GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME
|
|
|
- Miles Stevens
- 10 years ago
- Views:
Transcription
1 GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME Caroline Erickson and Pierre Héroux Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A 0E9 ABSTRACT The Global Positioning System (GPS) is a very powerful tool which has, and will continue to provide the location data for attributes in many Geographical Information Systems (GIS). Manufacturers of GPS equipment have developed low cost, user-friendly receivers and software which are capable of easily satisfying many users' positioning requirements. Assuming the successful operation of GPS receivers and software, other measures are necessary to ensure the integrity of positions being entered into a GIS. This paper addresses one very essential consideration in using GPS for GIS: coordinate systems. As well, three positioning techniques suitable for many GIS are discussed and compared: single point positioning; differential positioning; and single point positioning with precise orbits and clocks. Results based on this last, recently introduced technique show that metre level accuracies may be achieved with a single receiver. Finally, a few suggestions are offered for novice users to help get GPS positioning right the first time. INTRODUCTION Location data is a fundamental element of Geographical Information Systems (GIS). More and more, GPS is being used as the tool for GIS georeferencing. The successful application of GPS is dependent on understanding its coordinate system, achievable accuracies and limitations. This paper explains the significance of the GPS coordinate system and how large positional errors in a GIS may be avoided through careful attention to coordinate systems. All GPS positioning is not the same. Accuracies ranging from 100 m to millimetres may be achieved depending on the data collection and processing techniques, and the hardware and software used. As can be expected, in general, the higher the accuracy, the higher the GPS positioning cost. This paper describes three lower accuracy techniques, based on code (also called pseudorange) measurements, which are suitable for GIS applications. Prepared for Decision 2001, Toronto Ont., September 12-16, 1994.
2 2 One of these techniques, single point positioning with precise ephemerides and clocks, is particularly noteworthy as it is new to the GPS positioning community (Héroux et al., 1993) and has significant benefits for many GIS applications. An awareness of the different GPS positioning alternatives is important so that the technique most appropriate for a specific requirement is applied. The paper concludes with comments on the limitations of GPS positioning and suggestions to help ensure the successful application of GPS for GIS georeferencing. COORDINATE SYSTEMS There are currently 25 GPS satellites orbiting 20,000 km above the earth, configured in a constellation such that at least four satellites are visible anywhere in the world at anytime. These satellites broadcast data which is collected by GPS receivers and used for computing positions. In a simplified sense, positioning with GPS is achieved by simultaneously recording the signals from at least four satellites at the user's receiver. By knowing the locations of the satellites in the sky (referred to as orbits or ephemerides), the point of intersection of the four signals may be computed. It is therefore necessary to relate the coordinates of the GPS satellites to the coordinates used daily in GIS (Figure 1). GPS satellites in WGS84 coordinates measured code (pseudorange) most Canadian GIS are based on NAD27 or NAD83 horizontally and orthometric (msl) heights vertically Figure 1. Single Point Positioning and Coordinate Systems The orbits of the GPS satellites are referenced to WGS84 (World Geodetic System 1984) and are usually represented in Cartesian coordinates (x,y,z) such that the origin is at the centre of the earth, the x axis passes through the Greenwich Meridian and the z axis passes through the north pole. In GIS, horizontal coordinates are usually represented as latitudes and longitudes, or UTM northings and eastings, based on a reference datum such as NAD27 or NAD83. Each of these datums is in turn based on an ellipsoid which represents the size and shape Prepared for Decision 2001, Toronto Ont., September 12-16, 1994.
3 3 of the earth. An ellipsoid is a smooth mathematical surface which can be thought of as a sphere that is "squashed" at the poles. Points on the ellipsoid may be represented as Cartesian coordinates or as latitudes, longitudes and ellipsoidal heights (i.e. height above the ellipsoid). In GIS, vertical coordinates are usually represented as heights above mean sea level, which are referred to as orthometric heights. Horizontal Coordinates Horizontal coordinates based on the North American Datum of 1983 (NAD83) are fully compatible with the WGS84 GPS based coordinates. The same cannot be said for the forerunner to NAD83, the North American Datum of 1927 (NAD27). Shifts in geodetic coordinates resulting from the transition from NAD27 to NAD83 range from about 120 metres westerly on the west coast to 70 metres easterly in Newfoundland and 100 metres northerly in the high Arctic as shown in Figure 2. The corresponding Universal Transverse Mercator (UTM) coordinates have a fairly consistent northward shift ranging from about 200 to 250 metres (Pinch, 1990). The shifts are a result of using an earthcentred ellipsoid consistent with WGS84 instead of a non-geocentric ellipsoid as used in NAD27, and removal of distortions in the NAD27 coordinates through a complete readjustment. Prepared for Decision 2001, Toronto Ont., September 12-16, 1994.
