Tan, Yung Sern; Yeo, Kiat Seng; Boon, Chirn Chye; Do, Manh Anh. Tan, Y. S., Yeo, K. S., Boon, C. C., & Do, M. A. (2011).

Size: px
Start display at page:

Download "Tan, Yung Sern; Yeo, Kiat Seng; Boon, Chirn Chye; Do, Manh Anh. Tan, Y. S., Yeo, K. S., Boon, C. C., & Do, M. A. (2011)."

Transcription

1 Title esign o a hysteresis requency lock detector or dualloops clock and data recovery circuit Authors itation Tan, Yung Sern; Yeo, Kiat Seng; Boon, hirn hye; o, Manh Anh Tan, Y. S., Yeo, K. S., Boon,.., & o, M. A esign o a hysteresis requency lock detector or dualloops clock and data recovery circuit. 011 IEEE International onerence o Electron evices and Solid- State ircuits, pp.1-. ate 011 UL ights 011 IEEE. Personal use o this material is permitted. Permission rom IEEE must be obtained or all other uses, in any current or uture media, including reprinting/republishing this material or advertising or promotional purposes, creating new collective works, or resale or redistribution to servers or lists, or reuse o any copyrighted component o this work in other works. The published version is available at: [

2 esign o a hysteresis lock detector or dual-loops clock and data recovery circuit Yung Sern TAN, Kiat Seng YEO, Senior Member, IEEE, hirn hye BOON, and Manh Anh O, Senior Member, IEEE VITUS, an I esign entre o Excellence at the School o Electrical and Electronic Engineering, Nanyang Technological University, Singapore tany016@ntu.edu.sg Abstract In dual-loops clock and data recovery circuit design, lock detector is crucial in controlling the switching within loop. The setting o the requency accuracy o lock detector is a tough task as large ppm will leads to a longer lock time or phase tracking loop and small ppm will leads to more switching time between the loops. A novel lock detector with hysteresis property is proposed in this paper. It provides two dierent ppms in both dierent conditions; a smaller ppm or in-lock condition and a larger ppm or out-o-lock condition. This paper also provides a detailed analysis o the proposed lock detector at dierent conditions. The proposed lock detector is simulated in um technology and it consumes 1.1-mW at a 1.8V supply voltage. Index Terms dual-loops clock and data recovery circuit, requency lock detector, hysteresis property. I. INTOUTION As the demand or data communication has increased exponentially in the past decade, optical iber has become one o the critical mediums in communication system. ue to the importance o clock and data recovery circuit in optical communication system [1], researchers have introduced dierent types o architecture []. In order to achieve a aster locking time, dual-loops architectures were explored [3, 4]. Fig. 1 shows the block diagram o a dual-loops architecture [5]. The architecture is ormed by two main loops: a requency tracking loop and a phase tracking loop. The lock detector L [6] in this architecture acts as a vital role to control the switching between the loops. At the starting, as the requency o voltage control oscillator VO is urther away rom the operating requency, the L will enable the requency tracking loop. The requency tracking loop will track the VO requency so that its requency is within a certain ppm o the required operating requency. The L will then switch the loop to phase tracking loop when VO requency meets the required ppm. The loop will then continue to track the requency and phase o the VO and provides a recovered clock. The L will only switch the loop back to requency in F EF Fig. 1. P L PF etime ata P P F IV LPF VO Block diagram o a dual-loops architecture. tracking loop when the VO requency is being interrupted and is out o the required ppm. Through this architecture, the is able to track its requency with a shorter time. The locking range o the is also expanded through the additional requency tracking loop. One o the problems in the conventional L architecture is that there is only one required ppm to switch between requency tracking loop and phase tracking loop [7]. The setting o the required ppm has been a challenging task or the designer. When the required ppm is set to be small, the requency tracking loop will track the VO requency to a closer operating requency which helps to shorten the lock time o the. However, during the phase tracking loop, the VO requency may be out o the required ppm i it is set to be too small. Instead o having a shorter lock time, the will then take a longer time to lock as more switching activity occurs between both requency tracking loop and phase tracking loop. However, i the required ppm is set to be large, the phase tracking loop will have a longer lock time as the VO requency is urther away rom the operating requency. In order to circumvent this diiculty, a novel lock detector with hysteresis property is proposed in this paper. Section II describes the architecture o the proposed L and section III shows the calculation and analysis o the proposed L. Section IV provides simulation results and discussion while section V summarizes the paper. /N Phase Tracking Loop Tracking Loop F VO

