length. GEOMETRIC FIELD TRACING Switch
FTIR Instrumentation
FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation
Color holographic 3D display unit with aperture field division
Color holographic 3D display unit with aperture field division Weronika Zaperty, Tomasz Kozacki, Malgorzata Kujawinska, Grzegorz Finke Photonics Engineering Division, Faculty of Mechatronics Warsaw University
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control
Industrial Process Monitoring Requires Rugged AOTF Tools
Industrial Process Monitoring Requires Rugged AOTF Tools Dr Jolanta Soos Growth has been rapid in the use of spectroscopic methods to monitor industrial processes, both in production lines and for quality
Spectral Measurement Solutions for Industry and Research
Spectral Measurement Solutions for Industry and Research Hamamatsu Photonics offers a comprehensive range of products for spectroscopic applications, covering the, Visible and Infrared regions for Industrial,
Introduction to Fourier Transform Infrared Spectrometry
Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,
Acousto-optic modulator
1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).
P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)
Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (1813-1878) OBJECTIVES To examine the
Introduction to Optics
Second Edition Introduction to Optics FRANK L. PEDROTTI, S.J. Marquette University Milwaukee, Wisconsin Vatican Radio, Rome LENO S. PEDROTTI Center for Occupational Research and Development Waco, Texas
Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998)
Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Geoff Andersen and R. J. Knize Laser and Optics Research Center
Theremino System Theremino Spectrometer Technology
Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating
Time out states and transitions
Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between
Introduction to reflective aberration corrected holographic diffraction gratings
Introduction to reflective aberration corrected holographic diffraction gratings By Steve Slutter, Wu Jiang, and Olivier Nicolle The reflective diffraction grating is the heart of most spectroscopy systems
Measurement of Enhanced Specular Reflector (ESR) Films Using a LAMBDA 1050 UV/Vis/NIR Spectrometer and URA Accessory
FIELD APPLICATION REPORT UV/Vis/NIR Spectroscopy Author: Frank Padera Shelton, CT Contributor: Chris Lynch Shelton, CT Measurement of Enhanced Specular Reflector (ESR) Films Using a LAMBDA 1050 UV/Vis/NIR
Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optical Metrology Third Edition Kjell J. Gasvik Spectra Vision AS,
Spectroscopy Using the Tracker Video Analysis Program
Spectroscopy Using the Tracker Video Analysis Program Douglas Brown Cabrillo College Aptos CA 95003 [email protected] Spectroscopy has important applications in many fields and deserves more attention
Fig.1. The DAWN spacecraft
Introduction Optical calibration of the DAWN framing cameras G. Abraham,G. Kovacs, B. Nagy Department of Mechatronics, Optics and Engineering Informatics Budapest University of Technology and Economics
Raman Spectroscopy Basics
Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that
Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red
Changing the economics of space Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red J. Fernandez-Saldivar 1, F. Culfaz 1,
Raman spectroscopy Lecture
Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy
Education Programs of the Institute for Optical Sciences at the University of Toronto
Education Programs of the Institute for Optical Sciences at the University of Toronto Emanuel Istrate and R. J. Dwayne Miller Institute for Optical Sciences, University of Toronto 60 St. George Street,
Astrophysical Techniques. C R Kitchin
Astrophysical Techniques C R Kitchin University of Hertfordshire Observatory Third Edition SUB Gottingen 7 210 119 268 99 A 8843 Institute of Physics Publishing Bristol and Philadelphia Contents Preface
WHITE PAPER. Are More Pixels Better? www.basler-ipcam.com. Resolution Does it Really Matter?
