# Chapter 27 Magnetic Field and Magnetic Forces

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged Particles - Magnetic Force on a Current-Carrying Conductor - Force and Torque on a Current Loop

2 1) A moving charge or collection of moving charges (e.g. electric current) produces a magnetic field. (Chap. 28). 2) A second current or charge responds to the magnetic field and experiences a magnetic force. (Chap. 27). 1. Magnetism Permanent magnets: exert forces on each other as well as on unmagnetized Fe pieces. - The needle of a compass is a piece of magnetized Fe. - If a bar-shaped permanent magnet is free to rotate, one end points north (north pole of magnet). - An object that contains Fe is not by itself magnetized, it can be attracted by either the north or south pole of permanent magnet. - A bar magnet sets up a magnetic field in the space around it and a second body responds to that field. A compass needle tends to align with the magnetic field at the needle s position.

3 1. Magnetism - Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines. - Magnetic north and south pole s behavior is not unlike electric charges. For magnets, like poles repel and opposite poles attract. - A permanent magnet will attract a metal like iron with either the north or south pole.

4 Magnetic poles about our planet

5 Magnetic declination / magnetic variation: the Earth s magnetic axis is not parallel to its geographic axis (axis of rotation) a compass reading deviates from geographic north. Magnetic inclination: the magnetic field is not horizontal at most of earth s surface, its angle up or down. The magnetic field is vertical at magnetic poles. Magnetic Poles versus Electric Charge - We observed monopoles in electricity. A (+) or (-) alone was stable, and field lines could be drawn around it. - Magnets cannot exist as monopoles. If you break a bar magnet between N and S poles, you get two smaller magnets, each with its own N and S pole.

6 -In 1820, Oersted ran experiments with conducting wires run near a sensitive compass. The orientation of the wire and the direction of the flow both moved the compass needle. - Ampere / Faraday / Henry moving a magnet near a conducting loop can induce a current. - The magnetic forces between two bodies are due to the interaction between moving electrons in the atoms. - Inside a magnetized body (permanent magnet) there is a coordinated motion of certain atomic electrons. Not true for unmagnetized objects.

7 2. Magnetic Field Electric field: 1) A distribution of electric charge at rest creates an electric field E in the surrounding space. 2) The electric field exerts a force F E = q E on any other charges in presence of that field. Magnetic field: 1) A moving charge or current creates a magnetic field in the surrounding space (in addition to E). 2) The magnetic field exerts a force F m on any other moving charge or current present in that field. - The magnetic field is a vector field vector quantity associated with each point in space. F m = q v B = q v Bsinϕ = qv B - F m is always perpendicular to B and v. F m

8 2. Magnetic Field - The moving charge interacts with the fixed magnet. The force between them is at a maximum when the velocity of the charge is perpendicular to the magnetic field. Interaction of magnetic force and charge

9 Right Hand Rule Positive charge moving in magnetic field direction of force follows right hand rule Negative charge F direction contrary to right hand rule. F = q vb Units: 1 Tesla = 1 N s / C m = 1 N/A m 1 Gauss = 10-4 T

10 Right Hand Rule If charged particle moves in region where both, E and B are present: F = q( E + v B)

11 Measuring Magnetic Fields with Test Charges Ex: electron beam in a cathode X-ray tube. - In general, if a magnetic field (B) is present, the electron beam is deflected. However this is not true if the beam is // to B (φ = 0, π F=0 no deflection). Electron q< 0 F has contrary direction to right hand rule No deflection F = 0 v // B Deflection F 0 F v, B

12 3. Magnetic Field Lines and Magnetic Flux - Magnetic field lines may be traced from N toward S (analogous to the electric field lines). - At each point they are tangent to magnetic field vector. - The more densely packed the field lines, the stronger the field at a point. - Field lines never intersect. - The field lines point in the same direction as a compass (from N toward S). - Magnetic field lines are not lines of force.

13 - Magnetic field lines have no ends they continue through the interior of the magnet.

