Cartographic Projections
|
|
|
- Joy Glenn
- 10 years ago
- Views:
Transcription
1 Cartographic Projections Cartographic Projections Paolo Zatelli Alfonso Vitti Dept. Civil and Environmental Engineering University of Trento Paolo Zatelli University of Trento 1 / 18
2 Cartographic Projections Outline 1 Cartographic projection 2 Cartographic projection used in Italy Paolo Zatelli University of Trento 2 / 18
3 Cartographic Projections Cartographic projection Cartographic systems To create a map it is necessary to choose: the reference system and the associated ellipsoid (Datum) a set of coordinates and measures that realize the adopted reference system the cartographic projection and the related parameters Paolo Zatelli University of Trento 3 / 18
4 Cartographic Projections Cartographic projection Cartographic systems To give cartographic coordinates a meaning we have to label numbers with information about: the datum the cartographic projection While datum and the cartographic projection are distinct and different datum/projection combinations are possible, it is common to provide simply the cartographic projection leaving the Datum implied. For example, the UTM projection is used both with the global reference system WGS84 and with the ED50. Paolo Zatelli University of Trento 4 / 18
5 Cartographic Projections Cartographic projection Proiezioni cartografiche Cartographic projections transport coordinates from an ellipsoid to a cartographic plane. The two surfaces are not equivalent from a topological viewpoint, i.e., it is not possible to transport from one surface to the other without deformations. It is possible: to preserve angles (conformal maps) to preserve surfaces (equivalent maps) to minimize the deformation, without having none of them actually null (compromise maps) Paolo Zatelli University of Trento 5 / 18
6 Cartographic projection used in Italy The more common projections used in Italy are: UTM (Universal Trasversal Mercator) Gauss-Boaga, official Italian national projection Cassini-Soldner, used for the Nuovo Catasto dei Terreni italiano (new Italian Cadaster) Paolo Zatelli University of Trento 6 / 18
7 UTM Projection It is a Gauss map so: it is conformal along the central meridian, the scale factor is constant meridians and parallels are perpendicular it is symmetrical wrt the equator Paolo Zatelli University of Trento 7 / 18
8 UTM Projection The projection can be depicted as the projection of the ellipsoid to an horizontal cylinder (tangent to a meridian) Paolo Zatelli University of Trento 8 / 18
9 UTM Projection Since deformations increase moving away from the tangential meridian: the projection is performed using 6 wide zones the central meridian has a scale factor of the East coordinate of the central meridian is set to m the projection is bounded in the latitude range [ 80 ; +80 ] Paolo Zatelli University of Trento 9 / 18
10 UTM Projection UTM zones Paolo Zatelli University of Trento 10 / 18
11 UTM Projection The Italy falls in zones 32 and 33. A small part is in the zone 34 Paolo Zatelli University of Trento 11 / 18
12 UTM Projection This projection is used: in the official Italian cartography in ED50 to express the coordinates of a GPS survey, usually labeled simply as WGS84 (should be UTM-WGS84) Paolo Zatelli University of Trento 12 / 18
13 Gauss-Boaga projection I It is a Gauss projection: there are only two zones ( fusi in Italian) of 6 30, Ovest and Est that correspond to the UTM zones 32 and 33 the central meridian has a scale factor of the East coordinate of the first meridian is set to m whereas the East coordinate of the second meridian is set to m Paolo Zatelli University of Trento 13 / 18
14 Gauss-Boaga projection II Paolo Zatelli University of Trento 14 / 18
15 Double parametrization - IGM 1:25000 Paolo Zatelli University of Trento 15 / 18
16 Double parametrization - CTP PAT Paolo Zatelli University of Trento 16 / 18
17 Cartographic Projections Appendice Bibliografia Bibliografia Benciolini B., 2004, Dispensa sui sistemi di riferimento, comunicazione personale. Monti C., 1984, Elementi di cartografia con riferimenti alla situazione cartografica in Italia, in Spazi verdi territoriali. Corso post-laurea di formazione professionale - Milano, 1983, pp , Franco Angeli editore, Milano, Paolo Zatelli University of Trento 17 / 18
18 Cartographic Projections Appendice Licenza Questa presentazione è c 2009 Paolo Zatelli, disponibile come Paolo Zatelli University of Trento 18 / 18
An Introduction to Coordinate Systems in South Africa
An Introduction to Coordinate Systems in South Africa Centuries ago people believed that the earth was flat and notwithstanding that if this had been true it would have produced serious problems for mariners
The Map Grid of Australia 1994 A Simplified Computational Manual
The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GIS Syllabus - Version 1.2 January 2007 Copyright AICA-CEPIS 2009 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed
Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University
Lecture 2 Map Projections and GIS Coordinate Systems Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Map Projections Map projections are mathematical formulas
EPSG. Coordinate Reference System Definition - Recommended Practice. Guidance Note Number 5
European Petroleum Survey Group EPSG Guidance Note Number 5 Coordinate Reference System Definition - Recommended Practice Revision history: Version Date Amendments 1.0 April 1997 First release. 1.1 June
What are map projections?
