Economic Interpretation of Regression. Theory and Applications

Size: px
Start display at page:

Download "Economic Interpretation of Regression. Theory and Applications"

Transcription

1 Economc Interpretaton of Regresson Theor and Applcatons

2 Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve relaton. Mathematcal economcs turns economc theor n equatons. Economc statstcs concerns wth collectng, processng and presentng economc data. Econometrcans estmate precse numercal estmates of these relatons. Statement of hpothess Specfcaton of the mathematcal model Specfcaton of econometrc model Data collecton Estmaton of parameters of the econometrc model Hpothess testng Forecastng or predcton Usng model for control or polc analss Mehtodolog of Baesan Econometrcs Baesan pror Sample nformaton Posteror nformaton Econometrcs Theoretcal Appled Classcal Baesan Classcal Baesan

3 Assumptons of a Regresson Model e [ e ] 0 var σ E [ ] e cov( e e j ) 0 for all j E [ e ] 0 s eogenous, not random

4 Test of Normalt and Level of Sgnfcance: Two Tal Test P (.96 z.96) ( α ) f ( ) H 0 : Normalt Accept t f Z < Z Crt Acceptance regons Lower Crtcal or Rejecton regon.5% 95% Upper Crtcal or Rejecton regon.5% α z E ( ) μ σ μ α 4

5 How Regresson Can do Better than Means n Predcton? 5

6 The least square lne s the lne that best fts the data set. The least square lne passes through the average values of varables and. Dfferences between each observaton and the lne s represented b error terms. As some of them are above the lne and others below the lne, postve errors cancel out wth the negatve errors. Each dot n the above graph represents an observaton. Some observatons le above the least square lne and others le below t. These errors represent mssng elements from ths relatonshp. Omtted varables Measurement errors Msspecfcaton 6

7 7 e ( ) e S ( ) 0 > e ( )( ) 0 S ( )( ) 0 S that Mnmsed the Sum of Error Square Or best fts of the the data Choose

8 8 N N N Normal Equatons and Estmators

9 9 Food ependture and ncome: data and predcton E smsqprede Smsqpred 6.48 sumsq sumsq Sum Sum Sum sqprede prede Sqpred pred square square

10 N N 8(55) (9) 8(84) () (.875) The parameters are random varables; the var b samples. 0

11 ' 84 8 ' ' 55 9 ' Data n the Matr Form

12 N ( ) ' ' ( ) ( ) ' ' ' Adj (8)55 (9) (55) 84(9) Solvng the OLS Model usng a Matr

13 Elastct around the mean of and η

14 4 [Total varaton] [Eplaned varaton] [Resdual varaton] df T- K- T-K- ( ) [ ] ( ) [ ] ( ) ( ) e e e Var ( ) ( ) e Var ( ) e 0 Q

15 5 Coeffcent of determnaton ( ) ( ) ( ) ( ) ( ) ( ) R R e ( ) ( ) R 0 R Le Parameters R-Square s also a random varable.

16 6 Lnear, Unbasedness and Mnmum Varance Propertes of an Estmator (BLUE Propert) ( ) E ( ) f Bas Bas w E var σ Lneart: Unbasedness Mnmum Varance ( ) f

17 Interval Estmaton and the level of sgnfcance P t c tc α var( ) P P ( t SE( ) t SE( ) α c [ t SE( ), t SE( )] c c c P ( t t ) α c 7

18 Hpothess Testng About the Mean One-taled hpothess test H 0 : 0 H 0 : 0 Two-taled hpothess test H : A 0 Get the value of Get the standard error of Compute t-rato t t ( T K ) ( ) ~ SE Compare t wth the crtcal value of t from the t- dstrbuton table. reject H 0 f t t c H : A 0 Get the value of Get the standard error of Compute t-rato t t ( T K ) ( ) ~ SE reject H 0 f the computed t-value s greater than or equal to t c, or less than or equal to 8 t c. Compare t wth the crtcal value of t from the t- dstrbuton table.