14 Magnetic Flux and Gauss s Law for Magnetism Φ = B da = B cosϕ da = B da B - Magnetic flux is a scalar quantity. Φ B = B A = - If B is uniform: ϕ Φ B = B da = 0 BAcos Units: 1 Weber (1 Wb = 1 T m 2 = 1 N m / A) - Difference with respect to electric flux the total magnetic flux through a closed surface is always zero. This is because there is no isolated magnetic charge ( monopole ) that can be enclosed by the Gaussian surface. dφ B = da - The magnetic field is equal to the flux per unit area across an area at right angles to the magnetic field = magnetic flux density. B

15 4. Motion of Charged Particles in a Magnetic Field - Magnetic force perpendicular to v it cannot change the magnitude of the velocity, only its direction. F m = qv B - F does not have a component parallel to particle s motion cannot do work. - Motion of a charged particle under the action of a magnetic field alone is always motion with constant speed. - Magnitudes of F and v are constant (v perp. B) uniform circular motion. F = q v B = 2 v m R Radius of circular orbit in magnetic field: R = mv q B + particle counter-clockwise rotation. - particle clockwise rotation.

16 Angular speed: ω = v/r q B ω = v = mv q B m Cyclotron frequency: f =ω/2π - If v is not perpendicular to B v // (parallel to B) constant because F // = 0 particle moves in a helix. (R same as before, with v = v ). A charged particle will move in a plane perpendicular to the magnetic field.

17 5. Applications of Motion of Charged Particles Velocity selector - Particles of a specific speed can be selected from the beam using an arrangement of E and B fields. - F m (magnetic) for + charge towards right (q v B). Source of charged particles - F E (electric) for + charge to left (q E). - F net = 0 if F m = F E -qe + q v B = 0 v = E/B - Only particles with speed E/B can pass through without being deflected by the fields.

18 Thomson s e/m Experiment E = K + U =0 0.5 m v 2 = U = e V v = E B = 2eV m e = m 2 E 2VB 2 e/m does not depend on the cathode material or residual gas on tube particles in the beam (electrons) are a common constituent of all matter.

19 Mass Spectrometer - Using the same concept as Thompson, Bainbridge was able to construct a device that would only allow one mass in flight to reach the detector. - Velocity selector filters particles with v = E/B. After this, in the region of B particles with m 2 > m 1 travel with radius (R 2 > R 1 ). R = mv q B'

20 6. Magnetic Force on a Current-Carrying Conductor F = qv B F qv B m d - Total force: F m = ( nal)( qv B) d m = n = number of charges per unit volume A l = volume F = ( nqv )( A)( lb) = ( JA)( lb) IlB (B wire) m d = In general: d Force on one charge F = IlB = IlB sinϕ Magnetic force on a straight wire segment: F = Il B Magnetic force on an infinitesimal wire section: df = Idl B

21 - Current is not a vector. The direction of the current flow is given by dl, not I. dl is tangent to the conductor. F = Il B

22 7. Force and Torque on a Current Loop - The net force on a current loop in a uniform magnetic field is zero. Right wire of length a F = I a B (B l) Left wire of length b F = I b B sin (90º -φ) (B forms 90º-φ angle with l) F = I b B cosφ F net = F F + F - F = 0 - Net torque 0 (general). τ = r F τ = r F sinα = r F = rf τ F ' = r F sin 0 = 0 τ F = F(b / 2) sinϕ

23 τ total = τ F ' + τ F ' + τ F + τ F = ( b / 2) F sinϕ τ total = = ( IBa)( bsinϕ) IBAsinϕ Torque on a current loop A = a b Torque is zero, φ = 0º φ is angle between a vector perpendicular to loop and B

24 τ total = IBAsinϕ Magnetic dipole moment: = I A µ Electric dipole moment: p = qd Direction: perpendicular to plane of loop (direction of loop s vector area right hand rule) τ total = µ Bsinϕ Magnetic torque: τ = µ B Electric torque: τ = p E Potential Energy for a Magnetic Dipole: U = µ B = µ B cosϕ Potential Energy for an Electric Dipole: U = p E

25 Magnetic Torque: Loops and Coils If these loops all carry equal current I in same clockwise sense, F and torque on the sides of two adjacent loops cancel, and only forces and torques around boundary 0. Solenoid τ = NIBAsinϕ N = number of turns φ is angle between axis of solenoid and B Max. torque: solenoid axis B. Torque rotates solenoid to position where its axis is parallel to B.