3 II. AHITETUE OF THE POPOSE LOK ETETO In order to circumvent the problem o having only one required ppm, the hysteresis property o the proposed L provides two dierent required ppms or two dierent conditions. uring the requency tracking loop, the required ppm is preerred to be small so that the lock time o the can be decreased. Vice versa, the required ppm is preerred to be larger when the is in the phase tracking loop which prevents the loop rom switching back to requency tracking loop while the is recovering the clock. Through these conditions, the hysteresis property o L will have smaller required ppm to switch the loop rom requency tracking loop to phase tracking loop in-lock condition and vice versa or a larger required ppm to switch the loop rom phase tracking loop to requency tracking loop out-o-lock condition. Fig. shows the block diagram o the proposed L architecture. It is basically composed o N-bits counters, three -lip-lops FF, and a ew decision logic circuits. The main purpose o the counter is to count the cycle number o the reerence clock F EF and the VO clock ater the divider F IV respectively. The pass-transistor logic ater the counter is to control the hysteresis property o the L circuit. The decision logic circuit at the bottom o Fig. helps to decide whether the requency is lock or not. The main concept o the proposed L architecture is that during the in-lock condition, both N-bit counters o F EF and F IV will begin to start counting the number o cycles o each clock. The logic circuit will then compare the value o both cycles. I either one o the counter reaches the number o N while the other number is still smaller than N-1, then the logic value o will become one which means that the requency o VO is still greater than the required ppm. A small pulse o reset signal,, will then occur and trigger a low to the output signal, LOK. The counters will then being reset and recount the number o cycle again. The whole process will continue until the other counter number is greater or equal to N-1. The timing diagrams o the in-lock condition are shown in Fig. 3a. As or the out-o-lock condition, the pass transistor logic will then increase the number o cycle count. Instead o comparing the cycle number o N-1 + 1, the logic circuit is now compared to the cycle number o N-1 + k, where k is an integer. ue to this increase in number, the required ppm has increased or out-o-lock condition. Fig. 3b F EF F IV Fig.. LK N-bit ounter ESET LK N-bit ounter ESET Block diagram o the proposed L architecture. shows the timing diagrams o out-o-lock condition. The ollowing section will show the calculation and analysis o the proposed L circuit. III. ALULATION AN ANALYSIS For the in-lock condition, the logic circuit compares both cycle number o N-1 and N In order to obtain a logic high or the LOK signal, the period o VO has to satisy the ollowing conditions, 1 TEF TIV A 0 A k B 0 B k -FF + 1a + 1 T T 1b and IV EF where T EF and T IV are the period o F EF and F IV respectively. By combining these two conditions, the -FF ESET -FF ESET LOK LOK

4 A 1A N-bit ounter F EF B 1B N-bit ounter ecision Logic ircuit F IV Fig. 4. Layout o the proposed L architecture. LOK around ±488ppm and the equation can be written as lock VO lock 3 A k A 0 F EF A k B 1B 0 F IV a In order or the lock detector to change rom in-lock to out-o-lock, it will then use N-1 + k, where k is an integer, as a reerence instead o N Hence, the requency range will be larger and is given by k + lock VO As the value o N has been set by the previous required ppm, the ppm or out-o-lock is then being set by the value o k. I the value o k is chosen to be, the required ppm is around ±1950ppm and can be written as N 1 + k lock lock VO lock 5. LOK b Fig. 3. Timing diagrams o the proposed L architecture. requency range o IV and VO or the in-lock is given as ollows, EF IV +1 lock VO N 1 +1 where lock is the required VO requency. When N is equal to 1, the required ppm or in-lock condition will be EF lock a b IV. SIMULATION ESULTS AN ISUSSION The proposed L circuit is implemented by using Global-oundries 0.18-μm MOS process. It is simulated in adence SpectreF environment. The N-bit counter is implemented with the transmissionn gate architecture and the logic gates are implemented with static complementary MOS technology. Fig. 4 shows the layout diagram o the proposed L design. It consumes a total area o µm. In order to ensure the unctionality o the proposed L, it is simulated in a dual-loops design shown in Fig. 1. The operates under a data rate o 10-Gb/s with a requency divider o 16. The simulation results are shown in Fig. 5. At the starting, as VO requency is very ar away or the operating requency, the LOK signal is low to enable the requency tracking loop to track the requency. As the requency o VO is being locked, the LOK signal changes to high. The phase tracking loop

