Measurements of the Drell-Hearn-Gerasimov Integrand for the Deuteron

Size: px
Start display at page:

Download "Measurements of the Drell-Hearn-Gerasimov Integrand for the Deuteron"

Transcription

1 Measurements of the Drell-Hearn-Gerasimov Integrand for the Deuteron Blaine orum * (University of Virginia) Rob ywell (University of Saskatchewan) Brad Sawatzky (Temple University) Henry Weller * (Duke University) for the GDH Collaboration May 11, 9 bstract We are proposing to measure the integrand of the Drell-Hearn-Gerasimov integral for the deuteron from as close to threshold as proves possible to the maximum photon energy available at HIGS where the only contributing reaction is expected to be d γ, n p. These measurements will complement measurements made elsewhere of the corresponding integrals for the nucleons, making possible a determination of the source of any violations of the Drell-Hearn-Gerasimov Sum Rule that may emerge for the nucleons. They will also provide another polarization observable to complement measurements using linearly polarized photons and measurements of induced neutron polarization. The measurements will use the polarized target currently under development and the Blowfish detector. For the initial measurements beam energies of 8, 1, and 16 MeV will be employed. * Spokesperson

2 Introduction We are proposing to measure the integrand of the Drell-Hearn-Gerasimov integral for the deuteron from as close to threshold as proves possible to the maximum photon energy available at HIGS where the only contributing reaction is expected to be d( γ, n) p. These measurements will complement measurements made elsewhere of the corresponding integrals for the nucleons, making possible a determination of the source of any violations of the Drell-Hearn-Gerasimov Sum Rule that may emerge for the nucleons. They will also provide another polarization observable to complement measurements using linearly polarized photons and measurements of induced neutron polarization. The measurements will use the polarized target currently under development and the existing Blowfish detector. For the initial measurements beam energies of 8, 1, and 16 MeV will be employed. Motivation Spin-dependent Compton scattering of a photon with energy from a nucleon can be expressed as Born ( ) = (,, κ) M e ( ε ', ') ( ε, ˆ) ( α, β)( / ) ( ', k' ) (, kˆ) 3(,, 1, 1)( / M) ( ) ( ) ( ) ( ˆ) + e k k M + ε ε α β α β { } 3( 1 1)( + ε ', k' ε, k, ε ', k' ε, k α, β, α, β / M In the forward scattering limit ( ) f ( ) ε ' ε + ig( ) ( ε ' ε) where 4 f ( ) = f ( ) + f '( ) + O( ) α f ( ) = M f ' = α + β electric and magnetic polarizabilities 4 ( ) = ( ) + '( ) + ( ) g g g O g ( ) g ' ακ = M ( α + β ) = γ = M forward spin polarizability 3 ) 4

3 In 1954 M. Gell-Mann, M. Goldberger, and W. Thirring [1] showed that g' 1 γ = 4π 1/ 3/ 3 where 1/ ( 3/ ) is the total inelastic cross section when the target nucleon spin and the incident photon helicity are anti-parallel (parallel). Similarly, S. B. Gerasimov [] and, independently, S. D. Drell and. C. Hearn [3] showed in 1966 that, under the very reasonable assumption that g =, g ακ 1 d 1/ 3/ = = d, M 4 π the so-called Gerasimov-Drell-Hearn Sum Rule. Thus, the amplitudes for Compton scattering are related to integrals over the amplitudes for all inelastic processes. The GDH sum rule is customarily written 1/ 3/ 4 κ d = Sαπ, M where is the threshold photon energy for inelastic processes, M (κ ) is the mass (anomalous magnetic moment) of the target, and S is the spin of the target. t LEGS we measured the GDH integral for photon energies up to 4 MeV. These measurements will complement measurements from JLB. Measurements of the GDH integrand are also being pursued at Mainz ( MeV Eγ 8 MeV ) and Bonn ( 7 MeV Eγ 9 MeV ) [4]. Their results indicate that the GDH sum rule for the proton is confirmed while the situation for the neutron remains unclear[5]. This is due in no small part to the fact that in their experimental configurations they cannot isolate π and π + events unambiguously. In the fall of 6 we measured the GDH integrand at LEGS ( 18 MeV Eγ 4 MeV ) using the newly developed HD target. dded to the previously available Spin SYmmetry (SSY) detector was a time projection chamber to permit accurate determination of both the charge and momentum of reaction products, that is pions. nalysis of these data is currently underway. The GDH sum rule for a nucleon is κ d = π α m π