WHITE PAPER www.basler-ipcam.com Are More Pixels Better? The most frequently asked question when buying a new digital security camera is, What resolution does the camera provide? The resolution is indeed
Synthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,
Chapter 3 SYSTEM SCANNING HARDWARE OVERVIEW
Qiang Lu Chapter 3. System Scanning Hardware Overview 79 Chapter 3 SYSTEM SCANNING HARDWARE OVERVIEW Since all the image data need in this research were collected from the highly modified AS&E 101ZZ system,
Coating Thickness and Composition Analysis by Micro-EDXRF
Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing
Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors
Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Diego Betancourt and Carlos del Río Antenna Group, Public University of Navarra, Campus
O6: The Diffraction Grating Spectrometer
2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer
We bring quality to light. MAS 40 Mini-Array Spectrometer. light measurement
MAS 40 Mini-Array Spectrometer light measurement Features at a glance Cost-effective and robust CCD spectrometer technology Standard USB interface Compatible with all Instrument Systems measuring adapters
SGS: Das Scanning Grating Spektrometer Ein kleines, günstiges Spektrometermodul auf Basis eines dispersiven Mikrosystems
the leading supplier of Micro Scanning Devices Your Micro Optical Solution IPHT-Workshop 11.-12.03.08 We move the light for you! SGS: Das Scanning Grating Spektrometer Ein kleines, günstiges Spektrometermodul
Components for Infrared Spectroscopy. Dispersive IR Spectroscopy
Components for Infrared Spectroscopy Mid-IR light: 00-000 cm - (5.5 m wavelength) Sources: Blackbody emitters Globar metal oxides Nernst Glower: Silicon Carbide Detectors: Not enough energy for photoelectric
Sensori ottici e laser nelle applicazioni industriali
Sensori ottici e laser nelle applicazioni industriali Guido GIULIANI Pavia [email protected] 1 Outline Optical sensors in industry: why? Types of optical sensors optical barriers distance measurement
ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2
Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right
Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.
Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Some limitations (disadvantages) of NSOM A trade-off
Blackbody Radiation References INTRODUCTION
Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt
International Year of Light 2015 Tech-Talks BREGENZ: Mehmet Arik Well-Being in Office Applications Light Measurement & Quality Parameters
www.led-professional.com ISSN 1993-890X Trends & Technologies for Future Lighting Solutions ReviewJan/Feb 2015 Issue LpR 47 International Year of Light 2015 Tech-Talks BREGENZ: Mehmet Arik Well-Being in
Nederland België / Belgique
Cronus Brochure 2 Introduction Cronus: The first spectrometer and colorimeter in one The Cronus is world s first spectrocolorimeter combining a high en VIS spectrometer with a high speed XYZ colorimeter.
SPATIAL-TIME PATTERN OF ELECTRICAL FIELD OF TERAHERTZ PULSE IN THE FAR FIELD
NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2013, 4 (2), P. 206 213 SPATIAL-TIME PATTERN OF ELECTRICAL FIELD OF TERAHERTZ PULSE IN THE FAR FIELD M. S. Kulya 1, Ya. V. Grachev 1, V. G. Bespalov 1, V.
Imaging techniques with refractive beam shaping optics
Imaging techniques with refractive beam shaping optics Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Applying of the refractive beam shapers in real
http://dx.doi.org/10.1117/12.906346
Stephanie Fullerton ; Keith Bennett ; Eiji Toda and Teruo Takahashi "Camera simulation engine enables efficient system optimization for super-resolution imaging", Proc. SPIE 8228, Single Molecule Spectroscopy
NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES
Vol. 93 (1997) A CTA PHYSICA POLONICA A No. 2 Proceedings of the 1st International Symposium on Scanning Probe Spectroscopy and Related Methods, Poznań 1997 NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY
Laser expander design of highly efficient Blu-ray disc pickup head
Laser expander design of highly efficient Blu-ray disc pickup head Wen-Shing Sun, 1,* Kun-Di Liu, 1 Jui-Wen Pan, 1 Chuen-Lin Tien, 2 and Min-Sheng Hsieh 1 1 Department of Optics and Photonics, National
EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system
EDS system Most common X-Ray measurement system in the SEM lab. Major elements (10 wt% or greater) identified in ~10 secs. Minor elements identifiable in ~100 secs. Rapid qualitative and accurate quantitative
Optical Communications
Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF
Email: [email protected]
USE OF VIRTUAL INSTRUMENTS IN RADIO AND ATMOSPHERIC EXPERIMENTS P.N. VIJAYAKUMAR, THOMAS JOHN AND S.C. GARG RADIO AND ATMOSPHERIC SCIENCE DIVISION, NATIONAL PHYSICAL LABORATORY, NEW DELHI 110012, INDIA
Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs
Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or
INFITEC - A NEW STEREOSCOPIC VISUALISATION TOOL BY WAVELENGTH MULTIPLEX IMAGING
INFITEC - A NEW STEREOSCOPIC VISUALISATION TOOL BY WAVELENGTH MULTIPLEX IMAGING Helmut Jorke, Markus Fritz INFITEC GmbH, Lise-Meitner-Straße 9, 89081 Ulm [email protected] Phone +49 731 550299 56 Fax _
Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.
Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?
WAVELENGTH OF LIGHT - DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
Copyright 1999 2010 by Mark Brandt, Ph.D. 12
Introduction to Absorbance Spectroscopy A single beam spectrophotometer is comprised of a light source, a monochromator, a sample holder, and a detector. An ideal instrument has a light source that emits
2 Absorbing Solar Energy
2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could
Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm
Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and
Measuring of optical output and attenuation
Measuring of optical output and attenuation THEORY Measuring of optical output is the fundamental part of measuring in optoelectronics. The importance of an optical power meter can be compared to an ammeter
Plastic Film Texture Measurement With 3D Profilometry
Plastic Film Texture Measurement With 3D Profilometry Prepared by Jorge Ramirez 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials.
Study Guide for Exam on Light
Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used
Fundamentals of modern UV-visible spectroscopy. Presentation Materials
Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms
The Embedded Method of Optoelectronics in Electrical Engineering Curriculums
The Embedded Method of Optoelectronics in Electrical Engineering Curriculums by Alexander D. Poularikas Electrical and Computer Engineering University ofalabama in Huntsville, Huntsville AL, 35899 ABSTRACT:
PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER
PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER Lufan Zou and Taha Landolsi OZ Optics Limited, 219 Westbrook Road, Ottawa, ON, Canada, K0A 1L0 E-mail:
DETECTION OF SUBSURFACE DAMAGE IN OPTICAL TRANSPARENT MATERIALSS USING SHORT COHERENCE TOMOGRAPHY. Rainer Boerret, Dominik Wiedemann, Andreas Kelm
URN (Paper): urn:nbn:de:gbv:ilm1-2014iwk-199:0 58 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 08 12 September 2014 URN: urn:nbn:de:gbv:ilm1-2014iwk:3 DETECTION OF SUBSURFACE DAMAGE
October 1, 2015. (Press release) Nippon Telegraph and Telephone Corporation
(Press release) October 1, 2015 Nippon Telegraph and Telephone Corporation High-density simultaneous compensation of distortion in wavelength-multiplexed signals using a time-reversal operation: World
Optical Design Tools for Backlight Displays
Optical Design Tools for Backlight Displays Introduction Backlights are used for compact, portable, electronic devices with flat panel Liquid Crystal Displays (LCDs) that require illumination from behind.
PUMPED Nd:YAG LASER. Last Revision: August 21, 2007
PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow
Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.
Helium-Neon Laser Experiment objectives: assemble and align a 3-mW HeNe laser from readily available optical components, record photographically the transverse mode structure of the laser output beam,
It has long been a goal to achieve higher spatial resolution in optical imaging and
Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,
Blue Laser Technology Applied to the Microtrac Unified Scatter Technique for Full- Range Particle Size Measurement.
Blue Laser Technology Applied to the Microtrac Unified Scatter Technique for Full- Range Particle Size Measurement. Philip E. Plantz, PhD Application Note SL-AN-25 Revision A Provided By: Microtrac, Inc.
Wir schaffen Wissen heute für morgen
Diffractive optics for photon beam diagnostics at hard XFELs Wir schaffen Wissen heute für morgen PSI: SLAC: ESRF: SOLEIL: APS: SACLA: EuroXFEL C. David, S. Rutishauser, P. Karvinen, Y. Kayser, U. Flechsig,
Four Wave Mixing in Closely Spaced DWDM Optical Channels
544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering
THE BOHR QUANTUM MODEL
THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with
Use Data Budgets to Manage Large Acoustic Datasets
Use Data Budgets to Manage Large Acoustic Datasets Introduction Efforts to understand the health of the ocean have increased significantly in the recent past. These efforts involve among other things,
This page intentionally left blank
This page intentionally left blank Basics of Holography Basics of Holography is an introduction to the subject written by a leading worker in the field. The first part of the book covers the theory of
How To Analyze Plasma With An Inductively Coupled Plasma Mass Spectrometer
What is ICP-MS? and more importantly, what can it do? Inductively Coupled Plasma Mass Spectrometry or ICP-MS is an analytical technique used for elemental determinations. The technique was commercially
- using the examples of digital image analysis, CCD - devices and computer simulation.
