Heat Kernel Signature

Size: px
Start display at page:

Download "Heat Kernel Signature"

Transcription

1 INTODUCTION Heat Kernel Signature Thomas Hörmann Informatics - Technische Universität ünchen Abstract Due to the increasing computational power and new low cost depth cameras the analysis of 3D shapes has become more popular during the last view years. A special challenge is provided by the comparison of non-rigid shapes. The Heat Kernel Signature is an approach, which is well suited for this kind of problem. Intoduction 3D shape matching is a common field in modern geometry processing. It is based on computational understanding geometry. A lot of methods has been proposed by various scientist to solve this problem, but there is no default choice algorithm yet, like the SIFT algorithm[] in the 2D Image processing. The Heat Kernel Signature (HKS)[2] is one of the concepts that face this challenge. The HKS has received a lot of attention in the last years. In 200 the SHREC benchmark proposed the heat kernel based algorithms as the methods with the best performance[3].. Point Signatures A point signature is a data set that represents specific features of a given point. They can be used to define some feature points on a manifold, detect similarities of two different manifolds or to describe the geometry. In 996 one of the first point signatures was proposed by Chua and Jarvis[4] for effictient feature point mapping. The idea was to directly map two feature point of different 3D shape, instead of the two step process, first detecting all feature points and afterwards map them by a matching algorithm like the RANSAC[5], known from image matching. This point signature describes for each point x a one dimensional function f : [0, 2π] R using the intersection of the manifold and a sphere with constant radius. Unfortunately this representation has some disadvantages. It is not stable against perturbations and it does not describe the shape or the point of the shape in a unique manner. Another approach is the global point signature given by Rustamov[6]. By using the eigenvalues λ i and eigenfunctions φ i of the Laplace Beltrami operator Given the ordering of the eigenvalues the Global Point Signature GPS is defined as GP S(p) = ( φ (p), λ φ i = λ i φ i. () 0 = λ 0 < λ < λ 2 <... (2) λ2 φ 2 (p), λ3 φ 3 (p),...). (3) The GPS has some useful properties like invariance under isometric mappings and uniqueness of the signature for every point in the manifold. But it is not stable under perturbations. This can result in a change of the sign for some eigenfunctions as shown on Figure. The last point signature that is mentioned here is the Wave Kernel Signature[7] that has a lot of similarities the the HKS, but is based on Schrödingers equation ψ (x, t) = i ψ(x, t). (4) t The Wave Kernel Signature is defined as WKS(E, x) = lim T T T 0 ψ E (x, t) 2 (5)

2 2 APPROACH Figure : This figure shows the 9th eigenfunction of the shape Victoria in different poses. The coloring goes from blue negative values to red positive values. We can clearly see the change of the sign of the two models. 2 Approach The heat operator H t is a function that maps an initial heat distribution f : R to the heat distribution for any time t. lim H t(f) = f (6) t 0 The function k t that satisfies the following equation is called the heat kernel. H t f(x) = k t (x, y)f(y)dy (7) In order to find a solution for k t we have to solve the heat equation first. u(x, t) = u(x, t). (8) t First of all we define the scalar product of the function space on manifolds as follows f, g := f(x)g(x)dx. (9) We know that the eigenfunctions of the Laplace Beltrami Operator are orthogonal so we can decompose every function on the manifold as u(x, t) = u(t, ), φ i ( ) φ i (x) (0) Solving the heat equation by using the decomposition we get the following formulas t u(x, t) = t u(t, ), φ i( ) φ i (x) () u(x, t) = u(t, ), φ i ( ) φ i (x) = u(t, ), φ i ( ) λ i φ i (x) (2) Comparing the coefficients brings us to the first order ordinary differential equation t u(t, ), φ i( ) φ i (x) = u(t, ), φ i ( ) λ i φ i (x) (3) 2

3 2 APPROACH Figure 2: The figure shows the heat distribution on a cat for two different initial values f = δ x and f 2 = δ x2 where x x 2 on the left. The right side shows the remaining heat at point x i over time to the correspondent cat from the left. which results in the solution u(t, ), φ i ( ) = d i e λit (4) and a closed form for u u(x, t) = d i e λit φ i (x). (5) To define the unknown d i we use the initial value of f for t 0 = 0. So we get lim u(x, t) = d i φ i (x) = f (6) t 0 d i = f, φ i (7) ( ) φ i (y)f(y)dy e λit φ i (x) = e λit φ i (x)φ i (y)f(y)dy = By comparision we get a solution for the heat kernel k t (x, y) = k t (x, y)f(y)dy (8) e λit φ i (x)φ i (y) (9) The heat kernel itself can be thought of the heat distribution over the manifold with put a single heat source onto the point y at time t 0 = 0. Figure 2 shows two different heat distributions computed with the heat kernel. Also the heat kernel fully characterizes the shape up to isoemetry[8] but holds a lot of redundant information[2]. 3