4 GEODETIC coordinates UTM coordinates vector distances are shown in metres Vector Scale metres Figure 2. NAD27 - NAD83 Coordinate Difference Vectors (adapted from Pinch, 1990) Users of GPS must ensure data collected in WGS84 coordinates is used in an NAD83 based GIS, or transformed to be compatible with the GIS datum. Failing to take this step could introduce very large errors into a data base. Note that some GPS receiver manufacturers include software to carry out these transformations. Usually, such software packages only take into account the shifts between the two reference ellipsoids, and not the removal of NAD27 distortions. Consequently errors up to 20 m may still remain in some transformation packages (Junkins, 1990). The user must ascertain if such transformations are sufficiently accurate for their needs. Transformation software between NAD27 and NAD83 which more fully models the actual local shifts is available from provincial survey agencies and the Geodetic Survey Division of Geomatics Canada (see Appendix). Vertical Coordinates The link between the ellipsoidal heights derived from GPS and the mean sea level (orthometric) heights, which we commonly deal with, is more complex than the datum relationship for horizontal coordinates. Orthometric heights actually are referenced to the geoid. The geoid is defined as an equipotential surface (i.e. a surface on which the gravity potential is constant) that closely
5 5 represents mean sea level. It forms a smooth but irregular surface around the earth that differs significantly from the geometrically defined ellipsoid. The ellipsoidal and orthometric heights are linked by the geoid height as illustrated in Figure 3. The geoid height may be obtained from a geoid model related to the WGS84 ellipsoid such as that computed by the Geodetic Survey Division, referred to as GSD91 (Véronneau and Mainville, 1992). It is therefore possible to obtain orthometric heights from ellipsoidal heights with knowledge of the geoid height at a location, as interpolated from a geoid model. (Note that some GPS receiver manufacturers provide geoid models from which orthometric heights are computed. The user must ascertain if the embedded geoid models are sufficiently accurate for their needs.) ellipsoidal height - geoid height = orthometric height (from GPS) (from geoid model) LMN ellipsoidal height LMN LMN orthometric height geoid height earth's surface geoid ellipsoid Figure 3. How to Derive Orthometric Heights from GPS GPS users operating in single point positioning mode for height determination must ascertain whether ellipsoidal or orthometric heights are produced by their receiver's processing software. Geoid heights (i.e. the difference between ellipsoidal and orthometric heights) in Canada vary up to ±50 m, depending on location, which is therefore the maximum error one would expect if ellipsoidal heights were mistakenly taken as orthometric heights. Note that for relative positioning where the position of one point is determined with respect to another, an orthometric height may be derived with smaller errors if the orthometric height of the reference point is known. This is because the relative differences between the ellipsoid and geoid are much smaller than the absolute differences between the two surfaces. For GPS positioning, it is important to be aware of coordinate systems (i.e. NAD83 coordinates or others, orthometric or ellipsoidal heights) and to take the appropriate steps to ensure the right data is entered into a GIS. (Further information on coordinate systems, the geoid and their significance for GPS positioning may be found in Erickson, 1993.)
6 6 Most professional surveyors are familiar with these concepts and should be consulted by GIS developers who are exploring the use of GPS. GPS POSITIONING METHODS FOR GIS GPS positioning accuracies ranging from centimetres to 100 m may be desired, depending on the specific GIS requirements. This paper will limit discussion to lower accuracies (1 to 100 m) based on using code measurements, which are often more economically viable for GIS applications. Single point positioning, differential positioning and single point positioning with precise orbits and clocks will be discussed. Single Point Positioning Single point positioning is achieved by intersecting the measurements from four or more satellites at a single receiver on the earth's surface. The accuracies achievable using single point positioning are 100 m 2drms horizontally and 156 m 2σ vertically assuming favourable satellite geometry. These accuracies apply equally to static or kinematic single point positioning. Solutions may be attained almost instantaneously, using an inexpensive GPS receiver. The limited accuracy achievable with single point positioning is mainly due to inaccuracies in the broadcast satellite orbits and clocks. In addition, the delay of the signals as they travel through the earth's ionosphere and troposphere reduces accuracy. Multipath (i.e. the reception of signals which reflect off ground surface objects rather than traveling directly to the antenna) and receiver noise (i.e. the receiver's limitations in accurately measuring the code) also affects resulting accuracies. The U.S. Department of Defense, which maintains the GPS satellites, intentionally degrades the broadcast satellite orbits and dithers the satellite clocks as part of an official policy to limit positioning accuracy for unauthorized users. This degradation is referred to as Selective Availability (S/A). Two techniques may be used to improve the cited 100 m accuracies to the 1 to 10 m level: (1) differential positioning, and (2) single point positioning with precise orbits and clocks. In each method, improved results are achieved by greatly reducing some of the above mentioned error sources, including the effects of S/A. Differential GPS Positioning Differential positioning may be conducted with either post-mission or real-time kinematic processing. The former is simpler and less expensive, while the latter is complicated by the requirement for a real-time data link. Using differential positioning, the coordinates of one point which is used as a base station must be known. The difference between the measured satellite ranges at this base station and the "true" satellite ranges is computed to produce a correction, which is then applied to measured ranges at a second point. The
7 7 corrected ranges are used to compute coordinates in a single point positioning algorithm. The effect of orbit and satellite clock errors, as well as atmospheric delays, are greatly reduced using this technique, leading to accuracies ranging from 1 to 10 m. Some of the factors which affect whether 1 m or 10 m accuracy is achievable using differential GPS include the distance from the base receiver, receiver characteristics (noise, multipath resistance), and satellite geometry. Differential GPS may be carried out by using two receivers with one serving as a base station, using one receiver and subscribing to a service that supplies differential GPS corrections (Reason, 1994) or using one receiver with data collected at a Canadian Active Control System site (see Figure 4). Differential GPS is a well-accepted technique which has been applied in the GPS community for several years. Yellowknife Holberg Victoria Williams Lake Churchill Schefferville Penticton Priddis Prince Albert Lac du Bonnet Algonquin Permanent CACS tracking - sites operated by Geodetic Survey of Canada Western Canada Deformation Array (WCDA) - sites operated by Geological Survey of Canada Monumented temporary CACS tracking sites St John's Figure 4. Canadian Active Control System Network Configuration A variation of differential GPS which may be encountered, particularly in navigation applications, is wide area differential GPS (WADGPS). In this technique, information to produce range corrections is derived from multiple base stations instead of just a single base station (Mueller, 1994). With WADGPS the requirement of being close to a base station to achieve higher accuracies is greatly reduced.
