Three-nucleon interaction dynamics studied via the deuteron-proton breakup. Elżbieta Stephan Institute of Physics, University of Silesia

Size: px
Start display at page:

Download "Three-nucleon interaction dynamics studied via the deuteron-proton breakup. Elżbieta Stephan Institute of Physics, University of Silesia"

Transcription

1 Three-nucleon interaction dynamics studied via the deuteron-proton breakup Elżbieta Stephan Institute of Physics, University of Silesia

2 Studies of the 1 H(d,pp)n Breakup at 130 MeV University of Silesia, Katowice, Poland Jagiellonian University, Kraków, Poland KVI, Groningen, The Netherlands Kraków-Bochum Group EFT/ChPT Group Hannover/Lisboa Group Theory Support

3 Motivation Faddeev framework provides exact treatment for the 3N system Various approaches to construct the interaction (2N and 3N): Realistic potentials + phenomenological 3NF models Chiral Perturbation Theory Coupled-Channels formalism with explicit Δ

4 Motivation Three-nucleon system is the simplest non-trivial environment to test predictions of the NN and 3N potential models Elastic scattering data demonstrate both success and problems of modern calculations Very few breakup data at medium energies (earlier PSI experiments provided only 14 kinematical configurations) In order to reach meaningful conclusions about the interaction models needed experimental coverage of large phase space regions

5 Small Area Large Acceptance Detector 140 ΔE-E telescopes 3-plane MWPC Angular range : θ = (12º, 38º), φ = (0º, 360º) SALAD KVI

6 Cross Section Results Summary Nearly 1800 cross section data points θ 1, θ 2 = 15 o 30 o ; grid 5 o ; θ = ±1 o an additional set for θ 1, θ 2 = 13 o φ 12 = 40 o 180 o ; grid 10 o -20 o ; φ = ±5 o S [MeV] = ; grid 4; ΔS = ±2 Statistical accuracy Data very clean accidentals below 2% Systematic errors 3% 5% Global comparisons with theory (χ 2 test for all points, χ 2 = f(φ 12 ), χ 2 = f(e rel ), tests of normalization)

7 Cross Section Results Example Coupled EFT/ChPT Faddeev channels calculations calculations NNLO Realistic 2N NN only potentials: (CD NNLO Bonn, 2N (modif.) NijmI, + 3 N NijmII, + Δ Av18) 3NF model: TM99, UIX

8 Cross Section Results Exploring Phase Space Relative χ 2 as a function of the relative azimuthal angle φ 12 between the two proton trajectories For large E rel 3NF s improve description of the data when combined with the NN potentials In general: Including 3NF s reduces global χ 2 by about 30% [Phys. Rev. C 72 (2005) ]

9 Cross Section Results Discrepancies

10 Cross Section Results Discrepancies Cured Coupled Channel calculations Coupled Channel calculations with Coulomb effects Predictions with Coulomb reproduce data much better!

11 Discrepancies at low E rel cured Coupled Channel calculations

12 Cross Section Results Coulomb Effects Possible sources of differences: Peak magnitude exp. averaging? Total width relativistic effects? Acceptance limit of KVI experiment

13 Coulomb effects dedicated experiment Θ: 3º-14º φ: 2π Small sample result of FZJ experiment (arbitrary normalization)

14 Vector and Tensor Analyzing Powers A few times more additional data points (supplementing cross sections) Potentially stronger sensitivity to small ingredients (sums of interfering amplitudes) Small Coulomb effects - it can be easier to trace 3NF 7 states: Δ P z Δ P zz P max z P max zz P z P zz +1/ / / /

15 Analyzing Power Results Summary Vector (A x, A y ) and tensor analyzing powers (A xx, A yy, A xy ) determined in the large part of the phase space Nearly 800 data points per observable θ 1, θ 2 = 15 o 30 o ; grid 5 o ; Δθ = ±2 o φ 12 = 40 o 180 o ; grid 20 o ; Δφ = ±10 o S [MeV] = ; grid 4; ΔS = ±4 Statistical accuracy Systematic errors analysis under way Global comparisons with theory (χ 2 test) nonnegligible averaging

16 Vector Analyzing Power Results ChPT N2LO

17 Tensor Analyzing Power Results Description not satisfactory!

18 Tensor Analyzing Power Results configurations with predicted strong 3NF effects

19 Tensor Analyzing Power Results NN, ChPT N3LO

20 Conclusions: Systematic, precise set of cross sections and analyzing power data obtained at E d = 130 MeV basis for comparing different approaches which predict the 3N system observables Significant 3NF effects observed in cross section Found large influence of Coulomb force Vector analyzing powers reveal very low sensitivity to 3NF best description given by ChPT (2NLO) will this fact be confirmed by full calculation at 3NLO or at lower energy? Tensor analyzing power sensitive to 3NF, but... current models of 3NF do not provide precise description of A xx and A xy problems with spin part of 3NF?