Page 1 of 155 What are map projections? ArcGIS 10 Within ArcGIS, every dataset has a coordinate system, which is used to integrate it with other geographic data layers within a common coordinate framework
WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS
WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS N & E State Plane Coordinates for Control Points AZIMUTHS - True, Geodetic, or Grid - Conversion from Astronomic to Geodetic (LaPlace Correction)
WGS AGD GDA: Selecting the correct datum, coordinate system and projection for north Australian applications
internal report WGS AGD GDA: Selecting the correct datum, coordinate system and projection for north Australian applications JBC Lowry Hydrological and Ecological Processes Program Environmental Research
Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t
Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are
2 GIS concepts. 2.1 General GIS principles
2 GIS concepts To use GIS effectively, it is important to understand the basic GIS terminology and functionality. While each GIS software has slightly different naming conventions, there are certain principles
NGA GRID GUIDE HOW TO USE ArcGIS 8.x ANS 9.x TO GENERATE MGRS AND OTHER MAP GRIDS
GEOSPATIAL SCIENCES DIVISION COORDINATE SYSTEMS ANALYSIS TEAM (CSAT) SEPTEMBER 2005 Minor Revisions March 2006 POC Kurt Schulz NGA GRID GUIDE HOW TO USE ArcGIS 8.x ANS 9.x TO GENERATE MGRS AND OTHER MAP
10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.
SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through
量 說 Explanatory Notes on Geodetic Datums in Hong Kong
量 說 Explanatory Notes on Geodetic Datums in Hong Kong Survey & Mapping Office Lands Department 1995 All Right Reserved by Hong Kong Government 留 CONTENTS INTRODUCTION............... A1 HISTORICAL BACKGROUND............
Geomatics Guidance Note 3
Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to Geomatics. 4 April 2006 References to EPSG
Practice Final Math 122 Spring 12 Instructor: Jeff Lang
Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6
UTM Zones for the US UTM UTM. Uniform strips Scalable coordinates
UTM UTM Uniform strips Scalable coordinates Globally consistent, most popular projection/coordinate system for regional to global scale geospatial data (i.e. satellite images global scale datasets USGS/EDC)
Earth Coordinates & Grid Coordinate Systems
Earth Coordinates & Grid Coordinate Systems How do we model the earth? Datums Datums mathematically describe the surface of the Earth. Accounts for mean sea level, topography, and gravity models. Projections
THE UNIVERSAL GRID SYSTEM
NGA Office of GEOINT Sciences Coordinate Systems Analysis (CSAT) Phone: 314-676-9124 Unclassified Email: [email protected] March 2007 THE UNIVERSAL GRID SYSTEM Universal Transverse Mercator (UTM) Military
MAP PROJECTIONS AND VISUALIZATION OF NAVIGATIONAL PATHS IN ELECTRONIC CHART SYSTEMS
MAP PROJECTIONS AND VISUALIZATION OF NAVIGATIONAL PATHS IN ELECTRONIC CHART SYSTEMS Athanasios PALLIKARIS [1] and Lysandros TSOULOS [2] [1] Associate Professor. Hellenic Naval Academy, Sea Sciences and
Beacon to Beacon Northern & Southern Maps
Beacon to Beacon Northern & Southern Maps Disclaimer: When using the Beacon to Beacon Guide booklets and/or the maps contained therein for commercial or non-commercial purposes, the Department of Transport
Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes
Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
CHAPTER 7 DEAD RECKONING
CHAPTER 7 DEAD RECKONING DEFINITION AND PURPOSE 700. Definition and Use Dead reckoning is the process of determining one s present position by projecting course(s) and speed(s) from a known past position,
Coordinate Conversions and Transformations including Formulas
Geomatics Guidance Note Number 7, part 2 Coordinate Conversions and Transformations including Formulas Revised - April 2015 Page 1 of 145 Index Preface 4 Revision history 5 1 MAP PROJECTIONS AND THEIR
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
Oregon Coordinate Reference System
OREGON DEPARTMENT OF TRANSPORTATION Highway Division Geometronics Unit Ron Singh, PLS Geometronics Manager Chief of Surveys (503) 986-3033 Mark L. Armstrong, PLS NGS Oregon Advisor (503) 986-3775 Michael
The Chief Directorate: National
Surveying The South African Coordinate Reference System (Part 1) by Aslam Parker, Chief Directorate: National Geo-spatial Information This article will define the various elements of the South African
Sun Earth Relationships
1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation
DIGITAL'INNOVATION'IN' HEALTHCARE:'' THE'SMART'CARE'SYSTEM'
DIGITAL'INNOVATION'IN' HEALTHCARE:'' THE'SMART'CARE'SYSTEM' MARIANO'CORSO' ' SCIENTIFIC'DIRECTOR'OF'THE'OBSERVATORY'ON'' DIGITAL'INNOVATION'IN'HEALTHCARE' ' SCHOOL'OF'MANAGEMENT,'POLITECNICO'DI' MILANO!
Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings
1 of 11 9/7/2012 1:06 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library
Full credit for this chapter to Prof. Leonard Bachman of the University of Houston
Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...
14.11. Geodesic Lines, Local Gauss-Bonnet Theorem
14.11. Geodesic Lines, Local Gauss-Bonnet Theorem Geodesics play a very important role in surface theory and in dynamics. One of the main reasons why geodesics are so important is that they generalize
Keywords: coordinate systems, latitude, longitude, georeferencing, global positioning system, GPS, geodetic datum, ellipsoid, geocoding, postal code
Core Curriculum-Geographic Information Science (1997-2000) UCSB Peer Reviewed Title: Units 012-017 - Position on the Earth Book Title: Core Curriculum in Geographic Information Science Author: 012-017,
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
City of Tigard. GIS Data Standards
City of Tigard GIS Data Standards City of Tigard 13125 SW Hall Blvd Tigard, Oregon 97223 503 639-4171 Page 1 of 5 1.0 Purpose The purpose of these standards is to provide guidance for geospatial data development
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
METHODS OF GEOREFERENCING OLD MAPS ON THE EXAMPLE OF CZECH EARLY MAPS
CO-314 METHODS OF GEOREFERENCING OLD MAPS ON THE EXAMPLE OF CZECH EARLY MAPS CAJTHAML J. Czech Technical University in Prague, PRAGUE 6, CZECH REPUBLIC BACKGROUND AND OBJECTIVES Old maps are unique source
1.5 Equations of Lines and Planes in 3-D
40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from
SOLIDWORKS: SKETCH RELATIONS
Sketch Feature: The shape or topology of the initial sketch or model is important, but exact geometry and dimensions of the initial sketched shapes are NOT. It recommended to work in the following order:
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
CHAPTER FIVE. 5. Equations of Lines in R 3
118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a
VELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
Selecting the Best Approach to Teach 3D Modeling to Technical College Engineering
Paper ID #12358 Selecting the Best Approach to Teach 3D Modeling to Technical College Engineering Students Dr. Farzin Heidari, Texas A&M University, Kingsville c American Society for Engineering Education,
CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS
CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS Surveying Terms 9-2 Standard Abbreviations 9-6 9-1 A) SURVEYING TERMS Accuracy - The degree of conformity with a standard, or the degree of perfection attained
Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s
Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,
Part-Based Recognition
Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple
Equations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
Topographic Maps Practice Questions and Answers Revised October 2007
Topographic Maps Practice Questions and Answers Revised October 2007 1. In the illustration shown below what navigational features are represented by A, B, and C? Note that A is a critical city in defining
SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS
SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS KEY CONCEPTS: In this session we will look at: Geographic information systems and Map projections. Content that needs to be covered for examination
1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.
1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points
Surface Normals and Tangent Planes
Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to
Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS?