4 2. Heat Kernel Signature 3 EXPERIENTS 2. Heat Kernel Signature The Heat Kernel Signature is defined as the remaining heat at the point x after time t and initial distribution f = δ x. HKS(x, t) = k t (x, x) = e λit φ 2 i (x) (20) By removing most of the information and only keeping the remaining heat at one point over the time the Heat Kernel Signature stays informative[2]. Because the heat kernel describes the heat diffusion the HKS is also stable against noise and change of topology to some extent. In comparison to the GPS the HKS has additional advantages. The HKS is a weighted sum over the squares of the eigenfunctions, so it is neither sensitive to the order of the eigenfunctions nor the sign. By using only predefined time intervals the HKS can also be used for multiscale matching. This can be easily explained by the fact that the heat only distribute to a finite surface at small time intervals. Figure 3: Color plot of the difference between the HKS using eulcedean distance. The difference increases as the color changes from blue to green to red. left: 0 sampling points right: 50 sampling points Figure 4: Color plot of the difference between the HKS using the scaled HKS. The difference increases as the color changes from blue to green to red. left: 5 sampling points right: 0 sampling points 3 Experiments The eigenfunctions of the Laplace beltrami Operator are invariant under isometric transformations despite their sign. Figure show the 9th eigenfunction of Victoria in two different poses. Since the heat kernel signature is a weighted sum of the square of the eigenfunctions it is not sensitive to the sign or the order of the eigenfunctions. The HKS also represents the curvature of the shape in some sense. The heat distributes slower on regions with positive curvature and faster on regions with negative curvature. So we can approximate for some t the curvature of the shape[2]. 3. Comparing two Signatures In computer science we can compare two signatures by sampling them into discrete function values and compare those vectors by some norm. The first approach is using for the HKS a vector with 4

5 3.2 ulti Scale Feature 4 SUARY equidistant sample values and compare them by a norm like the Euclidean distance. ( N ) d(x, x ) = k ti (x, x) k ti (x, x 2 ), tk+ t k = const (2) Figure 3 shows the comparison of one point on the surface to each other. Since the HKS is a monotonic function and the derivate is decreasing equidistant samplings may not be the best way to compare two signatures. There is less change of the HKS for bigger t and also the difference of two samples decreases, because the HKS converges to lim t k t (x, x) = area() for all x. ( N d(x, x k ti (x, x) k ti (x, x ) 2 ) ) =, k log(tk+ ) log(t k ) = const (22) t(y, y)dy where k t(x, x)dx is called the heat trace and can be computed as k t (x, x)dx = e λit. (23) The function SHKS based on the scaled distance function is called scaled Heat Kernel Signature. SHKS(x, t) = k t(x, x) e λit (24) One of the big advantages of the scaled Heat Kernel Signature is, that we need less sampling points. Figure 5: The figure shows two scaled signatures of of a cat. Figure 5 shows the distance using the scaled HKS from one point to each other. Compared to the Euclidean distance we achieve almost the same results with 5 sampling points of the SHKS against the Euclidean distance with 50 sampling points. 3.2 ulti Scale Feature Another property of the heat kernel signature is, that it can compare multi scale shapes. Since the HKS is based on heat distribution it is well suited for comparing local structure. Using for small t the HKS describes the local structure of the shape. For a partial shape the eigenfunctions can be completely different but the HKS stays the same for a small interval [t, t 2 ]. On Figure 6 we can see that the heat distribution for the full and the partial shape looks almost the same. Also the error plot indicates a rising error only for large t. 4 Summary The HKS can be used for multi scale shape matching among different shapes. It has been shown, that the HKS is powerful tool for multi scale shape matching. For many different types in shape geometry Heat Kernel Signature based methods can be used[3]. However there are still some disadvantages. The HKS is not invariant under different scales of the same shape. Also the eigenfunctions with low eigenvalues are taken more into account, but eigenfunctions with high eigenvalues still carry some informations about the shape. 5