26 Magnetic Dipole in a Non-Uniform Magnetic Field - Net force on a current loop in a non-uniform field is not zero. df = Idl B Radial force components cancel each Other F net to right. N S If polarity of magnet changes F net to left. N S

27 Magnetic Dipole and How Magnets Work A solenoid and a magnet orients themselves with axis parallel to field. Electron analogy: spinning ball of charge circulation of charge around spin axis similar to current loop electron has net magnetic moment. - In Fe atom, large number of electron magnetic moments align to each other non-zero atomic magnetic moment. - In unmagnetized Fe piece no overall alignment of µ of atoms total µ = 0. - Iron bar magnet magnetic moments of many atoms are parallel total µ 0. - A bar magnet tends to align to B, so that line from S to N is in direction of B.

28 - South and North poles represent tail and head of magnet s dipole moment, µ. How can a magnet attract an unmagnetized Fe object? 1) Atomic magnetic moments of Fe try to align to B of bar magnet Fe acquires net magnetic dipole moment // B. 2) Non-Uniform B attracts magnetic dipole. The magnetic dipole produced on nail is equivalent to current loop (I direction right hand rule) net magnetic force on nail is attractive (a) or (b) unmagnetized Fe object is attracted to either pole of magnet. S N N S

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

### Quiz: Work and Energy

Quiz: Work and Energy A charged particle enters a uniform magnetic field. What happens to the kinetic energy of the particle? (1) it increases (2) it decreases (3) it stays the same (4) it changes with

### physics 112N magnetic fields and forces

physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity

### Faraday s Law of Induction

Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1

### Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

### Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

### Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the

### Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

### Problem 1 (25 points)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2012 Exam Three Solutions Problem 1 (25 points) Question 1 (5 points) Consider two circular rings of radius R, each perpendicular

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### STUDY GUIDE: ELECTRICITY AND MAGNETISM

319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Physics of the Atmosphere I

Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014

Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic

### Chapter 7: Polarization

Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### 11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

### Chapter 22: Electric Flux and Gauss s Law

22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we

### 3600 s 1 h. 24 h 1 day. 1 day

Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 802 Spring 2013 Conflict Exam Two Solutions Problem 1 (25 points): answers without work shown will not be given any credit A uniformly charged

### Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

### Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

### MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2

MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2 MFF3a RT1: Charged Particle and a Straight Current-Carrying Wire... 3 MFF3a RT2: Charged Particle and a Straight Current-Carrying Wire...

### Angular acceleration α

Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

### Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

### Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

### Lecture 22. Inductance. Magnetic Field Energy. Outline:

Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

### Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential 23-1 Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative potential energy can be defined. Change in electric potential energy is

### 8.012 Physics I: Classical Mechanics Fall 2008

MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Inductance. Motors. Generators

Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due

### Preview of Period 16: Motors and Generators

Preview of Period 16: Motors and Generators 16.1 DC Electric Motors What causes the rotor of a motor to spin? 16.2 Simple DC Motors What causes a changing magnetic field in the simple coil motor? 16.3

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### April 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii.

Physics 272 April 1 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 164 Summary Gauss's

### Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films https://cuvillier.de/de/shop/publications/1306 Copyright: Cuvillier Verlag,

### State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

### The Electric Field. Electric Charge, Electric Field and a Goofy Analogy

. The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it

### Chapter 11 Equilibrium

11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

### Chapter 30 Inductance

Chapter 30 Inductance - Mutual Inductance - Self-Inductance and Inductors - Magnetic-Field Energy - The R- Circuit - The -C Circuit - The -R-C Series Circuit . Mutual Inductance - A changing current in

### Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings

1 of 11 9/7/2012 1:06 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library

### Antenna A mean for radiating and receiving radio waves Transitional structure between free-space and a guiding device. Application: Radiation

Antenna A mean for radiating and receiving radio waves Transitional structure between free-space and a guiding device Application: adiation Introduction An antenna is designed to radiate or receive electromagnetic

### Electromagnetism - Lecture 2. Electric Fields

Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric

### What's a magnet? How do you make a magnet? Can you unmake a magnet?

Many people know that the earth has a magnetic field, but few are aware that this field is shrinking. This decrease has been measured over a period of 150 years, and the rate of the decrease shows that

### HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely

### 13.4 THE CROSS PRODUCT

710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

### Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

### Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

### PES 1110 Fall 2013, Spendier Lecture 27/Page 1

PES 1110 Fall 2013, Spendier Lecture 27/Page 1 Today: - The Cross Product (3.8 Vector product) - Relating Linear and Angular variables continued (10.5) - Angular velocity and acceleration vectors (not

### Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

### Physics 6C, Summer 2006 Homework 2 Solutions

Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 3-30 below shows a circuit containing

### Inductance and Magnetic Energy

Chapter 11 Inductance and Magnetic Energy 11.1 Mutual Inductance... 11-3 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops... 11-5 11. Self-Inductance... 11-5 Example 11. Self-Inductance

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

### Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

### Introduction and Mathematical Concepts

CHAPTER 1 Introduction and Mathematical Concepts PREVIEW In this chapter you will be introduced to the physical units most frequently encountered in physics. After completion of the chapter you will be

### Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

### THEORETICAL MECHANICS

PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents

### Exam 2 Practice Problems Part 1 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam Practice Problems Part 1 Solutions Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z

### Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

### Forces & Magnetic Dipoles. r r τ = μ B r

Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

### Electric and Magnetic Field Lenses

6 Electric and Magnetic Field Lenses The subject of charged particle optics is introduced in this chapter. The concern is the control of the transverse motion of particles by shaped electric and magnetic

### Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

### PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### A vector is a directed line segment used to represent a vector quantity.

Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

### Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

### ǫ 0 = 8.85419 10 12 C 2 /N m 2,

Version 001 review unit chiu 58655 1 This print-out should have 45 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. The long negatively charged

### 6 J - vector electric current density (A/m2 )

Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

### 4.1 Magnetic Properties

4 Magnetic NDE 4.1 Magnetic Properties 4.2 Magnetic Measurements 4.3 Magnetic Materials haracterization 4.4 Magnetic Flaw Detection 4.1 Magnetic Properties Magnetization +I -I pm = NIA p m N I A magnetic

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

### Think About This How do the generators located inside the dam convert the kinetic and potential energy of the water into electric energy?

What You ll Learn You will describe how changing magnetic fields can generate electric potential differences. You will apply this phenomenon to the construction of generators and transformers. Why It s

### Fundamentals of Electromagnetic Fields and Waves: I

Fundamentals of Electromagnetic Fields and Waves: I Fall 2007, EE 30348, Electrical Engineering, University of Notre Dame Mid Term II: Solutions Please show your steps clearly and sketch figures wherever

### Fundamental Mechanics: Supplementary Exercises

Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of

APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

### Worked Examples from Introductory Physics Vol. I: Basic Mechanics. David Murdock Tenn. Tech. Univ.

Worked Examples from Introductory Physics Vol. I: Basic Mechanics David Murdock Tenn. Tech. Univ. February 24, 2005 2 Contents To the Student. Yeah, You. i 1 Units and Vectors: Tools for Physics 1 1.1

### An equivalent circuit of a loop antenna.

3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally

### ELECTRICITE ET MAGNETISME.

Created by Neevia Personal Converter trial version Physique Fondamentale ELECTRICITE ET MAGNETISME. LA LOI D INDUCTION DE FARADAY (Faraday Law Induction) Magnetic Flux Faraday's Law of Induction Lenz's

### ELECTRIC FIELDS AND CHARGE

1 E1 ELECTRIC FIELDS AND CHARGE OBJECTIVES Aims In studying this chapter you should aim to understand the basic concepts of electric charge and field and their connections. Most of the material provides

### Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207.

MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### Physics 160 Biomechanics. Angular Kinematics

Physics 160 Biomechanics Angular Kinematics Questions to think about Why do batters slide their hands up the handle of the bat to lay down a bunt but not to drive the ball? Why might an athletic trainer

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

### Aircraft Electrical System

Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.

### ART 269 3D Animation Fundamental Animation Principles and Procedures in Cinema 4D

ART 269 3D Animation Fundamental Animation Principles and Procedures in Cinema 4D Components Tracks An animation track is a recording of a particular type of animation; for example, rotation. Some tracks

### Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

### G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

### AS COMPETITION PAPER 2008

AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive

### Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle