# Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Save this PDF as:

Size: px
Start display at page:

Download "Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology"

## Transcription

1 Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia 2012 ANSYS, Inc. September 19, Release 14.5

2 Lecture 1 Introduction to the CFD Methodology 14.5 Release Introduction to ANSYS Fluent 2012 ANSYS, Inc. September 19, Release 14.5

3 Lecture Theme: Introduction All CFD simulations follow the same key stages. This lecture will explain how to go from the original planning stage to analyzing the end results. Learning Aims: You will learn: The basics of what CFD is and how it works. The different steps involved in a successful CFD project. Learning Objectives: When you begin your own CFD project, you will know what each of the steps requires and be able to plan accordingly ANSYS, Inc. September 19, Release 14.5

4 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena. To predict these phenomena, CFD solves equations for conservation of mass, momentum, energy etc., with a numerical manner on a computer. CFD is used in all stages of the engineering process: Conceptual studies of new designs. Detailed product development. Optimization. Troubleshooting. Redesign. CFD analysis complements testing and experimentation by reducing total effort and cost required for experimentation and data acquisition ANSYS, Inc. September 19, Release 14.5

5 How Does CFD Work? ANSYS CFD solvers are based on the finite volume method. Domain is discretized into a finite set of control volumes. Control Volume* General conservation (transport) equations for mass, momentum, energy, species, etc. are solved on this set of control volumes. Unsteady Convection Diffusion Generation Partial differential equations are discretized into a system of algebraic equations. All algebraic equations are then solved numerically to render the solution field. Equation f Continuity 1 X momentum u Y momentum v Z momentum w Energy h 2012 ANSYS, Inc. September 19, Release 14.5

6 Step 1. Define Your Modeling Goals What results are you looking for (i.e. pressure drop, mass flow rate), and how will they be used? What are your modeling options? What simplifying assumptions can you make (i.e. symmetry, periodicity)? What simplifying assumptions do you have to make? What physical models will need to be included in your analysis? What degree of accuracy is required? How quickly do you need the results? Is CFD an appropriate tool? 2012 ANSYS, Inc. September 19, Release 14.5

7 Step 2. Identify the Domain You Will Model How will you isolate a piece of the complete physical system? Where will the computational domain begin and end? Do you have boundary condition information at these boundaries? Can the boundary condition types accommodate that information? Can you extend the domain to a point where reasonable data exists? Domain of Interest as Part of a Larger System (not modeled). Can it be simplified or approximated as a 2D or axi symmetric problem? Domain of interest isolated and meshed for CFD simulation ANSYS, Inc. September 19, Release 14.5

8 Step 3. Create a Solid Model of the Domain How will you obtain a model of the fluid region? Make use of existing CAD models? Extract the fluid region from a solid part? Create from scratch? Can you simplify the geometry? Remove unnecessary features that would complicate meshing (fillets, bolts )? Make use of symmetry or periodicity? Are both the flow and boundary conditions symmetric / periodic? Original CAD Part. Do you need to split (artificially) the model so that boundary conditions or domains can be created? Extracted Fluid Region ANSYS, Inc. September 19, Release 14.5

9 Step 4. Design and Create the Mesh What degree of mesh resolution is required in each region of the domain? Can you predict regions of high gradients? The mesh must resolve geometric features of interest and capture gradients of concern, e.g. velocity, pressure, temperature gradients. Will you use adaption to add resolution? What type of mesh is most appropriate? How complex is the geometry? Can you use a quad/hex mesh or is a tri/tet or hybrid mesh suitable? Are non conformal interfaces needed? Do you have sufficient computer resources? How many cells/nodes are required? How many physical models will be used? 2012 ANSYS, Inc. September 19, Release 14.5

10 Step 5: Set Up the Solver For a given problem, you will need to: Define material properties: Fluid. Solid. Mixture. For complex problems solving a simplified or 2D problem will provide valuable experience with the models and solver settings for your problem in a short amount of time. Select appropriate physical models: Turbulence, combustion, multiphase, etc. Prescribe operating conditions (optional in many cases). Prescribe boundary conditions at all boundary zones. Provide initial values or a previous solution. Set up solver controls. Set up convergence monitors ANSYS, Inc. September 19, Release 14.5