19 Testng Restrctons n a Multple Regresson Model: F-test 0 Model t t Test Null Hpothess: H 0 : 0 Alternatve hpothess H : or or or an two of them or all are nonzero. At least one of them s sgnfcant. F-test for overall sgnfcance of the model F V V m m ~ F m m ( ) V sum of varaton due to eplanator varables and V sum of varaton not eplaned (squared resduals) m degrees of freedom of eplanator varables (K-) m degrees of freedom of for resdual (N-K) e 9

20 0 ( )( ) 0, S and ( )( ) 0,, S ( )( ) 0,, S Thus normal equatons are N, (),,, (),,,, (4) Dervaton of Normal Equatons n a Multple Regresson Analss

21 Algebrac Method It s easer to solve ths sstem n a devaton form defnng devaton from ( ) the mean, 0 ( ) ;,, 0 ; ( ) 0, ( ),,,, (4 ) In order get value of elmnate b multplng the ( ) b,, and (4 ) b,,,,

22 Algebrac Dervaton of Parameters Use value of the n equaton ( ) to get value of, ( ),,,,,,,,,,, The values of and can be used to fnd the value of.

23 N,,, ( ) ' ' Matr Approach

24 4,,,, (8),,,,,,,,,,, (9),,,,,,,, (0) Usng Cramer s Rule for Dervng the Slope Parameters

25 5,,,, (7.) consequences: Here s constant, and are eplanator varables. Further assume that and are perfectl correlated:,, λ. Then (7.0) and (7.) become as followng: 0 0 λ λ λ λ (7.) 0 0 λ λ λ λ (7.) Ths s the proof of the fact that when two varables are eactl correlated to each other the least square procedure completel breas down. Mutlcollneart

26 LS assumpton: varance of ever th observaton, possble that What s hetroscedastct? var e s constant var σ e for σ but t s σ σ Causes: Learnng, growth, mproved data collecton, outlers, omtted varables; 6

27 What s autocorrelaton Assumpton behnd the OLS cov( e e ) 0 j for all j Autocorrelaton ests when cov( e e j ) 0 for all j e ρe v v 0, ~ N σ ρ correlaton coeffcent between and 7

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

STATISTICAL DATA ANALYSIS IN EXCEL

STATISTICAL DATA ANALYSIS IN EXCEL Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 [email protected] Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for

More information

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6 PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has

More information

The Mathematical Derivation of Least Squares

The Mathematical Derivation of Least Squares Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The

More information

How To Calculate The Accountng Perod Of Nequalty

How To Calculate The Accountng Perod Of Nequalty Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: [email protected] 1/Introducton The

More information

Online Appendix for Forecasting the Equity Risk Premium: The Role of Technical Indicators

Online Appendix for Forecasting the Equity Risk Premium: The Role of Technical Indicators Onlne Appendx for Forecastng the Equty Rsk Premum: The Role of Techncal Indcators Chrstopher J. Neely Federal Reserve Bank of St. Lous [email protected] Davd E. Rapach Sant Lous Unversty [email protected]

More information

Research Methods For Economists

Research Methods For Economists THE BUSINESS SCHOOL Research Methods For Economsts Keshab Bhattara, Research Methods, HUBS Introducton The major objectve of research n economcs s to fnd out the truth about economc questons that s botherng,

More information

Testing Adverse Selection Using Frank Copula Approach in Iran Insurance Markets

Testing Adverse Selection Using Frank Copula Approach in Iran Insurance Markets Journal of mathematcs and computer Scence 5 (05) 54-58 Testng Adverse Selecton Usng Frank Copula Approach n Iran Insurance Markets Had Safar Katesar,, Behrouz Fath Vajargah Departmet of Statstcs, Shahd

More information

5 Multiple regression analysis with qualitative information

5 Multiple regression analysis with qualitative information 5 Multple regresson analyss wth qualtatve nformaton Ezequel Urel Unversty of Valenca Verson: 9-13 5.1 Introducton of qualtatve nformaton n econometrc models. 1 5. A sngle dummy ndependent varable 5.3 Multple