5 ppm or out-o-lock condition. It oers a compact design and consumes only 1.1-mW at 1.8V supply voltage. Fig. 5. tracking tracking Finished Tracking Interruption LOK signal set back to low due to LPF interruption Simulation results o the proposed L architecture. will start to track the phase and recover the clock. However, when there are some interruptions to the control voltage, the L will then signal a low to the LOK signal so that the requency tracking loop will track the requency again. At a power supply voltage o 1.8V, the proposed L consumes only 1.1-mW. V. ONLUSION A novel lock detector with hysteresis property is proposed in this paper. It has the ability to give a smaller required ppm or in-lock condition and a larger required EFEENES [1] J. Savoj and B. azavi, High-speed MOS circuits or optical receivers. Boston: Kluwer Academic Publishers, 001. [] H. Ming-ta and G. Sobelman, "Architectures or multigigabit wire-linked clock and data recovery," ircuits and Systems Magazine, IEEE, vol. 8, pp , 008. [3]. Fan-Ta and W. Jen-Ming, "An Extended Phase etector.56/3.gb/s lock And ata ecovery design with igitally Assisted etector," in ircuits and Systems, 009. ISAS 009. IEEE International Symposium on, 009, pp [4] Y. Jae-Wook, K. Tae-Ho, K. ong-kyun, and K. Jin-Ku, "A MOS 5.4/3.4Gbps dual-rate clock and data recovery design or isplayport v1.," in SO onerence SO, 010 IEEE International, 010, pp [5] S. Byun, J.. Lee, J. H. Shim, K. A. K. K. Kim, and H. K. A. Y. H. K. Yu, "A 10-Gb/s MOS and EMUX I With a uarter-ate Linear Phase etector," Solid-State ircuits, IEEE Journal o, vol. 41, pp , 006. [6] V. Melikyan, A. Hovsepyan, M. Ishkhanyan, and T. Hakobyan, "igital lock detector or PLL," in esign & Test Symposium EWTS, 008 East-West, 008, pp [7] A. Hovsepyan, V. Melikyan, M. Ishkhanyan, T. Hakobyan, and G. Harutyunyan, " detector with stable parameters," in esign and Test Workshop IT, 009 4th International, 009, pp. 1-4.

A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link

A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link Kang jik Kim, Ki sang Jeong, Seong ik Cho The Department of Electronics Engineering Chonbuk National

More information

A 1.62/2.7/5.4 Gbps Clock and Data Recovery Circuit for DisplayPort 1.2 with a single VCO

A 1.62/2.7/5.4 Gbps Clock and Data Recovery Circuit for DisplayPort 1.2 with a single VCO JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.3, JUNE, 2013 http://dx.doi.org/10.5573/jsts.2013.13.3.185 A 1.62/2.7/5.4 Clock and Data Recovery Circuit for DisplayPort 1.2 with a single VCO

More information

Sequential Logic: Clocks, Registers, etc.

Sequential Logic: Clocks, Registers, etc. ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design

More information

AM Receiver. Prelab. baseband

AM Receiver. Prelab. baseband AM Receiver Prelab In this experiment you will use what you learned in your previous lab sessions to make an AM receiver circuit. You will construct an envelope detector AM receiver. P1) Introduction One

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

Analog/Digital Conversion. Analog Signals. Digital Signals. Analog vs. Digital. Interfacing a microprocessor-based system to the real world.

Analog/Digital Conversion. Analog Signals. Digital Signals. Analog vs. Digital. Interfacing a microprocessor-based system to the real world. Analog/Digital Conversion Analog Signals Interacing a microprocessor-based system to the real world. continuous range x(t) Analog and digital signals he bridge: Sampling heorem Conversion concepts Conversion

More information

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse. DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

IN RECENT YEARS, the increase of data transmission over

IN RECENT YEARS, the increase of data transmission over 1356 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 8, AUGUST 2004 A 3.125-Gb/s Clock and Data Recovery Circuit for the 10-Gbase-LX4 Ethernet Rong-Jyi Yang, Student Member, IEEE, Shang-Ping Chen, and

More information

Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology

Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Two-phase clocking. Testing of combinational (Chapter 4) and sequential (Chapter

More information

Copyright 2005 IEEE. Reprinted from IEEE MTT-S International Microwave Symposium 2005

Copyright 2005 IEEE. Reprinted from IEEE MTT-S International Microwave Symposium 2005 Copyright 2005 IEEE Reprinted rom IEEE MTT-S International Microwave Symposium 2005 This material is posted here with permission o the IEEE. Such permission o the IEEE does t in any way imply IEEE endorsement

More information

ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7

ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7 ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7 13.7 A 40Gb/s Clock and Data Recovery Circuit in 0.18µm CMOS Technology Jri Lee, Behzad Razavi University of California, Los Angeles, CA