8 8 Single Point Positioning with Precise Orbits and Clocks Single point positioning with precise orbits and clocks is similar to differential positioning in that large orbital and clock errors are greatly reduced, however the approach used is significantly different. Instead of determining range corrections at a base station and applying them at the point requiring coordinates, the broadcast orbit and clock parameters are replaced by precise orbits and clock parameters, which are available as a product of the Canadian Active Control System (CACS). The differences between single point positioning, differential positioning and single point positioning with CACS precise orbits and clocks are illustrated in Figure 5. Single Point Positioning broadcast orbits & clocks measured pseudoranges ~ 100 m accuracy Differential Positioning broadcast orbits & clocks measured pseudoranges + corrections from base station ~ 1 to 10 m accuracy Single Point Positioning with CACS Precise Orbits and Clocks CACS precise orbits & clocks measured pseudoranges ~ 1 to 10 m accuracy Figure 5. Code Positioning Techniques A description of the Canadian Active Control System is necessary to understand the source of the precise orbits and clocks. The Canadian Active Control system consists of unattended GPS tracking stations distributed across the country (see Figure 4) referred to as Active Control Points (ACPs). These ACPs continuously record carrier phase and pseudorange measurements for all
9 9 GPS satellites within station view. The data collected is retrieved on a daily basis by a central processing facility in Ottawa. The main objectives of the CACS are (1) to provide direct and convenient access to the Canadian Spatial Reference System and (2) to improve effectiveness and precision of GPS applications. This is accomplished by providing a fiducial reference frame, by computing and making available precise satellite ephemerides (orbital parameters) and precise satellite clock corrections; by monitoring GPS integrity and performance from the analysis of data acquired through continuous tracking and; by supporting Differential GPS development and other services (geodynamics, precise time transfer, etc.). The CACS orbits, which are also based on a number of global sites, have an accuracy of approximately 10 cm, which is far superior to the 5-10 m accuracy of the GPS broadcast orbits. Similarly the CACS precise clocks are accurate to 1 nanosecond (30 cm), whereas the broadcast clocks are only accurate to nanoseconds (21-30 m). Single point positioning with precise orbits and clocks was recently introduced in the GPS community (Heroux et al., 1993; Lachapelle et al., 1994). Program GPSPACE (GPS Positioning from ACS Clocks and Ephemerides) was developed by the Geodetic Survey of Canada as an interface program for CACS products (see Appendix). The program performs standard single point positioning (i.e. with broadcast orbits and clocks), single point positioning with precise orbits and clocks, as well as differential positioning with respect to a single base station. As single point positioning with precise orbits and clocks is new to the GPS community, it is worthwhile to show some results demonstrating its capabilities compared to use of broadcast orbits. Figures 6 and 7 show the quality of positioning possible at a single epoch with a single receiver when using either the broadcast orbits and clocks or the CACS precise orbits and clocks. Program GPSPACE was used in post-processing. The data set was collected in static mode at a 1 second rate at station "Babbage" in Ottawa on August 4, 1994 between 12:49:55 and 13:15:14 UT using a NovAtel GPS receiver. In Figure 6, the difference in latitude and longitude from the known coordinates is shown for single point positioning solutions using a) broadcast orbits and clocks, and b) CACS precise orbits and clocks. The plots show independent one second solutions for each orbit type. Errors up to 60 metres in latitude and 25 metres in longitude are evident when broadcast orbits and clocks are used, compared to errors of less than three metres in each direction when CACS precise orbits and clocks are used. In Figure 7, the difference from the known ellipsoidal height is shown. The height discrepancies, which range up to 140 m when broadcast orbits and clocks are used, are limited to a few metres through use of CACS precise orbits and clocks.
10 10 Comparison of Code Positioning Techniques Of the three code positioning techniques described, each has advantages and disadvantages as listed in Table 1. It is up to users, to be knowledgeable about the different options, and choose which technique is most appropriate for their application Latitude (m) Using BROADCAST Orbirts Orbits and Clocks Using PRECISE Orbirts Orbits and Clocks Longitude (m) Figure 6. Comparison of Latitude and Longitude of Single Point Solutions using a) broadcast orbits and clocks and b) CACS precise orbits and clocks.
11 Elevation (m) Using BROADCAST Orbits Orbirts and and Clocks Clocks Using PRECISE Orbits Orbirts and and Clocks :45 12:50 12:55 13:00 13:05 13:10 13:15 13:20 Time of Day (UT) Figure 7. Comparison of Heights of Single Point Solutions using a) broadcast orbits and clocks and b) CACS precise orbits and clocks.