21 BINA detection system at KVI BINA Detector Phoswich Ball ΔE Wall Stopping (E) Wall MWPC

22 Investigations of 3N/4N continuum Summary Rich set of high precision cross sections and analyzing powers data: Data at E d = 130 MeV supplemented with results for forward proton angles Complete set for E d =100 MeV (BINA) Measurements for pd systems at 180 and 135 MeV (BINA) Developments in theoretical calculations for 3N system (3N force, Coulomb interaction, relativistic effects, higher order in ChPT ) Studies of breakup processes in dd system (BINA) at 130 MeV

23 Thank you for your attention!

24 3 3 ς = ( θ1, θ2, ϕ12, S) σ p ( ς, ϕ1) = σ 0( ς ) 1 + Pz sinϕ1ax + cosϕ1ay Pzz ( sinϕ1 cosϕ1axy ) + Pzz sin ϕ1axx + cos ϕ1ayy a = Pz Ax ( ς ) 2 3 b = Pz Ay ( ς ) 2 c = P A ( ς ) zz xy 1 d = Pzz A 2 1 e = Pzz A 2 xx yy ( ς ) ( ς ) N P N N 0 0 = a sin ϕ b cosϕ1 + c sin ϕ1 cosϕ1 + d sin ϕ1 + e cos θ = 25 1 o θ = 20 ϕ 2 12 o = 120 o S = 96MeV ϕ 1 ϕ 1

25 Tensor Analyzing Power Results examples of A xx, symmetric configurations with ϕ 12 =60 o, 120 o

26 Analyzing Power Results odd observables: A x, A xx, A xy; e.g.: A x ( ϕ12) = Ax ( ϕ12);

Investigation of the Three-Nucleon System Dynamics in the Deuteron Proton Breakup Reaction

Investigation of the Three-Nucleon System Dynamics in the Deuteron Proton Breakup Reaction Few-Body Syst 55:639 644 DOI 10.1007/s00601-014-0841-3 I. Ciepał B. Kłos St. Kistryn E. Stephan A. Biegun K. Bodek A. Deltuva E. Epelbaum M. Eslami-Kalantari A. C. Fonseca J. Golak V. Jha N. Kalantar-Nayestanaki

More information

SCATTERING CROSS SECTIONS AND LORENTZ VIOLATION DON COLLADAY

SCATTERING CROSS SECTIONS AND LORENTZ VIOLATION DON COLLADAY SCATTERING CROSS SECTIONS AND LORENTZ VIOLATION DON COLLADAY New College of Florida, 5700 Tamiami Trail, Sarasota, FL 34243, USA E-mail: colladay@sar.usf.edu To date, a significant effort has been made

More information

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100) Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know

More information

Comparison of approximations to the transition rate in the DDHMS preequilibrium model

Comparison of approximations to the transition rate in the DDHMS preequilibrium model EPJ Web of Conferences 69, 0 00 24 (204) DOI: 0.05/ epjconf/ 2046900024 C Owned by the authors, published by EDP Sciences, 204 Comparison of approximations to the transition rate in the DDHMS preequilibrium

More information

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A. June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Electromagnetic structure of few-nucleon systems

Electromagnetic structure of few-nucleon systems Electromagnetic structure of few-nucleon systems Laura E. Marcucci University of Pisa, and INFN-Pisa In collaboration with: A. Kievsky (Pisa) S. Rosati (Pisa) M. Viviani (Pisa) R. Schiavilla (ODU/Jlab)

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Gamma Ray Detection at RIA

Gamma Ray Detection at RIA Gamma Ray Detection at RIA Summary Report: Physics & Functional Requirements Cyrus Baktash Physics goals Experimental tools: Techniques & Reactions Functional Requirements Physics Questions (Discussed

More information

A SUSY SO(10) GUT with 2 Intermediate Scales

A SUSY SO(10) GUT with 2 Intermediate Scales A SUSY SO(10) GUT with 2 Intermediate Scales Manuel Drees Bonn University & Bethe Center for Theoretical Physics SUSY SO(10) p. 1/25 Contents 1 Motivation: SO(10), intermediate scales SUSY SO(10) p. 2/25

More information

Characterization of excited states of 15 N through 14 C(p,p) 14 C using polarized proton beam

Characterization of excited states of 15 N through 14 C(p,p) 14 C using polarized proton beam REVISTA MEXICANA DE FÍSICA S 57 (1) 55 59 FEBRERO 2011 Characterization of excited states of 15 N through 14 C(p,p) 14 C using polarized proton beam G. Murillo, M. Fernández, J. Ramírez, M.G. Mejia-Gil,

More information

SubAtomic Physics Nuclear Physics

SubAtomic Physics Nuclear Physics SubAtomic Physics Nuclear Physics Lecture 4 Main points of Lecture 3 Strong and coulomb interaction processes conserve angular momentum and parity External properties 1) Charge number of protons (ze) 2)

More information

CHAPTER FIVE. 5. Equations of Lines in R 3

CHAPTER FIVE. 5. Equations of Lines in R 3 118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Progress in understanding quarkonium polarization measurements

Progress in understanding quarkonium polarization measurements 1 Progress in understanding quarkonium polarization measurements 1. Why it is essential that we approach the measurement of polarization as a multidimensional problem: we must not average out information!.

More information

Electron density is complex!

Electron density is complex! Electron density is complex! Göttingen, November 13 th 2008 George M. Sheldrick, Göttingen University http://shelx.uni-ac.gwdg.de/shelx/ Friedel s Law F h,k,l = F h, k, l and φ h,k,l = φ h, k, l Friedel

More information

Selected Results on Diffraction at HERA

Selected Results on Diffraction at HERA Selected Results on Diffraction at HERA Grzegorz Gach Various Faces of QCD May 014 Grzegorz Gach Selected Results on Diffraction at HERA 1 HERA DESY, Hamburg 199-007 e/e + - p 7.5 GeV 80 GeV 90 GeV Ldt

More information

Lecture L26-3D Rigid Body Dynamics: The Inertia Tensor

Lecture L26-3D Rigid Body Dynamics: The Inertia Tensor J. Peraire, S. Widnall 16.07 Dynaics Fall 008 Lecture L6-3D Rigid Body Dynaics: The Inertia Tensor Version.1 In this lecture, we will derive an expression for the angular oentu of a 3D rigid body. We shall

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

PoS(Baldin ISHEPP XXII)026

PoS(Baldin ISHEPP XXII)026 On the modified Yamaguchi-type functions for the Bethe-Salpeter equation Joint Institute for Nuclear Research, Dubna, Russia E-mail: bondarenko@jinr.ru V. V. Burov Joint Institute for Nuclear Research,

More information

Chapter 1 Units, Physical Quantities, and Vectors

Chapter 1 Units, Physical Quantities, and Vectors Chapter 1 Units, Physical Quantities, and Vectors 1 The Nature of Physics Physics is an experimental science. Physicists make observations of physical phenomena. They try to find patterns and principles

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

MODELLING A SATELLITE CONTROL SYSTEM SIMULATOR

MODELLING A SATELLITE CONTROL SYSTEM SIMULATOR National nstitute for Space Research NPE Space Mechanics and Control Division DMC São José dos Campos, SP, Brasil MODELLNG A SATELLTE CONTROL SYSTEM SMULATOR Luiz C Gadelha Souza gadelha@dem.inpe.br rd

More information

Bounding the Higgs width at the LHC

Bounding the Higgs width at the LHC Bounding the Higgs width at the LHC Higgs XSWG workshop, June 2014 John Campbell, Fermilab with K. Ellis, C. Williams 1107.5569, 1311.3589, 1312.1628 Reminder of the method This is the essence of the original

More information

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Apeiron, Vol. 15, No. 3, July 2008 206 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Krzysztof Rȩbilas Zak lad

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

Radiation reaction for inspiralling binary systems with spin-spin

Radiation reaction for inspiralling binary systems with spin-spin Radiation reaction for inspiralling binary systems with spin-spin coupling 1 Institute of Theoretical Physics, Friedrich-Schiller-University Jena December 3, 2007 1 H. Wang and C. M. Will, Phys. Rev. D,

More information

Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes

Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Chapter 9 Unitary Groups and SU(N)

Chapter 9 Unitary Groups and SU(N) Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three

More information

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films https://cuvillier.de/de/shop/publications/1306 Copyright: Cuvillier Verlag,

More information

A Polarimetry concept for the EDM experiment at COSY

A Polarimetry concept for the EDM experiment at COSY A Polarimetry concept for the EDM experiment at COSY Paul Maanen JEDI Collaboration Physics Institute III B, RWTH Aachen University DPG Frühjahrstagung March 27, 2015 Outline Introduction Detector concept

More information

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Let s first see how precession works in quantitative detail. The system is illustrated below: ... lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

More information

THEORETICAL MECHANICS

THEORETICAL MECHANICS PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents

More information

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0. Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

More information

Proton tracking for medical imaging and dosimetry

Proton tracking for medical imaging and dosimetry Proton tracking for medical imaging and dosimetry J.Taylor, P.Allport, G.Casse For the PRaVDA Consortium 1 Background and motivation - What is the PRaVDA experiment? - Why are we using Monte Carlo? GEANT4

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

BCM 6200 - Protein crystallography - I. Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS

BCM 6200 - Protein crystallography - I. Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS BCM 6200 - Protein crystallography - I Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS Elastic X-ray Scattering From classical electrodynamics, the electric field of the electromagnetic

More information

Use of Stokes Parameters in Hard X-Ray Polarimetry

Use of Stokes Parameters in Hard X-Ray Polarimetry Use of Stokes Parameters in Hard X-Ray Polarimetry Brian Clark Senior Honors Thesis Presentation Monday March 3 13 Mentors: Dr. Henric Krawczynki and Dr. Fabian Kislat X-Ray and Gamma Ray Astroparticle

More information

Recent developments in Electromagnetic Hadron Form Factors

Recent developments in Electromagnetic Hadron Form Factors Recent developments in Electromagnetic Hadron Form Factors (JOH7RPDVL*XVWDIVVRQ '$31,$63K16DFOD\ :KDW are Form Factors? :K\ to measure? +RZ to measure? :KDWLVQHZ" Consequences, Conclusions 6SRNHSHUVR QV

More information

Does Quantum Mechanics Make Sense? Size

Does Quantum Mechanics Make Sense? Size Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why

More information

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM João Antônio Palma Setti, j.setti@pucpr.br Pontifícia Universidade Católica do Paraná / Rua Imaculada

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

More information

Structure Factors 59-553 78

Structure Factors 59-553 78 78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal

More information

Electric Dipole moments as probes of physics beyond the Standard Model

Electric Dipole moments as probes of physics beyond the Standard Model Electric Dipole moments as probes of physics beyond the Standard Model K. V. P. Latha Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Plan of the Talk Parity (P) and Time-reversal

More information

1 3 4 = 8i + 20j 13k. x + w. y + w

1 3 4 = 8i + 20j 13k. x + w. y + w ) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

Cross section, Flux, Luminosity, Scattering Rates

Cross section, Flux, Luminosity, Scattering Rates Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...

More information

discuss how to describe points, lines and planes in 3 space.

discuss how to describe points, lines and planes in 3 space. Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

AGATA The Advanced Gamma Ray Tracking Array

AGATA The Advanced Gamma Ray Tracking Array Ancillary Detector and Ancillary Detector Integration Working Group for: AGATA The Advanced Gamma Ray Tracking Array European 4π γ-array for structure studies at: Radioactive beam facilities: GSI, GANIL,

More information

Hard X-Ray polarimetry with position sensitive germanium detectors - studies of the recombination transitions into highly charged ions

Hard X-Ray polarimetry with position sensitive germanium detectors - studies of the recombination transitions into highly charged ions Hard X-Ray polarimetry with position sensitive germanium detectors - studies of the recombination transitions into highly charged ions Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

15.1 Factoring Polynomials

15.1 Factoring Polynomials LESSON 15.1 Factoring Polynomials Use the structure of an expression to identify ways to rewrite it. Also A.SSE.3? ESSENTIAL QUESTION How can you use the greatest common factor to factor polynomials? EXPLORE

More information

A. Ricci, E. Giuri. Materials and Microsystems Laboratory

A. Ricci, E. Giuri. Materials and Microsystems Laboratory Presented at the COMSOL Conference 2009 Milan FSI Analysis of Microcantilevers Vibrating in Fluid Environment Materials and Microsystems Laboratory Politecnico di Torino Outline Brief Presentation of Materials

More information

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000) Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

More information

Doctoring Data. (1) Radboud University Nijmegen (2) UMC Utrecht (3) University of Groningen. Trento, 21 june 2005 p.1/34

Doctoring Data. (1) Radboud University Nijmegen (2) UMC Utrecht (3) University of Groningen. Trento, 21 june 2005 p.1/34 Doctoring Data Johan de Swart, Mart Rentmeester, Rob Timmermans (1) Radboud University Nijmegen (2) UMC Utrecht (3) University of Groningen Trento, 21 june 25 p1/34 Contents Part I : np backward scattering

More information

Unit 6 Plane Stress and Plane Strain

Unit 6 Plane Stress and Plane Strain Unit 6 Plane Stress and Plane Strain Readings: T & G 8, 9, 10, 11, 12, 14, 15, 16 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems There are many structural configurations

More information

NMR Techniques Applied to Mineral Oil, Water, and Ethanol

NMR Techniques Applied to Mineral Oil, Water, and Ethanol NMR Techniques Applied to Mineral Oil, Water, and Ethanol L. Bianchini and L. Coffey Physics Department, Brandeis University, MA, 02453 (Dated: February 24, 2010) Using a TeachSpin PS1-A pulsed NMR device,

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

JANVIDA ROU. Introduction

JANVIDA ROU. Introduction HANBURY BROWN-TWISS INTERFEROMETRY IN SUBATOMIC PARTICLES JANVIDA ROU Introduction Many different experiments utilizing collisions have been developed to study nuclei and elementary particles. For example,

More information

12.510 Introduction to Seismology Spring 2008

12.510 Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 04/30/2008 Today s

More information

arxiv:hep-ph/0410120v2 2 Nov 2004

arxiv:hep-ph/0410120v2 2 Nov 2004 Photon deflection by a Coulomb field in noncommutative QED C. A. de S. Pires Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-970, João Pessoa - PB, Brazil. Abstract arxiv:hep-ph/0410120v2

More information

Modèle géométrique de plissement constraint par la rhéologie et l équilibre mécanique: Application possibe en régime extensif?

Modèle géométrique de plissement constraint par la rhéologie et l équilibre mécanique: Application possibe en régime extensif? Modèle géométrique de plissement constraint par la rhéologie et l équilibre mécanique: Application possibe en régime extensif? Yves M. Leroy (Laboratoire de Géologie, ENS), Bertrand Maillot (University

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

CHAPTER 7 TRAVERSE Section I. SELECTION OF TRAVERSE DEFINITION

CHAPTER 7 TRAVERSE Section I. SELECTION OF TRAVERSE DEFINITION CHAPTER 7 TRAVERSE Section I. SELECTION OF TRAVERSE DEFINITION A traverse is a series of straight lines called traverse legs. The surveyor uses them to connect a series of selected points called traverse

More information

Learning Vector Quantization: generalization ability and dynamics of competing prototypes

Learning Vector Quantization: generalization ability and dynamics of competing prototypes Learning Vector Quantization: generalization ability and dynamics of competing prototypes Aree Witoelar 1, Michael Biehl 1, and Barbara Hammer 2 1 University of Groningen, Mathematics and Computing Science

More information

Study of the B D* ℓ ν with the Partial Reconstruction Technique

Study of the B D* ℓ ν with the Partial Reconstruction Technique Study of the B D* ℓ ν with the Partial Reconstruction Technique + University of Ferrara / INFN Ferrara Dottorato di Ricerca in Fisica Ciclo XVII Mirco Andreotti 4 March 25 Measurement of B(B D*ℓν) from

More information

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam Jonathan Lang Advanced Photon Source APS Upgrade - MBA Lattice ε ο = 3100 pm ε ο = 80 pm What is emi7ance? I don t

More information

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005 Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital

More information

Section 2.4: Equations of Lines and Planes

Section 2.4: Equations of Lines and Planes Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Fall 12 PHY 122 Homework Solutions #8

Fall 12 PHY 122 Homework Solutions #8 Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i - 6.0j)10 4 m/s in a magnetic field B= (-0.80i + 0.60j)T. Determine the magnitude and direction of the