More information

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and m-fle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Portfolio Loss Distribution

Portfolio Loss Distribution Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment

More information

Regression Models for a Binary Response Using EXCEL and JMP

Regression Models for a Binary Response Using EXCEL and JMP SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal

More information

Statistical Methods to Develop Rating Models

Statistical Methods to Develop Rating Models Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model

More information

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements Lecture 3 Densty estmaton Mlos Hauskrecht [email protected] 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there

More information

Quantization Effects in Digital Filters

Quantization Effects in Digital Filters Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

Estimation of Dispersion Parameters in GLMs with and without Random Effects

Estimation of Dispersion Parameters in GLMs with and without Random Effects Mathematcal Statstcs Stockholm Unversty Estmaton of Dsperson Parameters n GLMs wth and wthout Random Effects Meng Ruoyan Examensarbete 2004:5 Postal address: Mathematcal Statstcs Dept. of Mathematcs Stockholm

More information

Binomial Link Functions. Lori Murray, Phil Munz

Binomial Link Functions. Lori Murray, Phil Munz Bnomal Lnk Functons Lor Murray, Phl Munz Bnomal Lnk Functons Logt Lnk functon: ( p) p ln 1 p Probt Lnk functon: ( p) 1 ( p) Complentary Log Log functon: ( p) ln( ln(1 p)) Motvatng Example A researcher

More information

Dynamics of Toursm Demand Models in Japan

Dynamics of Toursm Demand Models in Japan hort-run and ong-run structural nternatonal toursm demand modelng based on Dynamc AID model -An emprcal research n Japan- Atsush KOIKE a, Dasuke YOHINO b a Graduate chool of Engneerng, Kobe Unversty, Kobe,

More information

Criminal Justice System on Crime *

Criminal Justice System on Crime * On the Impact of the NSW Crmnal Justce System on Crme * Dr Vasls Sarafds, Dscplne of Operatons Management and Econometrcs Unversty of Sydney * Ths presentaton s based on jont work wth Rchard Kelaher 1

More information

Two Faces of Intra-Industry Information Transfers: Evidence from Management Earnings and Revenue Forecasts

Two Faces of Intra-Industry Information Transfers: Evidence from Management Earnings and Revenue Forecasts Two Faces of Intra-Industry Informaton Transfers: Evdence from Management Earnngs and Revenue Forecasts Yongtae Km Leavey School of Busness Santa Clara Unversty Santa Clara, CA 95053-0380 TEL: (408) 554-4667,

More information

4 Hypothesis testing in the multiple regression model

4 Hypothesis testing in the multiple regression model 4 Hypothess testng n the multple regresson model Ezequel Urel Unversdad de Valenca Verson: 9-13 4.1 Hypothess testng: an overvew 1 4.1.1 Formulaton of the null hypothess and the alternatve hypothess 4.1.

More information

International University of Japan Public Management & Policy Analysis Program

International University of Japan Public Management & Policy Analysis Program Internatonal Unversty of Japan Publc Management & Polcy Analyss Program Practcal Gudes To Panel Data Modelng: A Step by Step Analyss Usng Stata * Hun Myoung Park, Ph.D. [email protected] 1. Introducton.

More information

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson

More information

The announcement effect on mean and variance for underwritten and non-underwritten SEOs

The announcement effect on mean and variance for underwritten and non-underwritten SEOs The announcement effect on mean and varance for underwrtten and non-underwrtten SEOs Bachelor Essay n Fnancal Economcs Department of Economcs Sprng 013 Marcus Wkner and Joel Anehem Ulvenäs Supervsor: Professor

More information

Diagnostic Tests of Cross Section Independence for Nonlinear Panel Data Models

Diagnostic Tests of Cross Section Independence for Nonlinear Panel Data Models DISCUSSION PAPER SERIES IZA DP No. 2756 Dagnostc ests of Cross Secton Independence for Nonlnear Panel Data Models Cheng Hsao M. Hashem Pesaran Andreas Pck Aprl 2007 Forschungsnsttut zur Zukunft der Arbet