4 where π is the threshold energy for pion production from the nucleon, is the total inelastic photon cross section when the nucleon and photon angular momenta are parallel (anti-parallel), and m ( κ ) is the mass (anomalous magnetic moment) of the nucleon. Of course, one cannot measure to infinite photon energy so the LHS should be written max d = d + d π π max In testing the sum rule one must account for the unmeasured piece of the integral using a theoretical calculation. One question, therefore, is whether this correction is in fact correct. We can address this question by first noting that if the sum rule is valid then the difference between the sum rule value of the integral and the measured piece must equal the integral from to. max It was pointed out by Hosada and Yamamoto [6,7] and Gerasimov [] that these arguments could be applied equally well to the deuteron. That is, the deuteron could be treated as the object of the sum rule rather than simply as a source of neutrons. The resultant "GDH'' sum rule is given by d d κ d d = 4π α md where is the threshold not for pion production ( 145 MeV) but for photodisintegration (. MeV), and md ( κ d) is the mass (anomalous magnetic moment) of the deuteron. The sum rule values for the proton, neutron, and deuteron are Target κ GDH p μ b n μ b d μ b The GDH integral for the deuteron can be separated into three pieces d d d d d d d d max π d = d d d.6 b + + = π μ max The first term on the RHS will be measured at HIγ S; the second term was measured at LEGS and elsewhere. For the high photon energies relevant to the third (unmeasured) piece we note that to the order of.1% the deuteron can be treated as the sum of a neutron plus a proton plus trivial corrections. Thus, if the sum rule is valid then the sum

5 of the unmeasured pieces of the GDH integral for the neutron and proton must equal the unmeasured piece of the deuteron. dding these to the measured pieces of the deuteron GDH integral should yield a value in agreement with the sum rule prediction. If such agreement is observed, then we can conclude that the sum rule is valid and calculating the "unmeasured" pieces of the neutron and proton integrals will be a test of nucleon models. If no agreement is observed, then something is wrong with the sum rule. erhaps the assumption of unsubtracted dispersion relations? The forward spin polarizability is customarily written g' ( α β ) S + d 3 γ = = π Thus, in measuring the GDH integrand we will also measure the forward spin 3 polarizability. It should be noted, however that the strong 1 weighting means that only data obtained with the lowest photon energies make any significant contribution. separate proposal entitled Detailed Study of Deuteron hotodisintegration in the Energy Range 1 13 MeV has also been submitted. That proposal focuses on significant discrepancies observed between theory and experiment in d( γ, n) p, d( γ, n) p, and d( γ, n ) pfor photon energies of about 1-13 MeV. t this energy and others the proposed measurements of the GDH integrand will provide complementary polarization data to existing measurements of d( γ, n) p and d( γ, n) p. Combined, they will provide a stringent test our understanding of this most fundamental nuclear system. M Experiment Figure 1 shows the calculation of H. renhovel et al. [8] of the cross section differences entering the GDH Sum Rule. The GDH integral is clearly dominated by the near-threshold, E γ < 5 MeV region. However, precisely measuring deuteron photodisintegration in this region requires a scintillating target to ensure that neutrons detected in the Blowfish correspond to a nuclear event in the target. This capability will not be initially available in the polarized target. Therefore, initial measurements will be made with higher incident photon energies where a scintillating target is not required. Butanol CHOH 4 9 -based hydrogen/deuterium targets contain substantial amounts of carbon and oxygen. To avoid the need to eliminate neutrons ejected from the oxygen or carbon from those detected in the Blowfish initial measurements will be made at photon energies below MeV. The photon energies at which we plan to run are 8, 1, and 16 MeV. 16 MeV is the photon energy for which the cross section difference is most positive. Because the