More information

7. Latches and Flip-Flops

7. Latches and Flip-Flops Chapter 7 Latches and Flip-Flops Page 1 of 18 7. Latches and Flip-Flops Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The

More information

A MPCP-Based Centralized Rate Control Method for Mobile Stations in FiWi Access Networks

A MPCP-Based Centralized Rate Control Method for Mobile Stations in FiWi Access Networks A MPCP-Based Centralized Rate Control Method or Mobile Stations in FiWi Access Networks 215 IEEE. Personal use o this material is permitted. Permission rom IEEE must be obtained or all other uses, in any

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION 35'th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting San Diego, December 2-4, 2003 A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION Józef Kalisz and Ryszard Szplet

More information

EFMPlus Data Recovery Circuit with a Fast Locking Scheme for 12X Speed DVD-ROM Drivers

EFMPlus Data Recovery Circuit with a Fast Locking Scheme for 12X Speed DVD-ROM Drivers Journal of the Korean Physical Society, Vol. 40, No. 4, April 2002, pp. 557 561 EFMPlus Data Recovery Circuit with a Fast Locking Scheme for 12X Speed DVD-ROM Drivers Jae-Chul Lee, Jae-Shin Lee and Suki

More information

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1 WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

Vi, fi input. Vphi output VCO. Vosc, fosc. voltage-controlled oscillator

Vi, fi input. Vphi output VCO. Vosc, fosc. voltage-controlled oscillator Experiment #4 CMOS 446 Phase-Locked Loop c 1997 Dragan Maksimovic Department of Electrical and Computer Engineering University of Colorado, Boulder The purpose of this lab assignment is to introduce operating

More information

Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1

Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1 ing Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884 - Spring 2005 2/18/05

More information

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

A Novel Low Power Fault Tolerant Full Adder for Deep Submicron Technology

A Novel Low Power Fault Tolerant Full Adder for Deep Submicron Technology International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Issue-1 E-ISSN: 2347-2693 A Novel Low Power Fault Tolerant Full Adder for Deep Submicron Technology Zahra

More information

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6 Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 1304-6 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often

More information

Accurate Loss-of-Signal Detection in 10Gbps Optical Receivers using the MAX3991

Accurate Loss-of-Signal Detection in 10Gbps Optical Receivers using the MAX3991 Design Note: HFDN-34.0 Rev.1; 04/08 Accurate Loss-of-Signal Detection in 10Gbps Optical Receivers using the MAX3991 Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams

More information

CHARGE pumps are the circuits that used to generate dc

CHARGE pumps are the circuits that used to generate dc INTERNATIONAL JOURNAL OF DESIGN, ANALYSIS AND TOOLS FOR CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JUNE 2011 27 A Charge Pump Circuit by using Voltage-Doubler as Clock Scheme Wen Chang Huang, Jin Chang Cheng,

More information

Development of a Simple Sound Activated Burglar Alarm System

Development of a Simple Sound Activated Burglar Alarm System [ Leonardo Journal of Sciences ISSN 1583-0233 Issue 9, July-December 2006 p. 97-102 Development of a Simple Sound Activated Burglar Alarm System Department of Electrical and Computer Engineering, Federal

More information

An All-Digital Phase-Locked Loop with High Resolution for Local On-Chip Clock Synthesis

An All-Digital Phase-Locked Loop with High Resolution for Local On-Chip Clock Synthesis An All-Digital Phase-Locked Loop with High Resolution for Local On-Chip Clock Synthesis Oliver Schrape 1, Frank Winkler 2, Steffen Zeidler 1, Markus Petri 1, Eckhard Grass 1, Ulrich Jagdhold 1 International

More information

LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING

LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING A thesis work submitted to the faculty of San Francisco State University In partial fulfillment of the requirements for

More information

Low Power AMD Athlon 64 and AMD Opteron Processors

Low Power AMD Athlon 64 and AMD Opteron Processors Low Power AMD Athlon 64 and AMD Opteron Processors Hot Chips 2004 Presenter: Marius Evers Block Diagram of AMD Athlon 64 and AMD Opteron Based on AMD s 8 th generation architecture AMD Athlon 64 and AMD

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

Chapter 9 Latches, Flip-Flops, and Timers

Chapter 9 Latches, Flip-Flops, and Timers ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

More information

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

More information

1997 Mixed-Signal Products SLAA011B

1997 Mixed-Signal Products SLAA011B Application Report 1997 Mixed-Signal Products SLAA011B Contents 1 Introduction................................................................................... 1 2 Theory of an Analog Phase-Locked Loop