More information

Traditional versus Online Courses, Efforts, and Learning Performance

Traditional versus Online Courses, Efforts, and Learning Performance Tradtonal versus Onlne Courses, Efforts, and Learnng Performance Kuang-Cheng Tseng, Department of Internatonal Trade, Chung-Yuan Chrstan Unversty, Tawan Shan-Yng Chu, Department of Internatonal Trade,

More information

Lecture 15 Panel Data Models

Lecture 15 Panel Data Models Lecture 15 Panel Data Models Panel Data Sets A panel data set, or longtudnal data set, s one where there are repeated observatons on the same unts. The unts may be ndvduals, households, enterprses, countres,

More information

Testing the Infrequent Purchases Model Using Direct Measurement of Hidden Consumption from Food Stocks

Testing the Infrequent Purchases Model Using Direct Measurement of Hidden Consumption from Food Stocks Testng the Infrequent Purchases Model Usng Drect Measurement of Hdden Consumpton from Food Stocks John Gbson and Bonggeun Km Abstract Reports of zero expendture on ndvdual commodtes durng the reference

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems

More information

Credit Limit Optimization (CLO) for Credit Cards

Credit Limit Optimization (CLO) for Credit Cards Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt

More information

the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at http://www.wmo.int/pages/prog/www/manuals.

the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at http://www.wmo.int/pages/prog/www/manuals. Gudelne on the exchange and use of EPS verfcaton results Update date: 30 November 202. Introducton World Meteorologcal Organzaton (WMO) CBS-XIII (2005) recommended that the general responsbltes for a Lead

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

TESTING FOR EVIDENCE OF ADVERSE SELECTION IN DEVELOPING AUTOMOBILE INSURANCE MARKET. Oksana Lyashuk

TESTING FOR EVIDENCE OF ADVERSE SELECTION IN DEVELOPING AUTOMOBILE INSURANCE MARKET. Oksana Lyashuk TESTING FOR EVIDENCE OF ADVERSE SELECTION IN DEVELOPING AUTOMOBILE INSURANCE MARKET by Oksana Lyashuk A thess submtted n partal fulfllment of the requrements for the degree of Master of Arts n Economcs

More information

Gender differences in revealed risk taking: evidence from mutual fund investors

Gender differences in revealed risk taking: evidence from mutual fund investors Economcs Letters 76 (2002) 151 158 www.elsever.com/ locate/ econbase Gender dfferences n revealed rsk takng: evdence from mutual fund nvestors a b c, * Peggy D. Dwyer, James H. Glkeson, John A. Lst a Unversty

More information

L10: Linear discriminants analysis

L10: Linear discriminants analysis L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss

More information

RECENT DEVELOPMENTS IN QUANTITATIVE COMPARATIVE METHODOLOGY:

RECENT DEVELOPMENTS IN QUANTITATIVE COMPARATIVE METHODOLOGY: Federco Podestà RECENT DEVELOPMENTS IN QUANTITATIVE COMPARATIVE METHODOLOGY: THE CASE OF POOLED TIME SERIES CROSS-SECTION ANALYSIS DSS PAPERS SOC 3-02 INDICE 1. Advantages and Dsadvantages of Pooled Analyss...

More information

Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio

Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of

More information

School tracking and development of cognitive skills additional results

School tracking and development of cognitive skills additional results ömmföäflsäafaäsflassflassflas fffffffffffffffffffffffffffffffffff Dscusson Papers School trackng and development of cogntve sklls addtonal results Sar Pekkala Kerr Wellesley College Tuomas Pekkarnen Aalto

More information

Marginal Benefit Incidence Analysis Using a Single Cross-section of Data. Mohamed Ihsan Ajwad and Quentin Wodon 1. World Bank.