6 Figure 1: The cross section difference entering the GDH Sum Rule integral. ote that the abscissa scale is logarithmic so the area under the curve is proportional to the contribution to the sum rule integral. total cross section is falling rapidly above E γ 4 MeV, 16 MeV is also close to where the cross section asymmetry ( ) ( ) Moreover, it is an energy at which we have data on d( γ, n) = + is expected to be largest. p [9]. 1 MeV is in the middle of the region where significant disagreements exist between theory and experiment [1,11]. 8 MeV is the energy at which the asymmetry is predicted to be zero. finite value for the asymmetry would give a clear indication of the magnitude of any discrepancy between theory and experiment. While the forward spin polarizability will be measured later when lower beam energies and a scintillating target are used, the data we will obtain during this initial run will not make an appreciable contribution to the forward spin polarizability integral. Figure shows the integrand and clearly demonstrates that beam energies of greater than 6 MeV do not contribute to determining the forward spin polarizability The Blowfish detector [1], with its associated electronics and data acquisition system, is in place and ready for use. new simulation package will be required since the target (and beam) will be oriented perpendicular to the detector axis of symmetry; in previous experiments the beam entered along the axis. The existing 5-paddle beam

7 Figure : The integrand in the expression for the deuteron forward spin polarizability. ote that the integral is determined solely by data taken with photon energies below 6 MeV. monitor, cross calibrated with a sodium iodide detector will be used to monitor the beam flux. The target is nearing completion but work remains. The heat exchangers are currently at CER being affixed to the target cylinder. The only components that remain to be ordered are the microwave guides required to carry the polarizing rf power to the target cell. Some target monitors which have been purchased remain to be configured. Based on Don Crabb s experience we anticipate that the target will be moved to HIGS for final installation towards the end of 9. The experiment proposed here could be run in spring 1. Since this will be the first use of this target we have based count rate estimates on 6 conservative estimates of parameters. We assume that the beam flux will be 5 1 photons per second through a cm collimator. The target length will be 4 cm; the polarized deuteron density will be.8 times that of water; the deuteron polarization was assumed to be 4%. The neutron detection efficiency was assumed to be about 15%. With these assumptions, including time for reversing the target polarization, we estimate that five days of two-shift operation will be required.

8 References 1. M. Gell-Mann, M. Goldberger, and W. Thirring, hys. Rev. 95 (1954) S.B. Gerasimov, Sov. J. ucl. hys. (1966) S.D. Drell and.c. Hearn, hys. Rev. Lett. 16 (1966) K. Helbing, roc. Third Int. Symp. On the GDH Sum Rule and its Extensions, orfolk, US (4) S. Hoblit et al., hys. Rev. Lett. 1 (9) M. Hosada and K. Yamamoto, rog. Theor. hys. 36 (1966) M. Hosada and K. Yamamoto, rog. Theor. hys. 36 (1966) H. renhovel, W. Leidemann, and E. Tomusiak, Few-Body Syst. 8 () 147; private communication 5 and later. 9. M. Blackston, h.d. thesis, recision Measurements of Deuteron hotodisintegration using Linearly olarized hotons of 14 and 16 MeV, Duke University, R. Schiavilla, hys. Rec. C7 (5) 341; private communication, B. orum et al., Detailed Study of Deuteron hotodisintegration in the Energy Range 1 13 MeV, roposal to HIGS C, B. Sawatzky, h.d. dissertation, Measurement of the eutron symmetry in d γ, n p near Threshold, University of Virginia, 5.

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3 Chapter 16 Constituent Quark Model Quarks are fundamental spin- 1 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an anti-quark. There

More information

A Polarimetry concept for the EDM experiment at COSY

A Polarimetry concept for the EDM experiment at COSY A Polarimetry concept for the EDM experiment at COSY Paul Maanen JEDI Collaboration Physics Institute III B, RWTH Aachen University DPG Frühjahrstagung March 27, 2015 Outline Introduction Detector concept

More information

References for the Quasielastic Electron Scattering

References for the Quasielastic Electron Scattering References for the Quasielastic Electron Scattering Data Archive [1] R. Altemus et al. Longitudinal and transverse inelastic electron scattering from fe-56. Phys. Rev. Lett., 44:965 968, 1980. [2] Rosemary

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

Recent developments in Electromagnetic Hadron Form Factors

Recent developments in Electromagnetic Hadron Form Factors Recent developments in Electromagnetic Hadron Form Factors (JOH7RPDVL*XVWDIVVRQ '$31,$63K16DFOD\ :KDW are Form Factors? :K\ to measure? +RZ to measure? :KDWLVQHZ" Consequences, Conclusions 6SRNHSHUVR QV

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A. June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

More information

Cross section, Flux, Luminosity, Scattering Rates

Cross section, Flux, Luminosity, Scattering Rates Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...