11 Step 6: Compute the Solution The discretized conservation equations are solved iteratively until convergence. Convergence is reached when: Changes in solution variables from one iteration to the next are negligible. Residuals provide a mechanism to help monitor this trend. Overall property conservation is achieved. Imbalances measure global conservation. Quantities of interest (e.g. drag, pressure drop) have reached steady values. Monitor points track quantities of interest. A converged and mesh independent solution on a well posed problem will provide useful engineering results! The accuracy of a converged solution is dependent upon: Appropriateness and accuracy of physical models. Assumptions made. Mesh resolution and independence. Numerical errors ANSYS, Inc. September 19, Release 14.5

12 Step 7: Examine the Results Examine the results to review solution and extract useful data. Visualization Tools can be used to answer such questions as: What is the overall flow pattern? Is there separation? Where do shocks, shear layers, etc. form? Are key flow features being resolved? Examine results to ensure correct physical behavior and conservation of mass energy and other conserved quantities. High residuals may be caused by just a few poor quality cells. Numerical Reporting Tools can be used to calculate quantitative results: Forces and Moments. Average heat transfer coefficients. Surface and Volume integrated quantities. Flux Balances ANSYS, Inc. September 19, Release 14.5

13 Step 8: Consider Revisions to the Model Are the physical models appropriate? Is the flow turbulent? Is the flow unsteady? Are there compressibility effects? Are there 3D effects? Are the boundary conditions correct? Is the computational domain large enough? Are boundary conditions appropriate? Are boundary values reasonable? High residuals may be caused by just a few poor quality cells. Is the mesh adequate? Can the mesh be refined to improve results? Does the solution change significantly with a refined mesh, or is the solution mesh independent? Does the mesh resolution of the geometry need to be increased? 2012 ANSYS, Inc. September 19, Release 14.5

14 Summary and Conclusions Summary: All CFD simulations are approached using the steps just described. Remember to first think about what the aims of the simulation are, prior to creating the geometry and mesh. Make sure the appropriate physical models are applied in the solver, and that the simulation is fully converged. Scrutinize the results, you may need to rework some of the earlier steps in light of the flow field obtained. 1. Define Your Modeling Goals. 2. Identify the Domain You Will Model. 3. Create a Solid Model of the Domain. 4. Design and Create the Mesh. 5. Set Up the Solver. 6. Compute the Solution. 7. Examine the Results. 8. Consider Revisions to the Model ANSYS, Inc. September 19, Release 14.5

### Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

### ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

### Introduction to CFD Analysis

Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

### Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

### Commercial CFD Software Modelling

Commercial CFD Software Modelling Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 CFD Modeling CFD modeling can be

### Customer Training Material. Lecture 5. Solver Settings ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Lecture 5 Solver Settings Introduction to ANSYS FLUENT L5-1 Solver Settings - Introduction So far we have looked at how to setup a basic flow simulation in FLUENT. However you should not assume that just

### Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

### Fluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01

Boundary Conditions C1 Overview Inlet and Outlet Boundaries Velocity Outline Profiles Turbulence Parameters Pressure Boundaries and others... Wall, Symmetry, Periodic and Axis Boundaries Internal Cell

### CFD software overview comparison, limitations and user interfaces

CFD software overview comparison, limitations and user interfaces Daniel Legendre Introduction to CFD Turku, 05.05.2015 Åbo Akademi University Thermal and Flow Engineering Laboratory 05.05.2015 1 Some

### TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

### THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

### CONVERGE Features, Capabilities and Applications

CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE

### Computational Fluid Dynamics in Automotive Applications

Computational Fluid Dynamics in Automotive Applications Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd, United Kingdom FSB, University of Zagreb, Croatia 1/15 Outline Objective Review the adoption of Computational

### This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections:

Chapter 21. Melting Modeling Solidification and This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections: Section 21.1: Overview