Marginal Benefit Incidence Analysis Using a Single Cross-section of Data. Mohamed Ihsan Ajwad and Quentin Wodon 1. World Bank. Margnal Beneft Incdence Analyss Usng a Sngle Cross-secton of Data Mohamed Ihsan Ajwad and uentn Wodon World Bank August 200 Abstract In a recent paper, Lanjouw and Ravallon proposed an attractve and smple

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

Calibration and Linear Regression Analysis: A Self-Guided Tutorial

Calibration and Linear Regression Analysis: A Self-Guided Tutorial Calbraton and Lnear Regresson Analyss: A Self-Guded Tutoral Part The Calbraton Curve, Correlaton Coeffcent and Confdence Lmts CHM314 Instrumental Analyss Department of Chemstry, Unversty of Toronto Dr.

More information

Approximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC

Approximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC Approxmatng Cross-valdatory Predctve Evaluaton n Bayesan Latent Varables Models wth Integrated IS and WAIC Longha L Department of Mathematcs and Statstcs Unversty of Saskatchewan Saskatoon, SK, CANADA

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Prediction of Disability Frequencies in Life Insurance

Prediction of Disability Frequencies in Life Insurance Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng Fran Weber Maro V. Wüthrch October 28, 2011 Abstract For the predcton of dsablty frequences, not only the observed, but also the ncurred but

More information

Wage inequality and returns to schooling in Europe: a semi-parametric approach using EU-SILC data

Wage inequality and returns to schooling in Europe: a semi-parametric approach using EU-SILC data MPRA Munch Personal RePEc Archve Wage nequalty and returns to schoolng n Europe: a sem-parametrc approach usng EU-SILC data Marco Bagett and Sergo Sccchtano Unversty La Sapenza Rome, Mnstry of Economc

More information

Empirical Methods. MIT 14.771/ Harvard 2390b

Empirical Methods. MIT 14.771/ Harvard 2390b Emprcal Methods MIT 14.771/ Harvard 2390b The goal of ths handout s to present the most common emprcal methods used n appled economcs. Excellent references for the program evaluaton and natural experment

More information

Although ordinary least-squares (OLS) regression

Although ordinary least-squares (OLS) regression egresson through the Orgn Blackwell Oxford, TEST 0141-98X 003 5 31000 Orgnal Joseph Teachng G. UK Artcle Publshng Esenhauer through Statstcs the Ltd Trust Orgn 001 KEYWODS: Teachng; egresson; Analyss of

More information

THE DETERMINANTS OF THE TUNISIAN BANKING INDUSTRY PROFITABILITY: PANEL EVIDENCE

THE DETERMINANTS OF THE TUNISIAN BANKING INDUSTRY PROFITABILITY: PANEL EVIDENCE THE DETERMINANTS OF THE TUNISIAN BANKING INDUSTRY PROFITABILITY: PANEL EVIDENCE Samy Ben Naceur ERF Research Fellow Department of Fnance Unversté Lbre de Tuns Avenue Khéreddne Pacha, 002 Tuns Emal : [email protected]

More information

Do Banks Use Private Information from Consumer Accounts? Evidence of Relationship Lending in Credit Card Interest Rate Heterogeneity

Do Banks Use Private Information from Consumer Accounts? Evidence of Relationship Lending in Credit Card Interest Rate Heterogeneity Do Banks Use Prvate Informaton from Consumer Accounts? Evdence of Relatonshp Lendng n Credt Card Interest Rate Heterogenety Sougata Kerr, Stephen Cosslett, Luca Dunn December, 2004 Author nformaton: Kerr,

More information

Intra-year Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error

Intra-year Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error Intra-year Cash Flow Patterns: A Smple Soluton for an Unnecessary Apprasal Error By C. Donald Wggns (Professor of Accountng and Fnance, the Unversty of North Florda), B. Perry Woodsde (Assocate Professor

More information

How To Understand The Results Of The German Meris Cloud And Water Vapour Product

How To Understand The Results Of The German Meris Cloud And Water Vapour Product Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