More information

Gamma Ray Detection at RIA

Gamma Ray Detection at RIA Gamma Ray Detection at RIA Summary Report: Physics & Functional Requirements Cyrus Baktash Physics goals Experimental tools: Techniques & Reactions Functional Requirements Physics Questions (Discussed

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

The accurate calibration of all detectors is crucial for the subsequent data

The accurate calibration of all detectors is crucial for the subsequent data Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved

More information

Charged meson production - status and perspectives

Charged meson production - status and perspectives Charged meson production - status and perspectives Tanja Horn π, K, etc. Known process GP D H H ~ E E ~ π, K, etc. INT09, Seattle, WA 14 Sept 2009 Tanja Horn, CUA Colloquium status and perspectives, INT

More information

arxiv:hep-ph/9607427v1 25 Jul 1996

arxiv:hep-ph/9607427v1 25 Jul 1996 DFTT 44/96 IFT-96-16 MPI-PhT/96-63 hep-ph/967427 arxiv:hep-ph/967427v1 25 Jul 1996 New proton polarized structure functions in charged current processes at HERA M. Anselmino, P. Gambino, J. Kalinowski,1

More information

EXPERIMENTAL CONDITIONS FOR CROSS SECTION MEASUREMENTS FOR ANALYTICAL PURPOSES. L. Csedreki 1. Abstract. I. Introduction

EXPERIMENTAL CONDITIONS FOR CROSS SECTION MEASUREMENTS FOR ANALYTICAL PURPOSES. L. Csedreki 1. Abstract. I. Introduction ACTA PHYSICA DEBRECINA XLVI, 25 (2012) EXPERIMENTAL CONDITIONS FOR CROSS SECTION MEASUREMENTS FOR ANALYTICAL PURPOSES L. Csedreki 1 1 Institute of Nuclear Research of the Hungarian Academy of Sciences,

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2011 206 Introduction/Aims Symmetries play a central role in particle physics;

More information

Damon T. Spayde. Contact Information. Education. Experience. Professional Memberships. Honors

Damon T. Spayde. Contact Information. Education. Experience. Professional Memberships. Honors Damon T. Spayde Contact Information Work Home Education Department of Physics Hendrix College 1600 Washington Avenue Conway, AR 72032-3800 Phone: 501-450-1251 Fax: 501-450-3829 Email: spayded@hendrix.edu

More information

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7 Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid April 21, 2002 Chapter 7 Problem 7.2 Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

POSSIBL-E EXPERIMENTS ON THE 200-GeV ACCELERATOR. A. D. Krisch University of Michigan. R. Serber Columbia University.

POSSIBL-E EXPERIMENTS ON THE 200-GeV ACCELERATOR. A. D. Krisch University of Michigan. R. Serber Columbia University. FN-68 POSSIBL-E EXPERIMENTS ON THE 200-GeV ACCELERATOR A. D. Krisch University of Michigan R. Serber Columbia University August 23, 1967 We will describe a number of experiments that might be dcne on.,he

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration In-situ Calibration (EM calorimeters)

More information

Monday 11 June 2012 Afternoon

Monday 11 June 2012 Afternoon Monday 11 June 2012 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G495 Field and Particle Pictures *G412090612* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships

More information

CryoEDM A Cryogenic Neutron-EDM Experiment. Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus

CryoEDM A Cryogenic Neutron-EDM Experiment. Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus CryoEDM A Cryogenic Neutron-EDM Experiment Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus nedm Overview Theoretical Background The Method of Ramsey Resonance

More information

Comparison of approximations to the transition rate in the DDHMS preequilibrium model

Comparison of approximations to the transition rate in the DDHMS preequilibrium model EPJ Web of Conferences 69, 0 00 24 (204) DOI: 0.05/ epjconf/ 2046900024 C Owned by the authors, published by EDP Sciences, 204 Comparison of approximations to the transition rate in the DDHMS preequilibrium

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

More information

Geometrical importance sampling in Geant4: from design to verification

Geometrical importance sampling in Geant4: from design to verification Geometrical importance sampling in Geant4: from design to verification Michael Dressel CERN, CH-1211 Geneva 23, Switzerland Abstract CERN-OPEN-2003-048 Sep 18 2003 The addition of flexible, general implementations

More information

* Present address: Department of Physics, Clark University, Worcester, MA 01610.