6 REFERENCES REFERENCES Figure 6: The figure shows the heat distribution of the same point for time t = 400. We can see, that the error rises when the heat arrives the edge. left: full shape, middle: only left hand, right: error plot References [] Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International journal of computer vision 60 (2004) 9 0 [2] Sun, J., Ovsjanikov,., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum. Volume 28., Wiley Online Library (2009) [3] Bronstein, A., Bronstein,., Bustos, B., Castellani, U., Crisani,., Falcidieno, B., Guibas, L., Kokkinos, I., urino, V., Ovsjanikov,., et al.: Shrec 200: robust feature detection and description benchmark. Proc. 3DOR 2 (200) 6 [4] Chua, C.S., Jarvis, R.: Point signatures: A new representation for 3d object recognition. International Journal of Computer Vision 25 (996) [5] Bolles, R.C., Fischler,.A.: A ransac-based approach to model fitting and its application to finding cylinders in range data. In: IJCAI. Volume 98. (98) [6] Rustamov, R..: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the fifth Eurographics symposium on Geometry processing, Eurographics Association (2007) [7] Aubry,., Schlickewei, U., Cremers, D.: The wave kernel signature: A quantum mechanical approach to shape analysis. In: Computer Vision Workshops (ICCV Workshops), 20 IEEE International Conference on, IEEE (20) [8] Hsu, E.P.: Stochastic analysis on manifolds. Volume 38. American athematical Soc. (2002) 6

The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis

The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis Mathieu Aubry, Ulrich Schlickewei and Daniel Cremers Department of Computer Science, TU München Abstract We introduce the Wave

More information

Shape Google: a computer vision approach to invariant shape retrieval

Shape Google: a computer vision approach to invariant shape retrieval Shape Google: a computer vision approach to invariant shape retrieval Maks Ovsjanikov Dept. of Computer Science Stanford University maks@stanford.edu Alexander M. Bronstein Dept. of Computer Science Technion

More information

3D Human Face Recognition Using Point Signature

3D Human Face Recognition Using Point Signature 3D Human Face Recognition Using Point Signature Chin-Seng Chua, Feng Han, Yeong-Khing Ho School of Electrical and Electronic Engineering Nanyang Technological University, Singapore 639798 ECSChua@ntu.edu.sg

More information

Introduction to the Finite Element Method

Introduction to the Finite Element Method Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis

More information

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report

Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles mjhustc@ucla.edu and lunbo

More information

3D Model based Object Class Detection in An Arbitrary View

3D Model based Object Class Detection in An Arbitrary View 3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/

More information

ART Extension for Description, Indexing and Retrieval of 3D Objects

ART Extension for Description, Indexing and Retrieval of 3D Objects ART Extension for Description, Indexing and Retrieval of 3D Objects Julien Ricard, David Coeurjolly, Atilla Baskurt LIRIS, FRE 2672 CNRS, Bat. Nautibus, 43 bd du novembre 98, 69622 Villeurbanne cedex,

More information

Subspace Analysis and Optimization for AAM Based Face Alignment

Subspace Analysis and Optimization for AAM Based Face Alignment Subspace Analysis and Optimization for AAM Based Face Alignment Ming Zhao Chun Chen College of Computer Science Zhejiang University Hangzhou, 310027, P.R.China zhaoming1999@zju.edu.cn Stan Z. Li Microsoft

More information

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078 21 ELLIPTICAL PARTIAL DIFFERENTIAL EQUATIONS: POISSON AND LAPLACE EQUATIONS Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 2nd Computer

More information

Mean-Shift Tracking with Random Sampling

Mean-Shift Tracking with Random Sampling 1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

Segmentation of building models from dense 3D point-clouds

Segmentation of building models from dense 3D point-clouds Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Stable Topological Signatures for Points on 3D Shapes

Stable Topological Signatures for Points on 3D Shapes Eurographics Symposium on Geometry Processing 2015 Mirela Ben-Chen and Ligang Liu (Guest Editors) Volume 34 (2015), Number 5 Stable Topological Signatures for Points on 3D Shapes Mathieu Carrière 1 and

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example. An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

Recovering Primitives in 3D CAD meshes

Recovering Primitives in 3D CAD meshes Recovering Primitives in 3D CAD meshes Roseline Bénière a,c, Gérard Subsol a, Gilles Gesquière b, François Le Breton c and William Puech a a LIRMM, Univ. Montpellier 2, CNRS, 161 rue Ada, 34392, France;