The Application of Fractional Brownian Motion in Option Pricing

The Application of Fractional Brownian Motion in Option Pricing Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn [email protected]

More information

PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIGIOUS AFFILIATION AND PARTICIPATION

PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIGIOUS AFFILIATION AND PARTICIPATION PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIIOUS AFFILIATION AND PARTICIPATION Danny Cohen-Zada Department of Economcs, Ben-uron Unversty, Beer-Sheva 84105, Israel Wllam Sander Department of Economcs, DePaul

More information

Chapter 8 Group-based Lending and Adverse Selection: A Study on Risk Behavior and Group Formation 1

Chapter 8 Group-based Lending and Adverse Selection: A Study on Risk Behavior and Group Formation 1 Chapter 8 Group-based Lendng and Adverse Selecton: A Study on Rsk Behavor and Group Formaton 1 8.1 Introducton Ths chapter deals wth group formaton and the adverse selecton problem. In several theoretcal

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Part 1: quick summary 5. Part 2: understanding the basics of ANOVA 8

Part 1: quick summary 5. Part 2: understanding the basics of ANOVA 8 Statstcs Rudolf N. Cardnal Graduate-level statstcs for psychology and neuroscence NOV n practce, and complex NOV desgns Verson of May 4 Part : quck summary 5. Overvew of ths document 5. Background knowledge

More information

World currency options market efficiency

World currency options market efficiency Arful Hoque (Australa) World optons market effcency Abstract The World Currency Optons (WCO) maket began tradng n July 2007 on the Phladelpha Stock Exchange (PHLX) wth the new features. These optons are

More information

MEASURING OPERATION EFFICIENCY OF THAI HOTELS INDUSTRY: EVIDENCE FROM META-FRONTIER ANALYSIS. Abstract

MEASURING OPERATION EFFICIENCY OF THAI HOTELS INDUSTRY: EVIDENCE FROM META-FRONTIER ANALYSIS. Abstract Internatonal Conference On Appled Economcs ICOAE 2011 315 MEASURING OPERATION EFFICIENCY OF THAI HOTELS INDUSTRY: EVIDENCE FROM METAFRONTIER ANALYSIS PHANIN KHRUEATHAI 1, AKARAPONG UNTONG 2, MINGSARN KAOSAARD

More information

Media Mix Modeling vs. ANCOVA. An Analytical Debate

Media Mix Modeling vs. ANCOVA. An Analytical Debate Meda M Modelng vs. ANCOVA An Analytcal Debate What s the best way to measure ncremental sales, or lft, generated from marketng nvestment dollars? 2 Measurng ROI From Promotonal Spend Where possble to mplement,

More information

Scale Dependence of Overconfidence in Stock Market Volatility Forecasts

Scale Dependence of Overconfidence in Stock Market Volatility Forecasts Scale Dependence of Overconfdence n Stoc Maret Volatlty Forecasts Marus Glaser, Thomas Langer, Jens Reynders, Martn Weber* June 7, 007 Abstract In ths study, we analyze whether volatlty forecasts (judgmental

More information

Forecasting and Stress Testing Credit Card Default using Dynamic Models

Forecasting and Stress Testing Credit Card Default using Dynamic Models Forecastng and Stress Testng Credt Card Default usng Dynamc Models Tony Bellott and Jonathan Crook Credt Research Centre Unversty of Ednburgh Busness School Verson 4.5 Abstract Typcally models of credt

More information

The Relationship between Exchange Rates and Stock Prices: Studied in a Multivariate Model Desislava Dimitrova, The College of Wooster

The Relationship between Exchange Rates and Stock Prices: Studied in a Multivariate Model Desislava Dimitrova, The College of Wooster Issues n Poltcal Economy, Vol. 4, August 005 The Relatonshp between Exchange Rates and Stock Prces: Studed n a Multvarate Model Desslava Dmtrova, The College of Wooster In the perod November 00 to February