### Modeling and Simulation of Axial Fan Using CFD Hemant Kumawat

Modeling and Simulation of Axial Fan Using CFD Hemant Kumawat Abstract Axial flow fans, while incapable of developing high pressures, they are well suitable for handling large volumes of air at relatively

### Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT

Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx

### Low-NOx burner design evaluation by CFD

17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Low-NOx burner design evaluation by CFD Marek Šarlej,

### Introductory FLUENT Training

Chapter 10 Transient Flow Modeling Introductory FLUENT Training www.ptecgroup.ir 10-1 Motivation Nearly all flows in nature are transient! Steady-state assumption is possible if we: Ignore transient fluctuations

### CCTech TM. ICEM-CFD & FLUENT Software Training. Course Brochure. Simulation is The Future

. CCTech TM Simulation is The Future ICEM-CFD & FLUENT Software Training Course Brochure About. CCTech Established in 2006 by alumni of IIT Bombay. Our motive is to establish a knowledge centric organization

### Set up and solve a transient problem using the pressure-based solver and VOF model.

Tutorial 18. Using the VOF Model This tutorial was run using ANSYS FLUENT 12.1. The results have been updated to reflect the change in the default setting of node-based smoothing for the surface tension

### CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

### Module 6 Case Studies

Module 6 Case Studies 1 Lecture 6.1 A CFD Code for Turbomachinery Flows 2 Development of a CFD Code The lecture material in the previous Modules help the student to understand the domain knowledge required

### ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY

International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 177 186, Article ID: IJMET_07_02_019 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

### CFD Simulation of HSDI Engine Combustion Using VECTIS

CFD Simulation of HSDI Engine Combustion Using VECTIS G. Li, S.M. Sapsford Ricardo Consulting Engineer s Ltd., Shoreham-by-Sea, UK ABSTRACT As part of the VECTIS code validation programme, CFD simulations

### Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

### Simulation to Analyze Two Models of Agitation System in Quench Process

20 th European Symposium on Computer Aided Process Engineering ESCAPE20 S. Pierucci and G. Buzzi Ferraris (Editors) 2010 Elsevier B.V. All rights reserved. Simulation to Analyze Two Models of Agitation

### Model of a flow in intersecting microchannels. Denis Semyonov

Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required

### 3. Prescribe boundary conditions at all boundary Zones:

CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF THE CENTRIFUGAL PUMP ABSTRACT Mr. Suraj K. Patil PG Student, Department of Mechanical Engineering /BIGCE, Solapur University,

### AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

### CFD Application on Food Industry; Energy Saving on the Bread Oven

Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the

### Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

### Lecture 5 - Solution Methods. Applied Computational Fluid Dynamics

Lecture 5 - Solution Methods Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Solution methods Focus on finite volume method.

### Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals

Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals Originally published in 2007 American Society for Engineering Education Conference Proceedings

### Harvesting-Combine-Flow Simulation Technique

Page 1/14 Madhur Bhaiya, Prof. Dr.-Ing. Andreas Jahr, B.Eng. Holger Happel FH Düsseldorf 1 ABSTRACT CFX 11.0 is a Computational Fluid Dynamics (CFD) program for simulating the behavior of systems involving

### Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics Instructor: Dmitri Kuzmin Institute of Applied Mathematics University of Dortmund kuzmin@math.uni-dortmund.de http://www.featflow.de Fluid (gas and liquid)

### OpenFOAM Opensource and CFD

OpenFOAM Opensource and CFD Andrew King Department of Mechanical Engineering Curtin University Outline What is Opensource Software OpenFOAM Overview Utilities, Libraries and Solvers Data Formats The CFD

### Combustion Analysis of Inverted M Type Piston CI Engine by Using CFD

Combustion Analysis of Inverted M Type Piston CI Engine by Using CFD Dr. Hiregoudar Yerrennagoudaru 1, Manjunatha K 2, Chandragowda M 3, Ravi Kumar K J 4 1 Professor and PG Co-ordinator (Thermal Power

### CAD and Finite Element Analysis

CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: Stress Analysis Thermal Analysis Structural Dynamics Computational Fluid Dynamics (CFD) Electromagnetics Analysis...

### Flow Loss in Screens: A Fresh Look at Old Correlation. Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati

Journal of Mechanics Engineering and Automation 3 (013) 9-34 D DAVID PUBLISHING Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati Engineering Aerospace, MCOE,

### ESSENTIAL COMPUTATIONAL FLUID DYNAMICS

ESSENTIAL COMPUTATIONAL FLUID DYNAMICS Oleg Zikanov WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xv 1 What Is CFD? 1 1.1. Introduction / 1 1.2. Brief History of CFD / 4 1.3. Outline of the Book / 6 References

### Parametric optimization of an exhaust manifold using Isight, STAR-CCM+ and CATIA V5

Abstract Parametric optimization of an exhaust manifold using Isight, STAR-CCM+ and CATIA V5 Joel Davison CD-adapco - London The work presented demonstrates how Isight may be used to drive STAR-CCM+ and

### Part IV. Conclusions

Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena

### NUMERICAL SIMULATION OF FLOW FIELDS IN CASE OF FIRE AND FORCED VENTILATION IN A CLOSED CAR PARK

FACULTY OF ENGINEERING NUMERICAL SIMULATION OF FLOW FIELDS IN CASE OF FIRE AND FORCED VENTILATION IN A CLOSED CAR PARK Xavier Deckers, Mehdi Jangi, Siri Haga and Bart Merci Department of Flow, Heat and

### Introduction to ANSYS

Lecture 3 Introduction to ANSYS Meshing 14. 5 Release Introduction to ANSYS Meshing 2012 ANSYS, Inc. March 27, 2014 1 Release 14.5 Introduction to ANSYS Meshing What you will learn from this presentation

### Multiphase Flow - Appendices

Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume

### Chapter 1. Governing Equations of Fluid Flow and Heat Transfer

Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study

### Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015

EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW

### O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

### CFD: What is it good for?

CFD: What is it good for? Tom O Mahoney TNO Fluid Dynamics Introduction to CFD CFD - Computational Fluid Dynamics Computational the using of computers to simulate the physics of fluids Fluid Either gas

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS

2 nd International Seminar on ORC Power Systems October 7 th & 8 th, 213 De Doelen, Rotterdam, NL GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS M. Morini,

### Computational Modeling of Wind Turbines in OpenFOAM

Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi hamid.rahimi@uni-oldenburg.de ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational

### MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi

MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357

### Laminar flow in a baffled stirred mixer (COMSOL)

AALTO UNIVERSITY School of Chemical Technology CHEM-E7160 Fluid Flow in Process Units Laminar flow in a baffled stirred mixer (COMSOL) Sanna Hyvönen, 355551 Nelli Jämsä, 223188 Abstract In this simulation

### Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:

### 240EQ014 - Transportation Science

Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering Teaching unit: 713 - EQ - Department of Chemical Engineering Academic year: Degree: 2015 MASTER'S DEGREE IN CHEMICAL ENGINEERING

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### Numerical Calculation of Laminar Flame Propagation with Parallelism Assignment ZERO, CS 267, UC Berkeley, Spring 2015

Numerical Calculation of Laminar Flame Propagation with Parallelism Assignment ZERO, CS 267, UC Berkeley, Spring 2015 Xian Shi 1 bio I am a second-year Ph.D. student from Combustion Analysis/Modeling Lab,

### Simulation of Fluid-Structure Interactions in Aeronautical Applications

Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing Martin.Kuntz@ansys.com December 2003 3 rd FENET Annual Industry

### TwinMesh for Positive Displacement Machines: Structured Meshes and reliable CFD Simulations

TwinMesh for Positive Displacement Machines: Structured Meshes and reliable CFD Simulations 05.06.2014 Dipl.-Ing. Jan Hesse, Dr. Andreas Spille-Kohoff CFX Berlin Software GmbH Karl-Marx-Allee 90 A 10243

### ADVANCED COMPUTATIONAL TOOLS FOR EDUCATION IN CHEMICAL AND BIOMEDICAL ENGINEERING ANALYSIS

ADVANCED COMPUTATIONAL TOOLS FOR EDUCATION IN CHEMICAL AND BIOMEDICAL ENGINEERING ANALYSIS Proposal for the FSU Student Technology Fee Proposal Program Submitted by Department of Chemical and Biomedical

### Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains

INSTITUT FÜR MECHANIK UND MECHATRONIK Messtechnik und Aktorik Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains A. Hüppe 1, M. Kaltenbacher 1, A. Reppenhagen 2,

### CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

### PUTTING THE SPIN IN CFD

W H I T E PA P E R PUTTING THE SPIN IN CFD Overview Engineers who design equipment with rotating components need to analyze and understand the behavior of those components if they want to improve performance.

### Computational Fluid Dynamics (CFD) Markus Peer Rumpfkeil

Computational Fluid Dynamics (CFD) Markus Peer Rumpfkeil January 13, 2014 1 Let's start with the FD (Fluid Dynamics) Fluid dynamics is the science of fluid motion. Fluid flow is commonly studied in one

### Adaptation of General Purpose CFD Code for Fusion MHD Applications*

Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion

### STCE. Outline. Introduction. Applications. Ongoing work. Summary. STCE RWTH-Aachen, Industrial Applications of discrete adjoint OpenFOAM, EuroAD 2014

Industrial Applications of discrete adjoint OpenFOAM Arindam Sen Software and Tools for Computational Engineering Science RWTH Aachen University EuroAD 2014, Nice, 16-17. June 2014 Outline Introduction

### APPENDIX 3 CFD CODE - PHOENICS

166 APPENDIX 3 CFD CODE - PHOENICS 3.1 INTRODUCTION PHOENICS is a general-purpose software code which predicts quantitatively the flow of fluids in and around engines, process equipment, buildings, human

### 亞 太 風 險 管 理 與 安 全 研 討 會

2005 亞 太 風 險 管 理 與 安 全 研 討 會 Asia-Pacific Conference on Risk Management and Safety Zonal Network Platform (ZNP): Applications of a state-of-the-art deterministic CFD based scientific computing tool for

### ANSYS CFD results for the AIAA High Lift Prediction Workshop

ANSYS CFD results for the AIAA High Lift Prediction Workshop Robin Steed ANSYS Canada Ltd. Waterloo, Ontario, Canada Greg Stuckert ANSYS, Inc. Lebanon, NH, USA 2009 ANSYS, Inc. All rights reserved. 1 Outline

### HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM

8 th European Symposium on Aerothermodynamics for space vehicles HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM M. Di Clemente, R. Votta, G. Ranuzzi, F. Ferrigno March 4, 2015 Outline

### Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***

Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of

### EFFECT OF MESH SIZE ON CFD ANALYSIS OF EROSION

EFFECT OF MESH SIZE ON CFD ANALYSIS OF EROSION IN ELBOW GEOMETRY Preshit Tambey and Michael Lengyel, Jr. Faculty Co-Author and Sponsor: Quamrul H. Mazumder Department of Computer Science, Engineering and

### COMPARISON OF SOLUTION ALGORITHM FOR FLOW AROUND A SQUARE CYLINDER

Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia - December COMPARISON OF SOLUTION ALGORITHM FOR FLOW AROUND A SQUARE CYLINDER Y. Saito *, T. Soma,

### ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2

ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2 1 M. Tech Scholar, 2 Associate Professor Department of Mechanical Engineering, Bipin

### Using CFD in the analysis of Impulse turbines with a focus on the high capacity Turgo

Using CFD in the analysis of Impulse turbines with a focus on the high capacity Turgo Speaker Name: Shaun Benzon Position: PhD Student (Lancaster University) Company: Gilkes Country: England, UK Overview

### GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS

ASME Turbo Expo 2011 June 6 10, 2011 Vancouver, Canada GT 2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS M. Cadorin 1,M. Pinelli

### HPC Deployment of OpenFOAM in an Industrial Setting

HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment

### 2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013

2013 Code_Saturne User Group Meeting EDF R&D Chatou, France 9 th April 2013 Thermal Comfort in Train Passenger Cars Contact For further information please contact: Brian ANGEL Director RENUDA France brian.angel@renuda.com