More information

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT

More information

Classifying Manipulation Primitives from Visual Data

Classifying Manipulation Primitives from Visual Data Classifying Manipulation Primitives from Visual Data Sandy Huang and Dylan Hadfield-Menell Abstract One approach to learning from demonstrations in robotics is to make use of a classifier to predict if

More information

ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES

ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES B. Sirmacek, R. Lindenbergh Delft University of Technology, Department of Geoscience and Remote Sensing, Stevinweg

More information

Introduction to acoustic imaging

Introduction to acoustic imaging Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Part-Based Recognition

Part-Based Recognition Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple

More information

Analecta Vol. 8, No. 2 ISSN 2064-7964

Analecta Vol. 8, No. 2 ISSN 2064-7964 EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,

More information

Expression Invariant 3D Face Recognition with a Morphable Model

Expression Invariant 3D Face Recognition with a Morphable Model Expression Invariant 3D Face Recognition with a Morphable Model Brian Amberg brian.amberg@unibas.ch Reinhard Knothe reinhard.knothe@unibas.ch Thomas Vetter thomas.vetter@unibas.ch Abstract We present an

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs. Multimedia Databases Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 14 Previous Lecture 13 Indexes for Multimedia Data 13.1

More information

Geometric Algebra Computing Analysis of point clouds 27.11.2014 Dr. Dietmar Hildenbrand

Geometric Algebra Computing Analysis of point clouds 27.11.2014 Dr. Dietmar Hildenbrand Geometric Algebra Computing Analysis of point clouds 27.11.2014 Dr. Dietmar Hildenbrand Technische Universität Darmstadt Literature Book Foundations of Geometric Algebra Computing, Dietmar Hildenbrand

More information

A Short Introduction to Computer Graphics

A Short Introduction to Computer Graphics A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical

More information

Face Recognition in Low-resolution Images by Using Local Zernike Moments

Face Recognition in Low-resolution Images by Using Local Zernike Moments Proceedings of the International Conference on Machine Vision and Machine Learning Prague, Czech Republic, August14-15, 014 Paper No. 15 Face Recognition in Low-resolution Images by Using Local Zernie

More information

Canny Edge Detection

Canny Edge Detection Canny Edge Detection 09gr820 March 23, 2009 1 Introduction The purpose of edge detection in general is to significantly reduce the amount of data in an image, while preserving the structural properties

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow , pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices

More information

2.2 Creaseness operator

2.2 Creaseness operator 2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared

More information

So which is the best?

So which is the best? Manifold Learning Techniques: So which is the best? Todd Wittman Math 8600: Geometric Data Analysis Instructor: Gilad Lerman Spring 2005 Note: This presentation does not contain information on LTSA, which

More information

Two-Dimensional Conduction: Shape Factors and Dimensionless Conduction Heat Rates

Two-Dimensional Conduction: Shape Factors and Dimensionless Conduction Heat Rates Two-Dimensional Conduction: Shape Factors and Dimensionless Conduction Heat Rates Chapter 4 Sections 4.1 and 4.3 make use of commercial FEA program to look at this. D Conduction- General Considerations

More information

Android Ros Application

Android Ros Application Android Ros Application Advanced Practical course : Sensor-enabled Intelligent Environments 2011/2012 Presentation by: Rim Zahir Supervisor: Dejan Pangercic SIFT Matching Objects Android Camera Topic :

More information

Constructing Laplace Operator from Point Clouds in R d

Constructing Laplace Operator from Point Clouds in R d Constructing Laplace Operator from Point Clouds in R d Mikhail Belkin Jian Sun Yusu Wang Abstract We present an algorithm for approximating the Laplace-Beltrami operator from an arbitrary point cloud obtained

More information

Master of Mathematical Finance: Course Descriptions

Master of Mathematical Finance: Course Descriptions Master of Mathematical Finance: Course Descriptions CS 522 Data Mining Computer Science This course provides continued exploration of data mining algorithms. More sophisticated algorithms such as support

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

A Genetic Algorithm-Evolved 3D Point Cloud Descriptor

A Genetic Algorithm-Evolved 3D Point Cloud Descriptor A Genetic Algorithm-Evolved 3D Point Cloud Descriptor Dominik Wȩgrzyn and Luís A. Alexandre IT - Instituto de Telecomunicações Dept. of Computer Science, Univ. Beira Interior, 6200-001 Covilhã, Portugal