Concept of Modern Optical Training Labs for Optical Engineering Students Serguej C. Stafeev. Yuri L. Kolesnikov, Alexander V. Srnirnov General Physics Department ofst.petersburg Institute of Fine Mechanics
THE virtually imaged phased array (VIPA) was introduced
420 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 4, APRIL 2004 A Dispersion Law for Virtually Imaged Phased-Array Spectral Dispersers Based on Paraxial Wave Theory Shijun Xiao, Student Member, IEEE,
6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?
Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through
High Power and Low Coherence Fibre-optic Source for Incoherent Photonic Signal Processing
High Power and Low Coherence Fibre-optic Source for Incoherent Photonic Signal Processing Y u a n L i a n d R o b e r t A. M i n a s i a n School of Electrical and Information Engineering and APCRC University
Understanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
S2000 Spectrometer Data Sheet
Description The Ocean Optics OEM S2000 Spectrometer includes the linear CCD-array optical bench, plus the circuits necessary for spectrometer operation. The result is a compact, flexible system with no
Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:
Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T
ORIEL. FT-IR Spectroscopy SECTION FOUR FEATURES. Glossary of Terms Introduction to FT-IR Spectroscopy
ORIEL ORIEL PRODUCT TRAINING FT-IR Spectroscopy SECTION FOUR FEATURES Glossary of Terms Introduction to FT-IR Spectroscopy Stratford, CT Toll Free 800.74.5393 Fax 03.378.457 www.newport.com/oriel [email protected]
Fibre Bragg Grating Sensors An Introduction to Bragg gratings and interrogation techniques
Fibre Bragg Grating Sensors An ntroduction to Bragg gratings and interrogation techniques Dr Crispin Doyle Senior Applications Engineer, Smart Fibres Ltd. 2003 1) The Fibre Bragg Grating (FBG) There are
Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems
Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems Ronald M. Keyser, Timothy R. Twomey, Sam Hitch ORTEC 801 South Illinois Avenue Oak Ridge, TN, 37831
Limiting factors in fiber optic transmissions
Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 [email protected] eportal.pwr.wroc.pl Copying and processing permitted for noncommercial
Measuring Laser Power and Energy Output
Measuring Laser Power and Energy Output Introduction The most fundamental method of checking the performance of a laser is to measure its power or energy output. Laser output directly affects a laser s
Agilent Cary 60 UV-Vis
Agilent Cary 60 UV-Vis Efficient. Accurate. Flexible. Specifications Introduction The Agilent Cary 60 UV-Vis spectrophotometer is efficient, accurate and flexible, and is designed to meet both current
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction
GRID AND PRISM SPECTROMETERS
FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing
Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing
Reprint (R22) Avoiding Errors in UV Radiation Measurements By Thomas C. Larason July 2001 Reprinted from Photonics Spectra, Laurin Publishing Gooch & Housego 4632 36 th Street, Orlando, FL 32811 Tel: 1
Learning about light and optics in on-line general education classes using at-home experimentation.
Learning about light and optics in on-line general education classes using at-home experimentation. Jacob Millspaw, Gang Wang, and Mark F. Masters Department of Physics, Indiana University Purdue University
Module 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES
UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES SEPTEMBER 2012, V 1.1 4878 RONSON CT STE K SAN DIEGO, CA 92111 858-565 - 4227 NANOCOMPOSIX.COM Note to the Reader: We at nanocomposix have published this
3.5.4.2 One example: Michelson interferometer
3.5.4.2 One example: Michelson interferometer mirror 1 mirror 2 light source 1 2 3 beam splitter 4 object (n object ) interference pattern we either observe fringes of same thickness (parallel light) or
Realization of a UV fisheye hyperspectral camera
Realization of a UV fisheye hyperspectral camera Valentina Caricato, Andrea Egidi, Marco Pisani and Massimo Zucco, INRIM Outline Purpose of the instrument Required specs Hyperspectral technique Optical
Wavelength stabilized high-power diode laser modules
Wavelength stabilized high-power diode laser modules Bernd Köhler *, Thomas Brand, Matthias Haag, Jens Biesenbach DILAS Diodenlaser GmbH, Galileo-Galilei-Str. 10, 55129 Mainz-Hechtsheim, Germany ABSTRACT
Guide to Understanding X-ray Crystallography
Guide to Understanding X-ray Crystallography What is X-ray Crystallography and why do I need to learn it? X-ray Crystallography is a scientific method of determining the precise positions/arrangements
