REACTION RATES DOE-HDBK-1019/1-93 Reactor Theory (Neutron Characteristics) REACTION RATES

Size: px
Start display at page:

Download "REACTION RATES DOE-HDBK-1019/1-93 Reactor Theory (Neutron Characteristics) REACTION RATES"

Transcription

1 REACTION RATES It is possible to determine the rate at which a nuclear reaction will take place based on the neutron lux, cross section or the interaction, and atom density o the target. This relationship illustrates how a change in one o these items aects the reaction rate. EO 2.10 EO 2.11 Given the neutron lux and macroscopic cross section, CALCULATE the reaction rate. DESCRIBE the relationship between neutron lux and reactor power. Reaction Rates I the total path length o all the neutrons in a cubic centimeter in a second is known, (neutron lux (1)), and i the probability o having an interaction per centimeter path length is also known (macroscopic cross section (*)), multiply them together to get the number o interactions taking place in that cubic centimeter in one second. This value is known as the reaction rate and is denoted by the symbol R. The reaction rate can be calculated by the equation shown below. R = 1 * (2-6) R = reaction rate (reactions/sec) 1 = 2 neutron lux (neutrons/cm -sec) * = -1 macroscopic cross section (cm ) Substituting the act that * = N ) into Equation (2-6) yields the equation below. 1 ) ) = microscopic cross section (cm 2 ) N = atom density (atoms/cm 3 ) NP-02 Page 18 Rev. 0

2 Reactor Theory (Neutron Characteristics) DOE-HDBK-1019/1-93 REACTION RATES The reaction rate calculated will depend on which macroscopic cross section is used in the calculation. Normally, the reaction rate o greatest interest is the ission reaction rate. Example: Solution: I a one cubic centimeter section o a reactor has a macroscopic ission cross section o cm, and i the thermal neutron lux is 10 neutrons/cm -sec, what is the ission rate in that cubic centimeter? R 1 x neutrons cm 2 sec 1 x issions 0.1 cm 1 In addition to using Equation (2-6) to determine the reaction rate based on the physical properties o material, it is also possible to algebraically manipulate the equation to determine physical properties i the reaction rate is known. Example: Solution: A reactor operating at a lux level o 3 x 10 neutrons/cm -sec contains 10 atoms o uranium-235 per cm. The reaction rate is 1.29 x 10 ission/cm. Calculate and. Step 1: The macroscopic cross section can be determined by solving Equation (2-6) or and substituting the appropriate values. R R 1.29 x issions 3 x neutrons cm 2 sec cm 1 Rev. 0 Page 19 NP-02

3 Step 2: To ind the microscopic cross section, replace with (N x ) and solve or. R N N R 1.29 x issions 1 x atoms 3 x neutrons cm 3 cm 2 sec 4.3 x cm 2 1 barn 1 x cm barns Reactor Power Calculation Multiplying the reaction rate per unit volume by the total volume o the core results in the total number o reactions occurring in the core per unit time. I the amount o energy involved in each reaction were known, it would be possible to determine the rate o energy release (power) due to a certain reaction. In a reactor where the average energy per ission is 200 MeV, it is possible to determine the number o issions per second that are necessary to produce one watt o power using the ollowing conversion actors. 1 ission = 200 MeV 1 MeV = x 10 ergs 1 erg = -7 1 x 10 watt-sec 1 watt 1 erg 1 x 10 7 watt sec 1 MeV x 10 6 erg 1 ission 200 MeV 3.12 x issions second 10 This is equivalent to stating that 3.12 x 10 issions release 1 watt-second o energy. NP-02 Page 20 Rev. 0

4 Reactor Theory (Neutron Characteristics) DOE-HDBK-1019/1-93 REACTION RATES The power released in a reactor can be calculated based on Equation (2-6). Multiplying the reaction rate by the volume o the reactor results in the total ission rate or the entire reactor. Dividing by the number o issions per watt-sec results in the power released by ission in the reactor in units o watts. This relationship is shown mathematically in Equation (2-7) below. P th V 3.12 x issions watt sec (2-7) P = power (watts) 2 th = thermal neutron lux (neutrons/cm -sec) -1 = macroscopic cross section or ission (cm ) V = volume o core (cm 3 ) Relationship Between Neutron Flux and Reactor Power In an operating reactor the volume o the reactor is constant. Over a relatively short period o time (days or weeks), the number density o the uel atoms is also relatively constant. Since the atom density and microscopic cross section are constant, the macroscopic cross section must also be constant. Examining Equation (2-7), it is apparent that i the reactor volume and macroscopic cross section are constant, then the reactor power and the neutron lux are directly proportional. This is true or day-to-day operation. The neutron lux or a given power level will increase very slowly over a period o months due to the burnup o the uel and resulting decrease in atom density and macroscopic cross section. Rev. 0 Page 21 NP-02

5 Summary The important inormation in this chapter is summarized below. Reaction Rates Summary The reaction rate is the number o interactions o a particular type occurring in a cubic centimeter o material in a second. The reaction rate can be calculated by the equation below. R = 1 * Over a period o several days, while the atom density o the uel can be considered constant, the neutron lux is directly proportional to reactor power. NP-02 Page 22 Rev. 0

MASS DEFECT AND BINDING ENERGY

MASS DEFECT AND BINDING ENERGY MASS DEFECT AND BINDING ENERGY The separate laws of Conservation of Mass and Conservation of Energy are not applied strictly on the nuclear level. It is possible to convert between mass and energy. Instead

More information

DOE FUNDAMENTALS HANDBOOK

DOE FUNDAMENTALS HANDBOOK DOE-HDBK-1019/2-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK NUCLEAR PHYSICS AND REACTOR THEORY Volume 2 of 2 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq. 1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,

More information

NEUTRON CROSS SECTIONS

NEUTRON CROSS SECTIONS NEUTRON CROSS SECTIONS M. Ragheb 11/15/14 INTRODUCTION Neutron interactions with matter can be either scattering or absorption reactions. Scattering can result in a change in the energy and direction of

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called...

Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called... KNOWLEDGE: K1.01 [2.7/2.8] B558 Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called... A. fissile materials. B. fission product poisons.

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Task: Representing the National Debt 7 th grade

Task: Representing the National Debt 7 th grade Tennessee Department of Education Task: Representing the National Debt 7 th grade Rachel s economics class has been studying the national debt. The day her class discussed it, the national debt was $16,743,576,637,802.93.

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I A.S. Gerasimov, G.V. Kiselev, L.A. Myrtsymova State Scientific Centre of the Russian Federation Institute of Theoretical

More information

The Physics of Energy sources Nuclear Reactor Practicalities

The Physics of Energy sources Nuclear Reactor Practicalities The Physics of Energy sources Nuclear Reactor Practicalities B. Maffei Bruno.maffei@manchester.ac.uk www.jb.man.ac.uk/~bm Nuclear Reactor 1 Commonalities between reactors All reactors will have the same

More information

Nuclear Energy: Nuclear Energy

Nuclear Energy: Nuclear Energy Introduction Nuclear : Nuclear As we discussed in the last activity, energy is released when isotopes decay. This energy can either be in the form of electromagnetic radiation or the kinetic energy of

More information

PHYA5/1. General Certificate of Education Advanced Level Examination June 2011. Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2011. Unit 5 Nuclear and Thermal Physics Section A Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2011 Question 1 2 Mark Physics

More information

Status of REBUS Fuel Management Software Development for RERTR Applications. Arne P. Olson

Status of REBUS Fuel Management Software Development for RERTR Applications. Arne P. Olson Status of REBUS Fuel Management Software Development for RERTR Applications Arne P. Olson Argonne National Laboratory Argonne, Illinois 60439-4841 USA Presented at the 2000 International Meeting on Reduced

More information

Cross section, Flux, Luminosity, Scattering Rates

Cross section, Flux, Luminosity, Scattering Rates Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

Determination of the Comsumption Rate in the Core of the Nigeria Research Reactor-1 (NIRR-1) Fuelled with 19.75% UO 2 Material

Determination of the Comsumption Rate in the Core of the Nigeria Research Reactor-1 (NIRR-1) Fuelled with 19.75% UO 2 Material Journal of Nuclear and Particle Physics 2016, 6(1): 1-5 DOI: 10.5923/j.jnpp.20160601.01 Determination of the Comsumption Rate in the Core of the Nigeria Research Reactor-1 (NIRR-1) Fuelled with 19.75%

More information

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd 5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations

Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations Richard Procassini, Matthew O'Brien and Janine Taylor Lawrence Livermore National Laboratory Joint Russian-American Five-Laboratory

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

Linear Equations in One Variable

Linear Equations in One Variable Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve

More information

The Universe Inside of You: Where do the atoms in your body come from?

The Universe Inside of You: Where do the atoms in your body come from? The Universe Inside of You: Where do the atoms in your body come from? Matthew Mumpower University of Notre Dame Thursday June 27th 2013 Nucleosynthesis nu cle o syn the sis The formation of new atomic

More information

Neutron scattering lengths and cross sectioirn

Neutron scattering lengths and cross sectioirn Neutron scattering lengths and cross sectioirn VARLEY F. SEARS AECL Research, Chalk River Laboratories Chalk River, Ontario, Canada KOJ l JO The application of thermal neutron scattering to the study of

More information

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

For convenience, we may consider an atom in two parts: the nucleus and the electrons. Atomic structure A. Introduction: In 1808, an English scientist called John Dalton proposed an atomic theory based on experimental findings. (1) Elements are made of extremely small particles called atoms.

More information

Evaluation of Sodium-cooled Fast Reactor Neutronic Benchmarks

Evaluation of Sodium-cooled Fast Reactor Neutronic Benchmarks Evaluation of Sodium-cooled Fast Reactor Neutronic Benchmarks N.E. Stauff a, T.K. Kim a, T. Taiwo a, L. Buiron b, F. Varaine b, J. Gulliford c a Argonne National Laboratory, Nuclear Engineering Division,

More information

MATHEMATICAL MODELS Vol. II - Mathematical Models of Nuclear Energy - Yu. A. Svistunov MATHEMATICAL MODELS OF NUCLEAR ENERGY

MATHEMATICAL MODELS Vol. II - Mathematical Models of Nuclear Energy - Yu. A. Svistunov MATHEMATICAL MODELS OF NUCLEAR ENERGY MATHEMATICAL MODELS OF NUCLEAR ENERGY Yu. A. Svistunov Department of Applied Mathematics and Control Processes, State University of St- Petersburg, Russia Keywords: Nucleus, neutron, nuclear reactor, transfer

More information

Mathematics Common Core Sample Questions

Mathematics Common Core Sample Questions New York State Testing Program Mathematics Common Core Sample Questions Grade The materials contained herein are intended for use by New York State teachers. Permission is hereby granted to teachers and

More information

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment AP Physics 1 Summer Assignment AP Physics 1 Summer Assignment Welcome to AP Physics 1. This course and the AP exam will be challenging. AP classes are taught as college courses not just college-level courses,

More information

MEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were:

MEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were: MEASUREMENT Introduction: People created systems of measurement to address practical problems such as finding the distance between two places, finding the length, width or height of a building, finding

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Atomic Structure Chapter 5 Assignment & Problem Set

Atomic Structure Chapter 5 Assignment & Problem Set Atomic Structure Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Atomic Structure 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

CHEMISTRY GAS LAW S WORKSHEET

CHEMISTRY GAS LAW S WORKSHEET Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is

More information

Three Types of Percent Problems

Three Types of Percent Problems 6.4 Three Types of Percent Problems 6.4 OBJECTIVES. Find the unknown amount in a percent problem 2. Find the unknown rate in a percent problem 3. Find the unknown base in a percent problem From your work

More information

Ratios (pages 288 291)

Ratios (pages 288 291) A Ratios (pages 2 29) A ratio is a comparison of two numbers by division. Ratio Arithmetic: to : Algebra: a to b a:b a b When you write a ratio as a fraction, write it in simplest form. Two ratios that

More information

Chapter Test B. Chapter: Measurements and Calculations

Chapter Test B. Chapter: Measurements and Calculations Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

More information

The Mole Concept. The Mole. Masses of molecules

The Mole Concept. The Mole. Masses of molecules The Mole Concept Ron Robertson r2 c:\files\courses\1110-20\2010 final slides for web\mole concept.docx The Mole The mole is a unit of measurement equal to 6.022 x 10 23 things (to 4 sf) just like there

More information

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 DOE-HDBK-1011/3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;

More information

How To Understand Algebraic Equations

How To Understand Algebraic Equations Please use the resources below to review mathematical concepts found in chemistry. 1. Many Online videos by MiraCosta Professor Julie Harland: www.yourmathgal.com 2. Text references in red/burgundy and

More information

Mathematics Common Core Sample Questions

Mathematics Common Core Sample Questions New York State Testing Program Mathematics Common Core Sample Questions Grade6 The materials contained herein are intended for use by New York State teachers. Permission is hereby granted to teachers and

More information

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved.

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved. 3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic functions.

More information

History of the Atom & Atomic Theory

History of the Atom & Atomic Theory Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations

More information

The Multiplier Effect of Fiscal Policy

The Multiplier Effect of Fiscal Policy We analyze the multiplier effect of fiscal policy changes in government expenditure and taxation. The key result is that an increase in the government budget deficit causes a proportional increase in consumption.

More information

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

More information

Energy comes in many flavors!

Energy comes in many flavors! Forms of Energy Energy is Fun! Energy comes in many flavors! Kinetic Energy Potential Energy Thermal/heat Energy Chemical Energy Electrical Energy Electrochemical Energy Electromagnetic Radiation Energy

More information

Sensitivity- and Uncertainty-Based Criticality Safety Validation Techniques

Sensitivity- and Uncertainty-Based Criticality Safety Validation Techniques NUCLEAR SCIENCE AND ENGINEERING: 146, 340 366 ~2004! Sensitivity- and Uncertainty-Based Criticality Safety Validation Techniques B. L. Broadhead, B. T. Rearden,* and C. M. Hopper Oak Ridge National Laboratory

More information

CHEM 101/105 Numbers and mass / Counting and weighing Lect-03

CHEM 101/105 Numbers and mass / Counting and weighing Lect-03 CHEM 101/105 Numbers and mass / Counting and weighing Lect-03 Interpretation of Elemental Chemical Symbols, Chemical Formulas, and Chemical Equations Interpretation of an element's chemical symbol depends

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University

More information

Accidents of loss of flow for the ETTR-2 reactor: deterministic analysis

Accidents of loss of flow for the ETTR-2 reactor: deterministic analysis NUKLEONIKA 2000;45(4):229 233 ORIGINAL PAPER Accidents of loss of flow for the ETTR-2 reactor: deterministic analysis Ahmed Mohammed El-Messiry Abstract The main objective for reactor safety is to keep

More information

7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including:

7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: 7-5.5 Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: NaCl [salt], H 2 O [water], C 6 H 12 O 6 [simple sugar], O 2 [oxygen

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

To learn the proper method for conducting and analyzing a laboratory experiment. To determine the value of pi.

To learn the proper method for conducting and analyzing a laboratory experiment. To determine the value of pi. Name Date Regents Physics Lab #3R Period Mrs. Nadworny Partners: (1 pt) Circumference vs. Diameter Due Date Purpose To learn the proper method for conducting and analyzing a laboratory experiment. To determine

More information

ACTIVITY: Finding a Formula Experimentally. Work with a partner. Use a paper cup that is shaped like a cone.

ACTIVITY: Finding a Formula Experimentally. Work with a partner. Use a paper cup that is shaped like a cone. 8. Volumes of Cones How can you find the volume of a cone? You already know how the volume of a pyramid relates to the volume of a prism. In this activity, you will discover how the volume of a cone relates

More information

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator R. Gupta and M.Harrison, Brookhaven National Laboratory A. Zeller, Michigan State University

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

( + and - ) ( - and - ) ( + and + ) Atoms are mostly empty space. = the # of protons in the nucleus. = the # of protons in the nucleus

( + and - ) ( - and - ) ( + and + ) Atoms are mostly empty space. = the # of protons in the nucleus. = the # of protons in the nucleus Atoms are mostly empty space Atomic Structure Two regions of every atom: Nucleus - is made of protons and neutrons - is small and dense Electron cloud -is a region where you might find an electron -is

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

More information

9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE

9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE 9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 6 GAS PROPERTIES PURPOSE The purpose of this lab is to investigate how properties of gases pressure, temperature, and volume are related. Also, you will

More information

Ch. 227 ANALYTICAL X-RAY EQUIPMENT 25

Ch. 227 ANALYTICAL X-RAY EQUIPMENT 25 Ch. 227 ANALYTICAL X-RAY EQUIPMENT 25 CHAPTER 227. RADIATION SAFETY REQUIREMENTS FOR ANALYTICAL X-RAY EQUIPMENT, X-RAY GAUGING EQUIPMENT, ELECTRON MICROSCOPES AND X-RAY CALIBRATION SYSTEMS Sec. 227.1.

More information

Chapter NP-1. Nuclear Physics. Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES

Chapter NP-1. Nuclear Physics. Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES Chapter NP-1 Nuclear Physics Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES 1.1 CHEMICAL AND PHYSICAL PROPERTIES 2.0 COMPOSITION OF ATOMS 2.1 ATOMIC STRUCTURE

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

People s Physics Book

People s Physics Book The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

More information

Topic 3. Evidence for the Big Bang

Topic 3. Evidence for the Big Bang Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question

More information

100 cm 1 m. = 614 cm. 6.14 m. 2.54 cm. 1 m 1 in. 1 m. 2.54 cm 1ft. 1 in = 242 in. 614 cm. 242 in 1 ft. 1 in. 100 cm = 123 m

100 cm 1 m. = 614 cm. 6.14 m. 2.54 cm. 1 m 1 in. 1 m. 2.54 cm 1ft. 1 in = 242 in. 614 cm. 242 in 1 ft. 1 in. 100 cm = 123 m Units and Unit Conversions 6. Define the problem: If the nucleus were scaled to a diameter of 4 cm, determine the diameter of the atom. Develop a plan: Find the accepted relationship between the size of

More information

THORIUM UTILIZATION FOR SUSTAINABLE SUPPLY OF NUCLEAR ENERGY S. BANERJEE DEPARTMENT OF ATOMIC ENERGY

THORIUM UTILIZATION FOR SUSTAINABLE SUPPLY OF NUCLEAR ENERGY S. BANERJEE DEPARTMENT OF ATOMIC ENERGY THORIUM UTILIZATION FOR SUSTAINABLE SUPPLY OF NUCLEAR ENERGY S. BANERJEE DEPARTMENT OF ATOMIC ENERGY INDIA DHRUVA CIRUS 1 PLAN OF TALK Introduction Three Stage Nuclear Power Programme Thorium Utilisation

More information

FP1. HiSET TM Mathematics Practice Test

FP1. HiSET TM Mathematics Practice Test FP1 HiSET TM Mathematics Practice Test Copyright 013 Educational Testing Service. All rights reserved. E T S and the E T S logo are registered trademarks of Educational Testing Service (E T S) in the United

More information

Conversions. 12 in. 1 ft = 1.

Conversions. 12 in. 1 ft = 1. Conversions There are so many units that you can use to express results that you need to become proficient at converting from one to another. Fortunately, there is an easy way to do this and it works every

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52

REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course.