### Overset Grids Technology in STAR-CCM+: Methodology and Applications

Overset Grids Technology in STAR-CCM+: Methodology and Applications Eberhard Schreck, Milovan Perić and Deryl Snyder eberhard.schreck@cd-adapco.com milovan.peric@cd-adapco.com deryl.snyder@cd-adapco.com

### CastNet: Modelling platform for open source solver technology

CastNet: Modelling platform for open source solver technology. DHCAE Tools GmbH Address: Friedrich-Ebert-Str. 368, 47800 Krefeld, Germany / Company site: Alte Rather Str. 207 / 47802 Krefeld Phone +49

### Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

### Simple CFD Simulations and Visualisation using OpenFOAM and ParaView. Sachiko Arvelius, PhD

Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation

### Introduction to Computational Fluid Dynamics (CFD) for Combustion. www.reaction-eng.com (801) 364-6925

Introduction to Computational Fluid Dynamics (CFD) for Combustion www.reaction-eng.com (801) 364-6925 What is CFD? CFD stands for Computational Fluid Dynamics CFD uses computers to represent (or model)

### WHY IS SOLIDWORKS FLOW SIMULATION THE RIGHT CHOICE FOR PRODUCT ENGINEERS?

WHITE PAPER WHY IS SOLIDWORKS FLOW SIMULATION THE RIGHT CHOICE FOR PRODUCT ENGINEERS? Engineering Fluid Dynamics (EFD) is a new breed of Computational Fluid Dynamics (CFD) software that enables mechanical

### Quality and Reliability in CFD

Quality and Reliability in CFD Open Source Challenges Hrvoje Jasak Wikki Ltd, United Kingdom Faculty of Mechanical Engineering and Naval Architecture University of Zagreb, Croatia Quality and Reliability

### Lecture 7 - Meshing. Applied Computational Fluid Dynamics

Lecture 7 - Meshing Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Why is a grid needed? Element types. Grid types.

### Pushing the limits. Turbine simulation for next-generation turbochargers

Pushing the limits Turbine simulation for next-generation turbochargers KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER Computational fluid dynamics (CFD) has matured and is now an indispensable tool for

### CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation

Page1 CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation ABSTRACT Alan Vincent E V P G Scholar, Nehru Institute of Engineering and Technology, Coimbatore Tamil Nadu A high

### Open Source CFD Solver - OpenFOAM

Open Source CFD Solver - OpenFOAM Wang Junhong (HPC, Computer Centre) 1. INTRODUCTION The OpenFOAM (Open Field Operation and Manipulation) Computational Fluid Dynamics (CFD) Toolbox is a free, open source

### Model Order Reduction for Linear Convective Thermal Flow

Model Order Reduction for Linear Convective Thermal Flow Christian Moosmann, Evgenii B. Rudnyi, Andreas Greiner, Jan G. Korvink IMTEK, April 24 Abstract Simulation of the heat exchange between a solid

### Modeling and Numerical Blood Flow Analysis of Tibial Artery using CFD

Modeling and Numerical Blood Flow Analysis of Tibial Artery using CFD S.Manimaran Department of Biomedical Engineering C.Muralidharan M.E Assistant Professor Department of Biomedical Engineering Surendra

### Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

### Feature Commercial codes In-house codes

A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a

### Colloquium FLUID DYNAMICS 2010 Institute of Thermomechanics AS CR, v.v.i., Prague, October 20-22, 2010 p.

Colloquium FLUID DYNAMICS 21 Institute of Thermomechanics AS CR, v.v.i., Prague, October 2-22, 21 p. NUMERICAL MODELLING OF VISCOUS AND VISCOELASTIC FLUIDS FLOW Radka Keslerová / Karel Kozel Department

### POLITECNICO DI MILANO Department of Energy

1D-3D coupling between GT-Power and OpenFOAM for cylinder and duct system domains G. Montenegro, A. Onorati, M. Zanardi, M. Awasthi +, J. Silvestri + ( ) Dipartimento di Energia - Politecnico di Milano