12 12 Table 1. Advantages and Disadvantages of Three Code Positioning Techniques Single Point Positioning (with broadcast orbits and clocks) advantages base station not required static or kinematic real time or post-mission uses all satellites in view disadvantages low accuracy (~ 100 m) Differential Positioning (based on code measurements) advantages static or kinematic real time or post-mission higher accuracy (1 to 10 m) disadvantages base station required must match correction and measurement files can only use satellites which are also in view at base station data link required for real-time accuracy dependent on distance from base station Single Point Positioning with CACS Precise Orbits and Clocks advantages base station not required static or kinematic higher accuracy (1 to 10 m) automatically tied to Canadian Spatial Reference System applicable for all of Canada uses all satellites in view disadvantages currently only post-mission processing possible
13 13 GPS FOR GIS - GETTING IT RIGHT Up to this point, the importance of the horizontal and vertical coordinate systems and a discussion of three code positioning techniques suitable for GIS applications have been presented. A few other items are worth mentioning to help get GPS for GIS right the first time. Users should always be aware of one of the greatest limitations of GPS, that is the requirement that the satellite-receiver path be unobstructed. It is impossible to use GPS in tunnels or underpasses, very difficult amongst urban high-rises, and difficult in forested areas. It is for this reason that several positioning systems offer integration of GPS with complementary technologies. With GIS, attribute data is typically collected and tagged with a position. For optimal efficiency and accuracy, time tagging of the measured attribute and the position data should be automatically linked (Gilbert, 1994). The most important step in ensuring success of GPS for GIS is to test the full system from data collection to final processing. The equipment used for GPS varies greatly in complexity, cost and capabilities. It cannot be assumed that all accuracy claims given by equipment manufacturers or other users will be consistently met under all production field conditions, and hence it is important to test and evaluate the equipment. For the same reasons it is also important to test and evaluate GPS processing software and techniques. The position integrity should be tested by using points of known superior accuracy, and the fit with the GIS application should be tested with field trials. GPS is a tremendously powerful, efficient and effective positioning tool, which when used with care, will form a major input for a GIS system. ACKNOWLEDGEMENTS The insights and guidance provided by Jan Kouba in the concept and development of program GPSPACE is gratefully acknowledged. Thanks are extended to Pierre Sauvé who collected the GPS data which was presented in this paper. Don Junkins is acknowledged for his input on the National Transformation. A special recognition goes to members of the Canadian Active Control System Team, who ensure the continual successful operation of the system and the timely production of precise orbits and clocks. REFERENCES Erickson, C GPS Positioning Guide. Geodetic Survey Division, Natural Resources Canada.
14 14 Fenton, P., B. Falkenberg, T. Ford, K. Ng and A.J. Van Dierendonck NovAtel's GPS Receiver - The High Performance OEM Sensor of the Future. Proceedings of ION GPS'91, Albuquerque, NM., Sept , The Institute of Navigation, Washington, D.C., pp Gilbert, C Integrating Other Measuring Devices With GPS Positions. Earth Observation Magazine. June pp Héroux, P., M. Caissy, and J. Gallace (1993). Canadian Active Control System Data Acquisition and Validation. Proceedings of the 1993 IGS (International GPS Service for Geodynamics) Workshop, University of Bern, pp Junkins, D The National Transformation for converting between NAD27 and NAD83 in Canada. Moving to NAD '83 the new address for georeferenced data in Canada. The Canadian Institute of Surveying and Mapping. Ottawa, Ont., pp Lachapelle, G., Klukas, R., Qiu, W. and Melgard, T.E Single Point Satellite Navigation Accuracy - What the Future May Bring. Presented at IEEE PLANS94, Las Vegas, April Pinch, M.C Differences Between NAD27 and NAD83. Moving to NAD '83 the new address for georeferenced data in Canada. The Canadian Institute of Surveying and Mapping. Ottawa, Ont., pp Reason, T Differential for a Dollar a Day. Professional Surveyor. July/August, pp Mueller, T Wide Area Differential GPS. GPS World, June, pp Véronneau, M. and A. Mainville Computation of a Canadian Geoid Model Using FFT Technique to Evaluate Stokes' and Vening-Meinesz' Formulas in a Planar Approximation, Internal Report, Geodetic Survey Division, Canada.