Introduction to GIS (Basics, Data, Analysis) & Case Studies 13 th May 2004 Content Introduction to GIS Data concepts Data input Analysis Applications selected examples What is GIS? Geographic Information
(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
12.5 Equations of Lines and Planes
Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P
GEODETIC DATUMS OF THE ITALIAN CADASTRAL SYSTEMS
Geographia Technica, No. 1, 2011, pp. 82 to 90 GEODETIC DATUMS OF THE ITALIAN CADASTRAL SYSTEMS Gábor TIMÁR 1, Valerio BAIOCCHI 2, Keti LELO 2 ABSTRACT: The geodetic datum, and its possible descriptions,
Basic Map & GPS Skills. How to read a topographic map, use a compass, and determine GPS locations on a map
Basic Map & GPS Skills How to read a topographic map, use a compass, and determine GPS locations on a map Table of Contents This booklet covers what a topographic map (topo map) is, how to use a map, and
PARAMETRIC MODELING. David Rosen. December 1997. By carefully laying-out datums and geometry, then constraining them with dimensions and constraints,
1 of 5 11/18/2004 6:24 PM PARAMETRIC MODELING David Rosen December 1997 The term parametric modeling denotes the use of parameters to control the dimensions and shape of CAD models. Think of a rubber CAD
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
EXPLORING THE TRUE GEOMETRY OF THE INELASTIC INSTANTANEOUS CENTER METHOD FOR ECCENTRICALLY LOADED BOLT GROUPS
EXPLORING THE TRUE GEOMETRY OF THE INELASTIC INSTANTANEOUS CENTER METHOD FOR ECCENTRICALLY LOADED BOLT GROUPS L.S. Muir, P.E., Cives Steel Company, The United States W.A. Thornton, P.E., PhD, Cives Steel
WILD 3710 Lab 3: GIS Data Exploration Camp W.G. Williams
WILD 3710 Lab 3: GIS Data Exploration Camp W.G. Williams -Laboratory- TAs and Lab Instructors: Chris McGinty [email protected] Office: JQL 146 Office Hours: W 2:30 3:30 or by appt. Alex Hernandez [email protected]
Understanding Map Projections
Understanding Map Projections Melita Kennedy ArcInfo 8 Copyright 1994, 1997, 1999, 2000 Environmental Systems Research Institute, Inc. All Rights Reserved. Printed in the United States of America. The
Lines and Planes in R 3
.3 Lines and Planes in R 3 P. Daniger Lines in R 3 We wish to represent lines in R 3. Note that a line may be described in two different ways: By specifying two points on the line. By specifying one point
Vocational education and training system in Italy. Kylene De Angelis
Vocational education and training system in Italy Kylene De Angelis The italian school system The italian school system articulates in three cycles: Primary (or basic) cycle: 5 compulsory years of schooling
1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.
.(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3
Earth-Sun Relationships. The Reasons for the Seasons
Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide
TerraColor White Paper
TerraColor White Paper TerraColor is a simulated true color digital earth imagery product developed by Earthstar Geographics LLC. This product was built from imagery captured by the US Landsat 7 (ETM+)
Metadata for Big River Watershed Geologic and Geomorphic Data
Metadata for Big River Watershed Geologic and Geomorphic Data Metadata are descriptions and information regarding compiled data. This appendix contains the metadata that describes the compiled data used
Arrangements And Duality
Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,
TRADING ONLINE E STATISTICA PDF
TRADING ONLINE E STATISTICA PDF ==> Download: TRADING ONLINE E STATISTICA PDF TRADING ONLINE E STATISTICA PDF - Are you searching for Trading Online E Statistica Books? Now, you will be happy that at this
Implementation of Recent Metadata Directives and Guidelines in Public Administration: the Experience of Sardinia Region
Implementation of Recent Metadata Directives and Guidelines in Public Administration: the Experience of Sardinia Region Luisa Manigas, Michele Beneventi, Luca Corvetto, Rita Vinelli and Marco Melis Region
CATIA Functional Tolerancing & Annotation TABLE OF CONTENTS
TABLE OF CONTENTS Introduction...1 Functional Tolerancing and Annotation...2 Pull-down Menus...3 Insert...3 Functional Tolerancing and Annotation Workbench...4 Bottom Toolbar Changes...5 3D Grid Toolbar...5
Calculation of Azimuth, Elevation and Polarization for non-horizontal aligned Antennas
Calculation of Azimuth, Elevation and Polarization for non-horizontal aligned Antennas Algorithm Description Technical Document TD-1205-a Version 1.1 23.10.2012 In Co-operation with 1 Objective Many SatCom
Lecture Notes for Chapter 34: Images
Lecture Notes for hapter 4: Images Disclaimer: These notes are not meant to replace the textbook. Please report any inaccuracies to the professor.. Spherical Reflecting Surfaces Bad News: This subject
Sectional drawings cutting plane
Section Views Section Views The technique called section views is used to improve the visualization of new designs, clarify multiview drawings and facilitate the dimensioning of drawings. For mechanical
Problem set on Cross Product
1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular
MERIDIANO ITALY S PRIME MERIDIAN
MERIDIANO ITALY S PRIME MERIDIAN Allan Ceen December 2002 INTRODUCTION The purpose of this exhibit is to use maps of Rome and Italy to illustrate the national prime meridian which passes through Monte
Ranking Analysis. file://c:\programmi\web CEO\Cache\WCSE\{5CD4ADC5-1EEA-4D77-BB59-10F64F4F2CB4}\WCSE_report.htm
Pagina 1 di 5 Ranking Analysis Description: This report shows the positions of your website in the search engine results For: Centroprestiti (http://www.centroprestiti.it/) Created on: at 15.23.28 Profile:
Measuring the Earth Using a GPS M. Scott Wilkerson & M. Beth Wilkerson, DePauw University, May 10, 2007
Measuring the Earth Using a GPS M. Scott Wilkerson & M. Beth Wilkerson, DePauw University, May 10, 2007 Modified from: Kerski, J.J., 2007, Measuring the Earth s Circumference with GPS, Copyright ESRI,
U.K. OFFSHORE OPERATORS ASSOCIATION (SURVEYING AND POSITIONING COMMITTEE) UKOOA DATA EXCHANGE FORMAT P6/98 DEFINITION OF 3D SEISMIC BINNING GRIDS
U.K. OFFSHORE OPERATORS ASSOCIATION (SURVEYING AND POSITIONING COMMITTEE) UKOOA DATA EXCHANGE FORMAT P6/98 DEFINITION OF 3D SEISMIC BINNING GRIDS Revision 3.0 May 2000 SUMMARY The Guidelines For The Definition
AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss
AB2.5: urfaces and urface Integrals. Divergence heorem of Gauss epresentations of surfaces or epresentation of a surface as projections on the xy- and xz-planes, etc. are For example, z = f(x, y), x =
Geography I Pre Test #1
Geography I Pre Test #1 1. The sun is a star in the galaxy. a) Orion b) Milky Way c) Proxima Centauri d) Alpha Centauri e) Betelgeuse 2. The response to earth's rotation is a) an equatorial bulge b) polar
A guide to coordinate systems in Great Britain
A guide to coordinate systems in Great Britain An introduction to mapping coordinate systems and the use of GPS datasets with Ordnance Survey mapping D00659 v2.3 Mar 2015 Crown copyright Page 1 of 43 Contents
SIIV SUMMER SCHOOL 2013 PADOVA (Italy) 9 th -13 th September 2013. Innovative Research on Materials and Technologies for Transport Infrastructures
SIIV SUMMER SCHOOL 2013 PADOVA (Italy) 9 th -13 th September 2013 Innovative Research on Materials and Technologies for Transport Infrastructures SIIV - Italian Society of Road Infrastructure and the Dept.
EECS467: Autonomous Robotics Laboratory Prof. Edwin Olson. Map Projections and GPS
EECS467: Autonomous Robotics Laboratory Prof. Edwin Olson Map Projections and GPS Cartography Several purposes of maps Geographic Information Systems (GIS) - Where is stuff? Measure distances, etc. Navigation
Curriculum Vitae. Grid Thoma
Curriculum Vitae Grid Thoma PERSONAL INFORMATION Date of birth: October 3 th 1977 Place of birth: Tirana, Albania Citizenship: Albanian, Italian Not married Permanent Address: Modena, Italy E-mail: grid05(at)gmail.com
Section 2.4: Equations of Lines and Planes
Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y
Maintenance and Densification of the Italian GNSS Network. DIPARTIMENTO DI GEOSCIENZE A. Caporali J. Zurutuza M. Bertocco R. Corso P.
Maintenance and Densification of the Italian GNSS Network DIPARTIMENTO DI GEOSCIENZE A. Caporali J. Zurutuza M. Bertocco R. Corso P. Legovini Outline Maintenance and Densification of the Italian GNSS Network
Section 13.5 Equations of Lines and Planes
Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.
GEOGRAPHIC INFORMATION SYSTEMS
GIS GEOGRAPHIC INFORMATION SYSTEMS FOR CADASTRAL MAPPING Chapter 7 2015 Cadastral Mapping Manual 7-0 GIS - GEOGRAPHIC INFORMATION SYSTEMS What is GIS For a long time people have sketched, drawn and studied
Maintaining High Accuracy in Modern Geospatial Data
Maintaining High Accuracy in Modern Geospatial Data Patrick Cunningham President [email protected] www.bluemarblegeo.com +1 (207) 582 6747 Copyright 2010 Blue Marble Geographics Concepts Geodesy -
Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v
12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The
Section 11.4: Equations of Lines and Planes
Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R
GIS IN ECOLOGY: SPATIAL REFERENCING
GIS IN ECOLOGY: SPATIAL REFERENCING Contents Introduction... 2 Coordinate Systems... 2 Map Projections... 3 Georeferencing... 5 Data Sources... 7 Tasks... 7 Undefined versus Unprojected Data... 7 Setting