* Present address: Department of Physics, Clark University, Worcester, MA 01610. (solid curve) radiations are searched to minimize x2. The inclusion of one E3 partial wave lowers X2 from 19.8 to 1.6 and is strongly influenced by the data near to 0" and 180". At 39 MeV excitation the

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

ELECTRON SPIN RESONANCE Last Revised: July 2007

ELECTRON SPIN RESONANCE Last Revised: July 2007 QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron

More information

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How

More information

Extraction of Polarised Quark Distributions of the Nucleon from Deep Inelastic Scattering at the HERMES Experiment

Extraction of Polarised Quark Distributions of the Nucleon from Deep Inelastic Scattering at the HERMES Experiment Extraction of Polarised Quark Distributions of the Nucleon from Deep Inelastic Scattering at the HERMES Experiment Marc Beckmann FAKULTÄT FÜR PHYSIK ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG Extraction of Polarised

More information

Energy Deposition in MICE Absorbers and Coils

Energy Deposition in MICE Absorbers and Coils in MICE Absorbers and Coils November 2, 2003 Video Conference Page 1 An Application for G4Mice We would like to estimate how much energy is deposited in magnet coils and the hydrogen absorber. Most of

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

Development of on line monitor detectors used for clinical routine in proton and ion therapy

Development of on line monitor detectors used for clinical routine in proton and ion therapy Development of on line monitor detectors used for clinical routine in proton and ion therapy A. Ansarinejad Torino, february 8 th, 2010 Overview Hadrontherapy CNAO Project Monitor system: Part1:preliminary

More information

GAMMA-RAY SPECTRA REFERENCES

GAMMA-RAY SPECTRA REFERENCES GAMMA-RAY SPECTRA REFERENCES 1. K. Siegbahn, Alpha, Beta and Gamma-Ray Spectroscopy, Vol. I, particularly Chapts. 5, 8A. 2. Nucleonics Data Sheets, Nos. 1-45 (available from the Resource Centre) 3. H.E.

More information

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

NMR Techniques Applied to Mineral Oil, Water, and Ethanol

NMR Techniques Applied to Mineral Oil, Water, and Ethanol NMR Techniques Applied to Mineral Oil, Water, and Ethanol L. Bianchini and L. Coffey Physics Department, Brandeis University, MA, 02453 (Dated: February 24, 2010) Using a TeachSpin PS1-A pulsed NMR device,

More information

arxiv:nucl-ex/0507023v2 18 Jul 2005

arxiv:nucl-ex/0507023v2 18 Jul 2005 Diffraction Dissociation - 50 Years later Sebastian N. White Brookhaven National Laboratory, Upton, N.Y. 11973, USA arxiv:nucl-ex/0507023v2 18 Jul 2005 Abstract. The field of Diffraction Dissociation,

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

m i: is the mass of each particle

m i: is the mass of each particle Center of Mass (CM): The center of mass is a point which locates the resultant mass of a system of particles or body. It can be within the object (like a human standing straight) or outside the object

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

More information

Radiative corrections to anti-neutrino proton scattering

Radiative corrections to anti-neutrino proton scattering Radiative corrections to anti-neutrino proton scattering Udit Raha, a b and Kuniharu Kubodera b a Indian Institute of Technology Guwahati, 78 039 Assam, India b Dept. Physics and Astronomy, University

More information

Nuclear ZPE Tapping. Horace Heffner May 2007

Nuclear ZPE Tapping. Horace Heffner May 2007 ENERGY FROM UNCERTAINTY The uncertainty of momentum for a particle constrained by distance Δx is given, according to Heisenberg, by: Δmv = h/(2 π Δx) but since KE = (1/2) m v 2 = (1/(2 m) ) (Δmv) 2 ΔKE

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM João Antônio Palma Setti, j.setti@pucpr.br Pontifícia Universidade Católica do Paraná / Rua Imaculada

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

More information

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100) Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know

More information

MATHEMATICAL MODELS Vol. II - Mathematical Models of Nuclear Energy - Yu. A. Svistunov MATHEMATICAL MODELS OF NUCLEAR ENERGY

MATHEMATICAL MODELS Vol. II - Mathematical Models of Nuclear Energy - Yu. A. Svistunov MATHEMATICAL MODELS OF NUCLEAR ENERGY MATHEMATICAL MODELS OF NUCLEAR ENERGY Yu. A. Svistunov Department of Applied Mathematics and Control Processes, State University of St- Petersburg, Russia Keywords: Nucleus, neutron, nuclear reactor, transfer

More information

Brief remarks. m 2hyp,i + p2π,i + 2π + p 2π,i = m 2 hyp,i + p2 π,i + E π,i (2) m K + m A =

Brief remarks. m 2hyp,i + p2π,i + 2π + p 2π,i = m 2 hyp,i + p2 π,i + E π,i (2) m K + m A = 1 Brief remarks In FINUDA the strangeness-exchange reaction is used to produce Λ- hypernuclei with stopped K s: K stop + Z A Z Λ A + π (1) Thanks to the energy conservation, we can write for each bound

More information

Characterization of excited states of 15 N through 14 C(p,p) 14 C using polarized proton beam

Characterization of excited states of 15 N through 14 C(p,p) 14 C using polarized proton beam REVISTA MEXICANA DE FÍSICA S 57 (1) 55 59 FEBRERO 2011 Characterization of excited states of 15 N through 14 C(p,p) 14 C using polarized proton beam G. Murillo, M. Fernández, J. Ramírez, M.G. Mejia-Gil,

More information

Proton tracking for medical imaging and dosimetry

Proton tracking for medical imaging and dosimetry Proton tracking for medical imaging and dosimetry J.Taylor, P.Allport, G.Casse For the PRaVDA Consortium 1 Background and motivation - What is the PRaVDA experiment? - Why are we using Monte Carlo? GEANT4

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

Lecture 8. Generating a non-uniform probability distribution

Lecture 8. Generating a non-uniform probability distribution Discrete outcomes Lecture 8 Generating a non-uniform probability distribution Last week we discussed generating a non-uniform probability distribution for the case of finite discrete outcomes. An algorithm

More information

07 - Cherenkov and transition radiation detectors

07 - Cherenkov and transition radiation detectors 07 - Cherenkov and transition radiation detectors Jaroslav Adam Czech Technical University in Prague Version 1.0 Jaroslav Adam (CTU, Prague) DPD_07, Cherenkov and transition radiation Version 1.0 1 / 30

More information

2. Spin Chemistry and the Vector Model

2. Spin Chemistry and the Vector Model 2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing

More information

Chapter 7: Polarization

Chapter 7: Polarization Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

The Mainz LXe TPC MC simulations for a Compton scattering experiment

The Mainz LXe TPC MC simulations for a Compton scattering experiment The Mainz LXe TPC MC simulations for a Compton scattering experiment Pierre Sissol Johannes Gutenberg Universität Mainz 12 November 2012 1 / 24 Outline 1 Dark Matter 2 Principle of a dual-phase LXe TPC

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Electron density is complex!

Electron density is complex! Electron density is complex! Göttingen, November 13 th 2008 George M. Sheldrick, Göttingen University http://shelx.uni-ac.gwdg.de/shelx/ Friedel s Law F h,k,l = F h, k, l and φ h,k,l = φ h, k, l Friedel

More information

Report on heat production during preliminary tests on the Rossi Ni-H reactor.

Report on heat production during preliminary tests on the Rossi Ni-H reactor. Report on heat production during preliminary tests on the Rossi Ni-H reactor. Dr. Giuseppe Levi In this first and preliminary document are reported the heat production measures done during two short tests

More information

Differential Balance Equations (DBE)

Differential Balance Equations (DBE) Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance

More information

arxiv:hep-lat/0408024v1 16 Aug 2004

arxiv:hep-lat/0408024v1 16 Aug 2004 BU-HEPP-04-02 Electric Polarizability of Neutral Hadrons from Lattice QCD Joe Christensen Physics Department, McMurry University, Abilene, TX, 79697 Walter Wilcox Department of Physics, Baylor University,