15 15 APPENDIX Requests for information concerning (1) the Canadian Active Control System and its products (including program GPSPACE) (2) the Canadian Geoid Model GSD91 (3) federal horizontal and vertical control (4) The National Transformation for converting between NAD27 and NAD83 in Canada should be addressed to: Canada Centre for Surveying Geodetic Survey Division Information Services 615 Booth Street Ottawa, Ontario K1A 0E9 (613) or (613) FAX: (613) E.Mail:
GPS Precise Point Positioning with a Difference*
GPS Precise Point Positioning with a Difference* Pierre Héroux and Jan Kouba Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A E9 [email protected]
The Map Grid of Australia 1994 A Simplified Computational Manual
The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones
Earth Coordinates & Grid Coordinate Systems
Earth Coordinates & Grid Coordinate Systems How do we model the earth? Datums Datums mathematically describe the surface of the Earth. Accounts for mean sea level, topography, and gravity models. Projections
Guidelines for RTK/RTN GNSS Surveying in Canada
Guidelines for RTK/RTN GNSS Surveying in Canada July 2013 Version 1.1 Ministry of Transportation Ministère des Transports EARTH SCIENCES SECTOR GENERAL INFORMATION PRODUCT 100-E Main Authors: Brian Donahue,
GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform
GNSS and Heighting, Practical Considerations A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS Global Navigation Satellite Systems (GNSS) Global Positioning
SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices
SURVEYING WITH GPS Key Words: Static, Fast-static, Kinematic, Pseudo- Kinematic, Real-time kinematic, Receiver Initialization, On The Fly (OTF), Baselines, Redundant baselines, Base Receiver, Rover GPS
EPSG. Coordinate Reference System Definition - Recommended Practice. Guidance Note Number 5
European Petroleum Survey Group EPSG Guidance Note Number 5 Coordinate Reference System Definition - Recommended Practice Revision history: Version Date Amendments 1.0 April 1997 First release. 1.1 June
Maintaining High Accuracy in Modern Geospatial Data
Maintaining High Accuracy in Modern Geospatial Data Patrick Cunningham President [email protected] www.bluemarblegeo.com +1 (207) 582 6747 Copyright 2010 Blue Marble Geographics Concepts Geodesy -
Global Positioning System
B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins Global Positioning System Theory and Practice Third, revised edition Springer-Verlag Wien New York Contents Abbreviations Numerical constants xix xxiii
WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS
WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS N & E State Plane Coordinates for Control Points AZIMUTHS - True, Geodetic, or Grid - Conversion from Astronomic to Geodetic (LaPlace Correction)
GPS Data Collection Guidelines
GPS Data Collection Guidelines Prepared by the Standards & Data Coordination Work Group of the NYS GIS Coordination Program Last Updated: April 2007 1 Executive Summary Purpose The goal of this document
Prof. Ludovico Biagi. Satellite Navigation and Monitoring
Prof. Ludovico Biagi Satellite Navigation and Monitoring Navigation: trajectories control positions estimations in real time, at high frequency popular applications: low accuracy (10 m) required specific
Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS?
Introduction to GIS (Basics, Data, Analysis) & Case Studies 13 th May 2004 Content Introduction to GIS Data concepts Data input Analysis Applications selected examples What is GIS? Geographic Information
NJDEP GPS Data Collection Standards For GIS Data Development
NJDEP GPS Data Collection Standards For GIS Data Development Bureau of Geographic Information Systems Office of Information Resource Management June 8, 2011 1.0 Introduction... 3 2.0 GPS Receiver Hardware
Online GPS processing services: an initial study
GPS Solut (2006) 10: 12 20 DOI 10.1007/s10291-005-0147-5 ORIGINAL ARTICLE Reza Ghoddousi-Fard Peter Dare Online GPS processing services: an initial study Received: 15 September 2004 Accepted: 3 May 2005
Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition
Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...
量 說 Explanatory Notes on Geodetic Datums in Hong Kong
量 說 Explanatory Notes on Geodetic Datums in Hong Kong Survey & Mapping Office Lands Department 1995 All Right Reserved by Hong Kong Government 留 CONTENTS INTRODUCTION............... A1 HISTORICAL BACKGROUND............
Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager
Enabling RTK-like positioning offshore using the global VERIPOS GNSS network Pieter Toor GNSS Technology Manager Introduction PPP/RTK Positioning Techniques PPP-AR Technology Presentation Overview PPP-AR
Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University
Lecture 2 Map Projections and GIS Coordinate Systems Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Map Projections Map projections are mathematical formulas
Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem
Due Thursday March 1, 2012 NAME(S): Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem 0.1 Introduction The age old question, Where in the world am I? can easily be solved nowadays by
PLOTTING SURVEYING DATA IN GOOGLE EARTH
PLOTTING SURVEYING DATA IN GOOGLE EARTH D M STILLMAN Abstract Detail surveys measured with a total station use local coordinate systems. To make the data obtained from such surveys compatible with Google
GNSS FIELD DATA COLLECTION GUIDELINES
AD-SDI DATA STANDARD GNSS FIELD DATA COLLECTION GUIDELINES Version 1.0 September 2011 Prepared by Abu Dhabi Spatial Data Infrastructure (AD-SDI) Abu Dhabi Systems and Information Centre (ADSIC) Abu Dhabi,
An Introduction to Coordinate Systems in South Africa
An Introduction to Coordinate Systems in South Africa Centuries ago people believed that the earth was flat and notwithstanding that if this had been true it would have produced serious problems for mariners
Geomatics Guidance Note 3
Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to Geomatics. 4 April 2006 References to EPSG
Real-Time Kinematic Surveying
Real-Time Kinematic Surveying Training Guide F Part Number 33142-40 Revision D September 2003 Corporate Office Trimble Navigation Limited 645 North Mary Avenue Post Office Box 3642 Sunnyvale, CA 94088-3642
A guide to coordinate systems in Great Britain
A guide to coordinate systems in Great Britain An introduction to mapping coordinate systems and the use of GPS datasets with Ordnance Survey mapping D00659 v2.3 Mar 2015 Crown copyright Page 1 of 43 Contents
Introduction into Real-Time Network Adjustment with Geo++ GNSMART
Introduction into Real-Time Network Adjustment with Geo++ GNSMART Andreas Bagge Gerhard Wübbena, Martin Schmitz Geo++ GmbH D-30827 Garbsen, Germany www.geopp.de GeoInformation Workshop 2004, Istanbul Kultur
The Chief Directorate: National
Surveying The South African Coordinate Reference System (Part 1) by Aslam Parker, Chief Directorate: National Geo-spatial Information This article will define the various elements of the South African
4.03 Vertical Control Surveys: 4-1
4. HORIZONTAL AND VERTICAL CONTROL 4.01 General: Sufficient horizontal and, if applicable, vertical control surveys shall be established by the Contractor for all photogrammetric mapping purposes. Prior
Post Processing Service
Post Processing Service The delay of propagation of the signal due to the ionosphere is the main source of generation of positioning errors. This problem can be bypassed using a dual-frequency receivers
GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System
GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System The Global Positioning System - recognize that GPS is only one of several Global Navigation Satellite Systems (GNSS) - the Russian
REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS)
30th Annual Pmbe Time and Time Internal (PTTI) Meeting REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS) F. Lahaye, M. Caissy, J. Popelar Geodetic Survey
Survey Ties Guidelines
North Carolina Board of Examiners for Engineers and Surveyors Survey Ties Guidelines The North Carolina Board of Examiners for Engineers and Surveyors is providing this document to serve as an interpretative
CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS
CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS Surveying Terms 9-2 Standard Abbreviations 9-6 9-1 A) SURVEYING TERMS Accuracy - The degree of conformity with a standard, or the degree of perfection attained
Vertical Datums: An Introduction and Software Review
Vertical Datums: An Introduction and Software Review Areas to Cover Theoretical Introduction Representation in EPSG Representation in OGC WKT Incorporation in PROJ.4 Incorporation in GDAL Future Work Introduction
What are map projections?
Page 1 of 155 What are map projections? ArcGIS 10 Within ArcGIS, every dataset has a coordinate system, which is used to integrate it with other geographic data layers within a common coordinate framework
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GIS Syllabus - Version 1.2 January 2007 Copyright AICA-CEPIS 2009 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed
GPS Positioning Modes
5 GPS Positioning Modes Positioning with GPS can be performed in either of two ways: point (absolute) positioning or relative positioning. Classical GPS point positioning employs one GPS receiver that
Perspective of Permanent Reference Network KOPOS in Kosova
143 Perspective of Permanent Reference Network KOPOS in Kosova Meha, M. and Çaka, M. Kosovo Cadastral Agency, Kosovo Archive Building II nd floor, P.O. 10000, Prishtina, Republic of Kosovo, E-mail: [email protected],
CORS/OPUS: Status & Future Prospects
CORS/OPUS: Status & Future Prospects Richard Snay, Gerald Mader, & Neil Weston NOAA s National Geodetic Survey CORS Users Forum 44 th CGSIC Meeting Long Beach, CA September 21, 2004 Continuously Operating
GNSS permanent stations as the part of integrated geodetic system in Estonia
GNSS permanent stations as the part of integrated geodetic system in Estonia Karin Kollo (MSc) Department of Geodesy Estonian Land Board United Nations/Croatia Workshop on the applications of Global Navigation
Bi-Directional DGPS for Range Safety Applications
Bi-Directional DGPS for Range Safety Applications Ranjeet Shetty 234-A, Avionics Engineering Center, Russ College of Engineering and Technology, Ohio University Advisor: Dr. Chris Bartone Outline Background
UTM Zones for the US UTM UTM. Uniform strips Scalable coordinates
UTM UTM Uniform strips Scalable coordinates Globally consistent, most popular projection/coordinate system for regional to global scale geospatial data (i.e. satellite images global scale datasets USGS/EDC)
Assessment Tasks Pass theory exams at > 70%. Meet, or exceed, outcome criteria for projects and assignments.
CENTRAL OREGON COMMUNITY COLLEGE: GEOGRAPHIC INFORMATION SYSTEM PROGRAM 1 CENTRAL OREGON COMMUNITY COLLEGE Associate Degree Geographic Information Systems Program Outcome Guide (POG) Program Outcome Guide
The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning
The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning Joe Hutton and Edith Roy, Applanix Corporation Introduction Applanix, along with
Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP)
Online Precise Point Positioning Using the Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Thomas Nylen and Seth White UNAVCO October 2007 I. Precise Point Positioning Precise Point
GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots
Province of British Columbia GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots Resources Information Branch Ministry of Sustainable
WGS AGD GDA: Selecting the correct datum, coordinate system and projection for north Australian applications
internal report WGS AGD GDA: Selecting the correct datum, coordinate system and projection for north Australian applications JBC Lowry Hydrological and Ecological Processes Program Environmental Research
Coordinate Systems. Orbits and Rotation
Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million
ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING
ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING Chapter 4 2015 Cadastral Mapping Manual 4-0 Elements of Surveying and Mapping Utah's system of land surveying is the rectangular survey system as set forth on
The Integration of GPS and Pseudolites for Bridge Monitoring
The Integration of GPS and Pseudolites for Bridge Monitoring J. Barnes, C. Rizos, H-K. Lee Satellite Navigation and Positioning Group, School of Surveying and Spatial Information Systems University of
GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model
GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen
Technical Article Developing Software for the CN3 Integrated GPS Receiver
Technical Article Developing Software for the CN3 Integrated GPS Receiver 1 Intermec Technologies Table of Contents INTRODUCTION... 3 AN OVERVIEW OF GPS TECHNOLOGY... 3 What is GPS?... 3 How GPS works...
DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON
DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON John A. Vint Survey Manager Thales GeoSolutions Norge AS Hønefoss, 7. november 2003 Scope of Presentation Introduction Summary of GPS Errors.
Cost-Effective Collection of a Network-Level Asset Inventory. Michael Nieminen, Roadware
Cost-Effective Collection of a Network-Level Asset Inventory Michael Nieminen, Roadware Introduction This presentation is about using a mobile vehicle to collect roadway asset (feature) data. Asset/Feature
Learning about GPS and GIS
Learning about GPS and GIS Standards 4.4 Understand geographic information systems (G.I.S.). B12.1 Understand common surveying techniques used in agriculture (e.g., leveling, land measurement, building
Evolving a new Geodetic Positioning Framework: An Australian Perspective
Evolving a new Geodetic Positioning Framework: An Australian Perspective G. Johnston, J. Dawson Outline Introduction Precise Positioning National Geospatial Reference Systems Asia Pacific Reference Frame
International Global Navigation Satellite Systems Service
International Global Navigation Satellite Systems Service IGS Multi-GNSS Experiment IGS M-GEX Call for Participation www.igs.org Response to this Call for Participation in IGS M-GEX via Web Form Submission
Local monitoring by low cost devices and free and open sources softwares
Local monitoring by low cost devices and free and open sources softwares Abstract Ludovico Biagi, Florin-Catalin Grec, Marco Negretti, Maria Grazia Visconti Politecnico di Milano, DICA@ComoCampus The purpose
Waypoint. Best-in-Class GNSS and GNSS+INS Processing Software
Waypoint Best-in-Class GNSS and GNSS+INS Processing Software Waypoint Exceptional Post-Processing Software Enhance your GNSS Position, Velocity and Attitude Accuracy For applications requiring highly
Monitoring of Open Pit Mines using Combined GNSS Satellite Receivers and Robotic Total Stations
Monitoring of Open Pit Mines using Combined GNSS Satellite Receivers and Robotic Total Stations N. Brown Leica Geosystems, Switzerland S. Kaloustian Leica Geosystems, Switzerland M. Roeckle Leica Geosystems,
White Paper By Earl F. Burkholder, PS, PE (NMSU) Gilbert Chavez, PS (City of Las Cruces) February 2006
White Paper By Earl F. Burkholder, PS, PE (NMSU) Gilbert Chavez, PS (City of Las Cruces) February 2006 Need for and Benefits of a Modern Spatial Reference Network in Southern New Mexico Overview: Economic
General GPS Antenna Information APPLICATION NOTE
General GPS Antenna Information APPLICATION NOTE General GPS Antenna Information Global Positioning System and Precise Time & Frequency The Global Positioning System (GPS) is a worldwide radio-navigation
How To Fuse A Point Cloud With A Laser And Image Data From A Pointcloud
REAL TIME 3D FUSION OF IMAGERY AND MOBILE LIDAR Paul Mrstik, Vice President Technology Kresimir Kusevic, R&D Engineer Terrapoint Inc. 140-1 Antares Dr. Ottawa, Ontario K2E 8C4 Canada [email protected]
Safety Applications for GPS Systems in the Mining Industry
Safety Applications for GPS Systems in the Mining Industry Introduction The Global Positioning System (GPS) has been available for civilian use for more than 20 years now. It has found many navigation,
33 Using GPS for GIS data capture
33 Using GPS for GIS data capture A F LANGE AND C GILBERT Depending on the particular equipment utilised and the techniques used, Global Positioning Systems (GPS) are capable of recording position to a
MobileMapper 6 White Paper
MobileMapper 6 White Paper Meter-Level Mapping Accuracy With Post-Processing Introduction Since its introduction in February 2008, the Magellan MobileMapper 6 has been welcomed by the market as the only
A GPS Digital Phased Array Antenna and Receiver
A GPS Digital Phased Array Antenna and Receiver Dr. Alison Brown, Randy Silva; NAVSYS Corporation ABSTRACT NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to enable
Advanced Surveying Control Services for Building the Vertical Cities.
Advanced Surveying Control Services for Building the Vertical Cities. Joël VAN CRANENBROECK, Switzerland Key words: Automatic Total Station, GNSS receivers, Precision Inclinometer, Least Squares Adjustment,
Gravitational potential
Gravitational potential Let s assume: A particle of unit mass moving freely A body of mass M The particle is attracted by M and moves toward it by a small quantity dr. This displacement is the result of
Andrea Bondì, Irene D Urso, Matteo Ombrelli e Paolo Telaroli (Thetis S.p.A.) Luisa Sterponi e Cesar Urrutia (Spacedat S.r.l.) Water Calesso (Marco
Generation of a digital elevation model of the Wadi Lebda basin, Leptis Magna - Lybia Andrea Bondì, Irene D Urso, Matteo Ombrelli e Paolo Telaroli (Thetis S.p.A.) Luisa Sterponi e Cesar Urrutia (Spacedat
Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI
1 Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI Abstract The recent change of the geodetic reference system of Japan from the
CHAPTER 4 LEGAL DESCRIPTION OF LAND DESCRIBING LAND METHODS OF DESCRIBING REAL ESTATE
r CHAPTER 4 LEGAL DESCRIPTION OF LAND DESCRIBING LAND A legal description is a detailed way of describing a parcel of land for documents such as deeds and mortgages that will be accepted in a court of
Keywords: coordinate systems, latitude, longitude, georeferencing, global positioning system, GPS, geodetic datum, ellipsoid, geocoding, postal code
Core Curriculum-Geographic Information Science (1997-2000) UCSB Peer Reviewed Title: Units 012-017 - Position on the Earth Book Title: Core Curriculum in Geographic Information Science Author: 012-017,
Trimble CenterPoint RTX Post-Processing Services FAQs
Trimble CenterPoint RTX Post-Processing Services FAQs What is Trimble RTX technology? 30 September 2013 Trimble RTX TM (Real Time extended) is a high-accuracy, global GNSS correction technology that combines
PDHonline Course L105 (12 PDH) GPS Surveying. Instructor: Jan Van Sickle, P.L.S. PDH Online PDH Center
PDHonline Course L105 (12 PDH) GPS Surveying Instructor: Jan Van Sickle, P.L.S. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com
TerraSync Software and GPS Pathfinder Office Software
ORIENTATION GUIDE TerraSync Software and GPS Pathfinder Office Software Orientation Guide Version 7.0 Revision A / May 2012 Version 5.3 TerraSync Version 5.3 GPS Pathfinder Office Corporate Office Trimble
Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson [email protected] Chalmers University of Technology, 2013
Lecture 5: Satellite Orbits Jan Johansson [email protected] Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS
Collided Vehicle Position Detection using GPS & Reporting System through GSM
Collided Vehicle Position Detection using GPS & Reporting System through GSM M.M.Raghaveendra 1, N.Sahitya 2, N.Nikhila 3, S.Sravani 4 1 Asst.Professor ECE Department, 2 Student, 3 Student, 4 Student,
TI GPS PPS Timing Application Note
Application Note Version 0.6 January 2012 1 Contents Table of Contents 1 INTRODUCTION... 3 2 1PPS CHARACTERISTICS... 3 3 TEST SETUP... 4 4 PPS TEST RESULTS... 6 Figures Figure 1 - Simplified GPS Receiver
RECOMMENDATION ITU-R P.1546-1. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz
Rec. ITU-R P.546- RECOMMENDATION ITU-R P.546- Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz (200-2003) The ITU Radiocommunication Assembly, considering
EPS 101/271 Lecture 11: GPS Data Collection, Mapping Using GPS and Uncertainties in GPS Positioning
EPS 101/271 Lecture 11: GPS Data Collection, Mapping Using GPS and Uncertainties in GPS Positioning How GPS data is collected in GeoMapper Setting Time interval for reporting GPS measurements Modes of
Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF.
Case Study Australia Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia Chair UN-GGIM-AP WG1 Chair APREF Page 1 Overview 1. Australian height system Australian Height Datum
GPS. Essentials of Satellite Navigation. Compendium. locate, communicate, accelerate. Abstract
GPS Essentials of Satellite Navigation Compendium locate, communicate, accelerate Abstract Theory and Principles of Satellite Navigation. Overview of GPS/GNSS Systems and Applications. www.u-blox.com Document
Geospatial Positioning Accuracy Standards Part 2: Standards for Geodetic Networks
Geospatial Positioning Accuracy Standards Federal Geodetic Control Subcommittee Federal Geographic Data Committee Federal Geographic Data Committee Department of Agriculture Department of Commerce Department
RF Coverage Validation and Prediction with GPS Technology
RF Coverage Validation and Prediction with GPS Technology By: Jin Yu Berkeley Varitronics Systems, Inc. 255 Liberty Street Metuchen, NJ 08840 It has taken many years for wireless engineers to tame wireless
Error Estimation in Positioning and Orientation Systems
Error Estimation in Positioning and Orientation Systems Peter Canter Director, Applanix Marine Systems 85 Leek Crescent Richmond Hill, Ontario L4B 3B3 Telephone 905-709-4600 [email protected] Co-Author:
Congreso Internacional Geomática Andina 2012 4 y 5 de junio, Bogotá, D. C., Colombia
Claudio Brunini SIRGAS President UNLP - CONICET Argentina Laura Sánchez SIRGAS Vice-President DGFI - Germany William Martínez SIRGAS WGII President IGAC - Colombia María Viriginia Mackern SIRGAS - WGI
Development of new hybrid geoid model for Japan, GSIGEO2011. Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI
Development of new hybrid geoid model for Japan, GSIGEO2011 11 Development of new hybrid geoid model for Japan, GSIGEO2011 Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI (Published online: 26 December 2014)
Newton s Law of Gravity
Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has
The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping
The Earth Really is Flat! The Globe and Coordinate Systems Intro to Mapping & GIS The Earth is Flat Day to day, we live life in a flat world sun rises in east, sets in west sky is above, ground is below
How To Monitor Sea Level With Satellite Radar
Satellite Altimetry Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München email: [email protected] Objectives You shall recognize satellite altimetry as an operational remote sensing
To assess GPS tracking devices and associated software suitable for real time monitoring of timber haulage trucks.
To assess GPS tracking devices and associated software suitable for real time monitoring of timber haulage trucks. Dr. Ger Devlin Bioresources Research Centre (BRC) Biosystems Engineering University College
Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data
Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data Neil D. WESTON, Gerald L. MADER and Tomás SOLER, USA Key words: GPS; Positioning; Campaign SUMMARY The National
Real-Time Carrier Phase Positioning Using the RTCM Standard Message Types 20/21 and 18/19.
Real-Time Carrier Phase Positioning Using the RTCM Standard Message Types 2/21 and 18/19. Janet Brown Neumann, Keith J. VanDierendonck, Allan Manz, and Thomas J. Ford NovAtel Inc. BIOGRAPHIES Janet Brown
Part 4: Geodetic Control
Geographic Information Framework Data Content Standard May 2008 Established by Office of Management and Budget Circular A-16, the Federal Geographic Data Committee (FGDC) promotes the coordinated development,