More information

Matrix Differentiation

Matrix Differentiation 1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have

More information

Solving Equations by the Multiplication Property

Solving Equations by the Multiplication Property 2.2 Solving Equations by the Multiplication Property 2.2 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the multiplication property to solve equations. Find the mean

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013 Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move

More information

W. C. Reinig. Savannah River Laboratory E. I. du Pent de Nemours and Company Aiken, South Carolina 298o1

W. C. Reinig. Savannah River Laboratory E. I. du Pent de Nemours and Company Aiken, South Carolina 298o1 .*. *.-a /dp73j/3~ DP-MS-68-48 calforn1um-252: A NEW SOTOPC SOUR(!EFOR NEUTRON RADOGRAPHY by W. C. Reinig Savannah River Laboratory E.. du Pent de Nemours and Company Aiken, South Carolina 298o1. SRL7

More information

CONSERVATION LAWS. See Figures 2 and 1.

CONSERVATION LAWS. See Figures 2 and 1. CONSERVATION LAWS 1. Multivariable calculus 1.1. Divergence theorem (of Gauss). This states that the volume integral in of the divergence of the vector-valued function F is equal to the total flux of F

More information

How to Calculate Compression Ratio in a Single Cylinder. Lesson 9

How to Calculate Compression Ratio in a Single Cylinder. Lesson 9 How to Calculate Compression Ratio in a Single Cylinder Lesson 9 Remember: Pretty Please My Dear Aunt Sally (From left to right; Parentheses; Power; Multiply; Divide; Add, Subtract) This lesson is set

More information

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below. PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

More information

Performance. 13. Climbing Flight

Performance. 13. Climbing Flight Performance 13. Climbing Flight In order to increase altitude, we must add energy to the aircraft. We can do this by increasing the thrust or power available. If we do that, one of three things can happen:

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

Implementing the combing method in the dynamic Monte Carlo. Fedde Kuilman PNR_131_2012_008

Implementing the combing method in the dynamic Monte Carlo. Fedde Kuilman PNR_131_2012_008 Implementing the combing method in the dynamic Monte Carlo Fedde Kuilman PNR_131_2012_008 Faculteit Technische Natuurwetenschappen Implementing the combing method in the dynamic Monte Carlo. Bachelor End

More information

A Priori Efficiency Calculations For Monte Carlo Applications In Neutron Transport Andreas J. van Wijk. Supervisor: dr. ir. J.

A Priori Efficiency Calculations For Monte Carlo Applications In Neutron Transport Andreas J. van Wijk. Supervisor: dr. ir. J. A Priori Efficiency Calculations For Monte Carlo Applications In Neutron Transport Andreas J. van Wijk Supervisor: dr. ir. J. Eduard Hoogenboom Thesis Master of science in applied physics Delft University

More information

Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels

Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels Jon Carmack Deputy National Technical Director Fuel Cycle Technology Advanced Fuels Program February 27, 2011 The Evolution of Nuclear Power

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

Balancing Chemical Equations

Balancing Chemical Equations Balancing Chemical Equations A mathematical equation is simply a sentence that states that two expressions are equal. One or both of the expressions will contain a variable whose value must be determined

More information

Figure 1. A typical Laboratory Thermometer graduated in C.

Figure 1. A typical Laboratory Thermometer graduated in C. SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES

More information

Free Pre-Algebra Lesson 55! page 1

Free Pre-Algebra Lesson 55! page 1 Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can

More information

Generation IV Fast Reactors. Dr Richard Stainsby AMEC Richard.Stainsby@amec.com

Generation IV Fast Reactors. Dr Richard Stainsby AMEC Richard.Stainsby@amec.com Generation IV Fast Reactors Dr Richard Stainsby AMEC Richard.Stainsby@amec.com Contents The Generation IV international research programme on advanced reactors The case for fast reactors The technology:

More information

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left. The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

More information

Load Balancing Of Parallel Monte Carlo Transport Calculations

Load Balancing Of Parallel Monte Carlo Transport Calculations Load Balancing Of Parallel Monte Carlo Transport Calculations R.J. Procassini, M. J. O Brien and J.M. Taylor Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 9551 The performance of

More information