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

Data Storage 3.1. Foundations of Computer Science Cengage Learning

Data Storage 3.1. Foundations of Computer Science Cengage Learning 3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

APPLYING COMPUTER VISION TECHNIQUES TO TOPOGRAPHIC OBJECTS

APPLYING COMPUTER VISION TECHNIQUES TO TOPOGRAPHIC OBJECTS APPLYING COMPUTER VISION TECHNIQUES TO TOPOGRAPHIC OBJECTS Laura Keyes, Adam Winstanley Department of Computer Science National University of Ireland Maynooth Co. Kildare, Ireland lkeyes@cs.may.ie, Adam.Winstanley@may.ie

More information

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

Persistent Heat Signature for Pose-oblivious Matching of Incomplete Models

Persistent Heat Signature for Pose-oblivious Matching of Incomplete Models Eurographics Symposium on Geometry Processing 2010 Olga Sorkine and Bruno Lévy (Guest Editors) Volume 29 (2010), Number 5 Persistent Heat Signature for Pose-oblivious Matching of Incomplete Models T. K.

More information

JPEG compression of monochrome 2D-barcode images using DCT coefficient distributions

JPEG compression of monochrome 2D-barcode images using DCT coefficient distributions Edith Cowan University Research Online ECU Publications Pre. JPEG compression of monochrome D-barcode images using DCT coefficient distributions Keng Teong Tan Hong Kong Baptist University Douglas Chai

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Neural Gas for Surface Reconstruction

Neural Gas for Surface Reconstruction Neural Gas for Surface Reconstruction Markus Melato, Barbara Hammer, Kai Hormann IfI Technical Report Series IfI-07-08 Impressum Publisher: Institut für Informatik, Technische Universität Clausthal Julius-Albert

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service

siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service Ahmad Pahlavan Tafti 1, Hamid Hassannia 2, and Zeyun Yu 1 1 Department of Computer Science, University of Wisconsin -Milwaukee,

More information

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of

More information

ART Extension for Description, Indexing and Retrieval of a 3D Object

ART Extension for Description, Indexing and Retrieval of a 3D Object ART Extension for Description, Indexing and Retrieval of a 3D Objects Julien Ricard, David Coeurjolly, Atilla Baskurt To cite this version: Julien Ricard, David Coeurjolly, Atilla Baskurt. ART Extension

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Mean value theorem, Taylors Theorem, Maxima and Minima.

Mean value theorem, Taylors Theorem, Maxima and Minima. MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

More information

Rate of convergence towards Hartree dynamics

Rate of convergence towards Hartree dynamics Rate of convergence towards Hartree dynamics Benjamin Schlein, LMU München and University of Cambridge Universitá di Milano Bicocca, October 22, 2007 Joint work with I. Rodnianski 1. Introduction boson

More information

Notes on Elastic and Inelastic Collisions

Notes on Elastic and Inelastic Collisions Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide

More information

Finite Difference Approach to Option Pricing

Finite Difference Approach to Option Pricing Finite Difference Approach to Option Pricing February 998 CS5 Lab Note. Ordinary differential equation An ordinary differential equation, or ODE, is an equation of the form du = fut ( (), t) (.) dt where

More information

Thin Lenses Drawing Ray Diagrams

Thin Lenses Drawing Ray Diagrams Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses

More information

Point Cloud Segmentation via Constrained Nonlinear Least Squares Surface Normal Estimates

Point Cloud Segmentation via Constrained Nonlinear Least Squares Surface Normal Estimates Point Cloud Segmentation via Constrained Nonlinear Least Squares Surface Normal Estimates Edward Castillo Radiation Oncology Department University of Texas MD Anderson Cancer Center, Houston TX ecastillo3@mdanderson.org

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

A RIGOROUS AND COMPLETED STATEMENT ON HELMHOLTZ THEOREM

A RIGOROUS AND COMPLETED STATEMENT ON HELMHOLTZ THEOREM Progress In Electromagnetics Research, PIER 69, 287 304, 2007 A RIGOROU AND COMPLETED TATEMENT ON HELMHOLTZ THEOREM Y. F. Gui and W. B. Dou tate Key Lab of Millimeter Waves outheast University Nanjing,

More information

Template-based Eye and Mouth Detection for 3D Video Conferencing

Template-based Eye and Mouth Detection for 3D Video Conferencing Template-based Eye and Mouth Detection for 3D Video Conferencing Jürgen Rurainsky and Peter Eisert Fraunhofer Institute for Telecommunications - Heinrich-Hertz-Institute, Image Processing Department, Einsteinufer