More information

Forecasting Irregularly Spaced UHF Financial Data: Realized Volatility vs UHF-GARCH Models

Forecasting Irregularly Spaced UHF Financial Data: Realized Volatility vs UHF-GARCH Models Forecastng Irregularly Spaced UHF Fnancal Data: Realzed Volatlty vs UHF-GARCH Models Franços-Érc Raccot *, LRSP Département des scences admnstratves, UQO Raymond Théoret Département Stratége des affares,

More information

HARVARD John M. Olin Center for Law, Economics, and Business

HARVARD John M. Olin Center for Law, Economics, and Business HARVARD John M. Oln Center for Law, Economcs, and Busness ISSN 1045-6333 ASYMMETRIC INFORMATION AND LEARNING IN THE AUTOMOBILE INSURANCE MARKET Alma Cohen Dscusson Paper No. 371 6/2002 Harvard Law School

More information

Classification errors and permanent disability benefits in Spain

Classification errors and permanent disability benefits in Spain 1 Classfcaton errors and permanent dsablty benefts n Span Serg Jménez-Martín José M. Labeaga Crstna Vlaplana Preto 1. Introducton There s a controverted debate about the effects of permanent dsablty benefts

More information

Time Delayed Independent Component Analysis for Data Quality Monitoring

Time Delayed Independent Component Analysis for Data Quality Monitoring IWSSIP 1-17th Internatonal Conference on Systems, Sgnals and Image Processng Tme Delayed Independent Component Analyss for Data Qualty Montorng José Márco Faer Sgnal Processng Laboratory, COE/Pol Federal

More information

Which Factors Determine Academic Performance of Economics Freshers?. Some Spanish Evidence

Which Factors Determine Academic Performance of Economics Freshers?. Some Spanish Evidence Whch Factors Determne Academc Performance of Economcs Freshers?. Some Spansh Evdence Juan J. Dolado* & Eduardo Morales** (*) Unversdad Carlos III & CEPR & IZA (**) Harvard Unversty Ths draft: October,

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Inverse Modeling of Tight Gas Reservoirs

Inverse Modeling of Tight Gas Reservoirs Inverse Modelng of Tght Gas Reservors Der Fakultät für Geowssenschaften, Geotechnk und Bergbau der Technschen Unverstät Bergakademe Freberg engerechte Dssertaton Zur Erlangung des akademschen Grades Doktor-Ingeneur

More information

Bilgi Ekonomisi ve Yönetimi Dergisi / 2013 Cilt: VIII Sayı: II

Bilgi Ekonomisi ve Yönetimi Dergisi / 2013 Cilt: VIII Sayı: II Blg Ekonoms ve Yönetm Dergs / 2013 Clt: VIII Sayı: II CO2 EMISSIONS, RENEWABLE ENERGY CONSUMPTION, POPULATION DENSITY AND ECONOMIC GROWTH IN G7 COUNTRIES Abstract Fatma Fehme AYDIN 1 Ths study ams nvestgatng

More information

Returns to Experience in Mozambique: A Nonparametric Regression Approach

Returns to Experience in Mozambique: A Nonparametric Regression Approach Returns to Experence n Mozambque: A Nonparametrc Regresson Approach Joel Muzma Conference Paper nº 27 Conferênca Inaugural do IESE Desafos para a nvestgação socal e económca em Moçambque 19 de Setembro

More information

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,

More information

WORKING PAPER. C.D. Howe Institute. The Effects of Tax Rate Changes on Tax Bases and the Marginal Cost of Public Funds for Provincial Governments

WORKING PAPER. C.D. Howe Institute. The Effects of Tax Rate Changes on Tax Bases and the Marginal Cost of Public Funds for Provincial Governments MARCH 211 C.D. Howe Insttute WORKING PAPER FISCAL AND TAX COMPETITIVENESS The Effects of Tax Rate Changes on Tax Bases and the Margnal Cost of Publc Funds for Provncal Governments Bev Dahlby Ergete Ferede

More information