More information

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM Force measurement Forces VECTORIAL ISSUES In classical mechanics, a force is defined as "an action capable of modifying the quantity of movement of a material point". Therefore, a force has the attributes

More information

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2 Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

More information

REACTION RATES DOE-HDBK-1019/1-93 Reactor Theory (Neutron Characteristics) REACTION RATES

REACTION RATES DOE-HDBK-1019/1-93 Reactor Theory (Neutron Characteristics) REACTION RATES REACTION RATES It is possible to determine the rate at which a nuclear reaction will take place based on the neutron lux, cross section or the interaction, and atom density o the target. This relationship

More information

2008 2012 Ph.D. in Physics, Kent State University, Kent, OH. Advisors: Dr. Bryon Anderson and Dr. Douglas Higinbotham

2008 2012 Ph.D. in Physics, Kent State University, Kent, OH. Advisors: Dr. Bryon Anderson and Dr. Douglas Higinbotham Dr. Elena Long Curriculum Vitae Education 2008 2012 Ph.D. in Physics, Kent State University, Kent, OH. Advisors: Dr. Bryon Anderson and Dr. Douglas Higinbotham 2006 2008 M.A. in Physics, Kent State University,

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

MASS DEFECT AND BINDING ENERGY

MASS DEFECT AND BINDING ENERGY MASS DEFECT AND BINDING ENERGY The separate laws of Conservation of Mass and Conservation of Energy are not applied strictly on the nuclear level. It is possible to convert between mass and energy. Instead

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

Chapter 30 Inductance

Chapter 30 Inductance Chapter 30 Inductance - Mutual Inductance - Self-Inductance and Inductors - Magnetic-Field Energy - The R- Circuit - The -C Circuit - The -R-C Series Circuit . Mutual Inductance - A changing current in

More information

Appendix A. An Overview of Monte Carlo N-Particle Software

Appendix A. An Overview of Monte Carlo N-Particle Software Appendix A. An Overview of Monte Carlo N-Particle Software A.1 MCNP Input File The input to MCNP is an ASCII file containing command lines called "cards". The cards provide a description of the situation

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

Feynman diagrams. 1 Aim of the game 2

Feynman diagrams. 1 Aim of the game 2 Feynman diagrams Contents 1 Aim of the game 2 2 Rules 2 2.1 Vertices................................ 3 2.2 Anti-particles............................. 3 2.3 Distinct diagrams...........................

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

Carbon Dioxide and an Argon + Nitrogen Mixture. Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10

Carbon Dioxide and an Argon + Nitrogen Mixture. Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10 Carbon Dioxide and an Argon + Nitrogen Mixture Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10 Measurement of C p /C v for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture

More information

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0 1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

More information

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

More information

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the

More information

Problem Set V Solutions

Problem Set V Solutions Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

More information

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films https://cuvillier.de/de/shop/publications/1306 Copyright: Cuvillier Verlag,

More information

Three-nucleon interaction dynamics studied via the deuteron-proton breakup. Elżbieta Stephan Institute of Physics, University of Silesia

Three-nucleon interaction dynamics studied via the deuteron-proton breakup. Elżbieta Stephan Institute of Physics, University of Silesia Three-nucleon interaction dynamics studied via the deuteron-proton breakup Elżbieta Stephan Institute of Physics, University of Silesia Studies of the 1 H(d,pp)n Breakup at 130 MeV University of Silesia,

More information

Numerical Model for the Study of the Velocity Dependence Of the Ionisation Growth in Gas Discharge Plasma

Numerical Model for the Study of the Velocity Dependence Of the Ionisation Growth in Gas Discharge Plasma Journal of Basrah Researches ((Sciences)) Volume 37.Number 5.A ((2011)) Available online at: www.basra-science -journal.org ISSN 1817 2695 Numerical Model for the Study of the Velocity Dependence Of the

More information

Review for Test 3. Polarized light. Action of a Polarizer. Polarized light. Light Intensity after a Polarizer. Review for Test 3.

Review for Test 3. Polarized light. Action of a Polarizer. Polarized light. Light Intensity after a Polarizer. Review for Test 3. Review for Test 3 Polarized light No equation provided! Polarized light In linearly polarized light, the electric field vectors all lie in one single direction. Action of a Polarizer Transmission axis

More information