More information

GPR Polarization Simulation with 3D HO FDTD

GPR Polarization Simulation with 3D HO FDTD Progress In Electromagnetics Research Symposium Proceedings, Xi an, China, March 6, 00 999 GPR Polarization Simulation with 3D HO FDTD Jing Li, Zhao-Fa Zeng,, Ling Huang, and Fengshan Liu College of Geoexploration

More information

IAEA Consultants' Meeting on "Critical Assessment of Electron-Impact Cross Section Database for Be and B Plasma Impurity Ions"

IAEA Consultants' Meeting on Critical Assessment of Electron-Impact Cross Section Database for Be and B Plasma Impurity Ions XA9744434 International Atomic Energy Agency INDC(NDS)-369 I N DC INTERNATIONAL NUCLEAR DATA COMMITTEE IAEA Consultants' Meeting on "Critical Assessment of Electron-Impact Cross Section Database for Be

More information

Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating

Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating Michael McMearty and Frit Miot Special Thanks to Brendan Cross

More information

Physical Self-Calibration of X-ray and SZ Surveys

Physical Self-Calibration of X-ray and SZ Surveys Physical Self-Calibration of X-ray and SZ Surveys Greg L. Bryan, Zoltan Haiman (Columbia University) and Joshua D. Younger (CfA) 1. Cluster Surveys and Self-Calibration Clusters of galaxies form at the

More information

Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

tegrals as General & Particular Solutions

tegrals as General & Particular Solutions tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx

More information

Vibrations can have an adverse effect on the accuracy of the end effector of a

Vibrations can have an adverse effect on the accuracy of the end effector of a EGR 315 Design Project - 1 - Executive Summary Vibrations can have an adverse effect on the accuracy of the end effector of a multiple-link robot. The ability of the machine to move to precise points scattered

More information

Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Phenomeological Determination of the Orbital Angular Momentum

Phenomeological Determination of the Orbital Angular Momentum Phenomeological Determination of the Orbital Angular Momentum Gordon P. Ramsey Loyola University Chicago and Argonne National Lab Collaboration with Y. Binder & D. Sivers SPIN 2008, University of Virginia-Oct.

More information

Summary of single and double electron capture cross sections for ion-atom collisions at low and intermediate energy

Summary of single and double electron capture cross sections for ion-atom collisions at low and intermediate energy Summary of single and double electron capture cross sections for ion-atom collisions at low and intermediate energy Anna Simon Institute of Physics, Jagiellonian University, Cracow Abstract: As the low

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Lecture 5 Motion of a charged particle in a magnetic field

Lecture 5 Motion of a charged particle in a magnetic field Lecture 5 Motion of a charged particle in a magnetic field Charged particle in a magnetic field: Outline 1 Canonical quantization: lessons from classical dynamics 2 Quantum mechanics of a particle in a

More information

Unit 3 (Review of) Language of Stress/Strain Analysis

Unit 3 (Review of) Language of Stress/Strain Analysis Unit 3 (Review of) Language of Stress/Strain Analysis Readings: B, M, P A.2, A.3, A.6 Rivello 2.1, 2.2 T & G Ch. 1 (especially 1.7) Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Dev eloping a General Postprocessor for Multi-Axis CNC Milling Centers

Dev eloping a General Postprocessor for Multi-Axis CNC Milling Centers 57 Dev eloping a General Postprocessor for Multi-Axis CNC Milling Centers Mihir Adivarekar 1 and Frank Liou 1 1 Missouri University of Science and Technology, liou@mst.edu ABSTRACT Most of the current

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Krzysztof Rȩbilas

More information

Anharmonicity and Weak Mode Assignment in La 2 x Sr x CuO 4 with Oxygen Isotopic Substitution

Anharmonicity and Weak Mode Assignment in La 2 x Sr x CuO 4 with Oxygen Isotopic Substitution Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 1 Proceedings of the Symposium K: Complex Oxide Materials for New Technologies of E-MRS Fall Meeting 2006, Warsaw, September 4 8, 2006 Anharmonicity and Weak

More information

VBA Macro for construction of an EM 3D model of a tyre and part of the vehicle

VBA Macro for construction of an EM 3D model of a tyre and part of the vehicle VBA Macro for construction of an EM 3D model of a tyre and part of the vehicle Guillermo Vietti, Gianluca Dassano, Mario Orefice LACE, Politecnico di Torino, Turin, Italy. guillermo.vietti@polito.it Work

More information