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

Vision based Vehicle Tracking using a high angle camera

Vision based Vehicle Tracking using a high angle camera Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu gramos@clemson.edu dshu@clemson.edu Abstract A vehicle tracking and grouping algorithm is presented in this work

More information

arxiv:1201.6059v2 [physics.class-ph] 27 Aug 2012

arxiv:1201.6059v2 [physics.class-ph] 27 Aug 2012 Green s functions for Neumann boundary conditions Jerrold Franklin Department of Physics, Temple University, Philadelphia, PA 19122-682 arxiv:121.659v2 [physics.class-ph] 27 Aug 212 (Dated: August 28,

More information

Build Panoramas on Android Phones

Build Panoramas on Android Phones Build Panoramas on Android Phones Tao Chu, Bowen Meng, Zixuan Wang Stanford University, Stanford CA Abstract The purpose of this work is to implement panorama stitching from a sequence of photos taken

More information

EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS

EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS Marcel Brückner, Ferid Bajramovic, Joachim Denzler Chair for Computer Vision, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz, 7743 Jena,

More information

Simultaneous Gamma Correction and Registration in the Frequency Domain

Simultaneous Gamma Correction and Registration in the Frequency Domain Simultaneous Gamma Correction and Registration in the Frequency Domain Alexander Wong a28wong@uwaterloo.ca William Bishop wdbishop@uwaterloo.ca Department of Electrical and Computer Engineering University

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel

Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002 359 Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel Lizhong Zheng, Student

More information

Master of Arts in Mathematics

Master of Arts in Mathematics Master of Arts in Mathematics Administrative Unit The program is administered by the Office of Graduate Studies and Research through the Faculty of Mathematics and Mathematics Education, Department of

More information

Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics

Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Dimitri Van De Ville Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group dimitri.vandeville@epfl.ch

More information

Survey of the Mathematics of Big Data

Survey of the Mathematics of Big Data Survey of the Mathematics of Big Data Philippe B. Laval KSU September 12, 2014 Philippe B. Laval (KSU) Math & Big Data September 12, 2014 1 / 23 Introduction We survey some mathematical techniques used

More information

Building an Advanced Invariant Real-Time Human Tracking System

Building an Advanced Invariant Real-Time Human Tracking System UDC 004.41 Building an Advanced Invariant Real-Time Human Tracking System Fayez Idris 1, Mazen Abu_Zaher 2, Rashad J. Rasras 3, and Ibrahiem M. M. El Emary 4 1 School of Informatics and Computing, German-Jordanian

More information

Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

More information

Visualization of 2D Domains

Visualization of 2D Domains Visualization of 2D Domains This part of the visualization package is intended to supply a simple graphical interface for 2- dimensional finite element data structures. Furthermore, it is used as the low

More information

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155 Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

More information

Automated Process for Generating Digitised Maps through GPS Data Compression

Automated Process for Generating Digitised Maps through GPS Data Compression Automated Process for Generating Digitised Maps through GPS Data Compression Stewart Worrall and Eduardo Nebot University of Sydney, Australia {s.worrall, e.nebot}@acfr.usyd.edu.au Abstract This paper

More information

Randomized Trees for Real-Time Keypoint Recognition

Randomized Trees for Real-Time Keypoint Recognition Randomized Trees for Real-Time Keypoint Recognition Vincent Lepetit Pascal Lagger Pascal Fua Computer Vision Laboratory École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne, Switzerland Email:

More information

GRADES 7, 8, AND 9 BIG IDEAS

GRADES 7, 8, AND 9 BIG IDEAS Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

More information

SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING

SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING AAS 07-228 SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING INTRODUCTION James G. Miller * Two historical uncorrelated track (UCT) processing approaches have been employed using general perturbations

More information

Predict the Popularity of YouTube Videos Using Early View Data

Predict the Popularity of YouTube Videos Using Early View Data 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

An introduction to Global Illumination. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

An introduction to Global Illumination. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology An introduction to Global Illumination Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Isn t ray tracing enough? Effects to note in Global Illumination image:

More information

LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE. indhubatchvsa@gmail.com

LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE. indhubatchvsa@gmail.com LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE 1 S.Manikandan, 2 S.Abirami, 2 R.Indumathi, 2 R.Nandhini, 2 T.Nanthini 1 Assistant Professor, VSA group of institution, Salem. 2 BE(ECE), VSA

More information