More information

ECE380 Digital Logic

ECE380 Digital Logic ECE38 igital Logic Flip-Flops, Registers and Counters: Flip-Flops r.. J. Jackson Lecture 25- Flip-flops The gated latch circuits presented are level sensitive and can change states more than once during

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CE4: Components and esign Techniques for igital ystems Tajana imunic osing ources: Where we are now What we ve covered so far (Chap -5, App. A& B) Number representations Boolean algebra OP and PO Logic

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

A Cellular Phone Based Home / Office Controller & Alarm System

A Cellular Phone Based Home / Office Controller & Alarm System G.U. Journal of Science 9(): -6 (006) www.gujs.org A Cellular Phone Based Home / Office Controller & Alarm System H. Haldun GÖKTAŞ, ihat DALDAL Gazi University Technical Education Faculty, 06500, Besevler,

More information

A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

More information

A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem

A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem A Novel Low Power, High Speed 4 Transistor CMOS Full Adder Cell with 5% Improvement in Threshold Loss Problem T. Vigneswaran, B. Mukundhan, and P. Subbarami Reddy Abstract Full adders are important components

More information

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter. Raghu Tumati Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

More information

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous

More information

Phase-Locked Loop Based Clock Generators

Phase-Locked Loop Based Clock Generators Phase-Locked Loop Based Clock Generators INTRODUCTION As system clock frequencies reach 100 MHz and beyond maintaining control over clock becomes very important In addition to generating the various clocks

More information

Abstract. Cycle Domain Simulator for Phase-Locked Loops

Abstract. Cycle Domain Simulator for Phase-Locked Loops Abstract Cycle Domain Simulator for Phase-Locked Loops Norman James December 1999 As computers become faster and more complex, clock synthesis becomes critical. Due to the relatively slower bus clocks

More information

International Journal of Electronics and Computer Science Engineering 1482

International Journal of Electronics and Computer Science Engineering 1482 International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant

More information

User Guide. Introduction. HCS12PLLCALUG/D Rev. 0, 12/2002. HCS12 PLL Component Calculator

User Guide. Introduction. HCS12PLLCALUG/D Rev. 0, 12/2002. HCS12 PLL Component Calculator User Guide HCS12PLLCALUG/D Rev. 0, 12/2002 HCS12 PLL Component Calculator by Stuart Robb Applications Engineering Motorola, East Kilbride Introduction The MC9S12D amily o MCUs includes a Phase-Locked Loop

More information

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 ounter ounters ounters are a specific type of sequential circuit. Like registers, the state, or the flip-flop values themselves, serves as the output. The output value increases by one on each clock cycle.

More information

Rong-Jyi YANG, Nonmember and Shen-Iuan LIU a), Member

Rong-Jyi YANG, Nonmember and Shen-Iuan LIU a), Member 1726 PAPER Special Section on Papers Selected from AP-ASIC 2004 A Fully Integrated 1.7 3.125 Gbps Clock and Data Recovery Circuit Using a Gated Frequency Detector Rong-Jyi YANG, Nonmember and Shen-Iuan

More information

VOLTAGE-TO-FREQUENCY CONVERTER

VOLTAGE-TO-FREQUENCY CONVERTER VOTAGE-TO-FEQUENY ONVETE Internal circuit of M I VOTAGE EFEENE M OP AMP UENT MIO Q,9V Q P B Vin T ONE SHOT TIME VOT OMP VOT OMP S Q Q Q Q Q Q In direct transmission of an analog signal (below), V AN will

More information

Lesson 12 Sequential Circuits: Flip-Flops

Lesson 12 Sequential Circuits: Flip-Flops Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability

More information

Design and Simulation of Soft Switched Converter Fed DC Servo Drive

Design and Simulation of Soft Switched Converter Fed DC Servo Drive International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-237, Volume-1, Issue-5, November 211 Design and Simulation of Soft Switched Converter Fed DC Servo Drive Bal Mukund Sharma, A.

More information

Optimization and Comparison of 4-Stage Inverter, 2-i/p NAND Gate, 2-i/p NOR Gate Driving Standard Load By Using Logical Effort

Optimization and Comparison of 4-Stage Inverter, 2-i/p NAND Gate, 2-i/p NOR Gate Driving Standard Load By Using Logical Effort Optimization and Comparison of -Stage, -i/p NND Gate, -i/p NOR Gate Driving Standard Load By Using Logical Effort Satyajit nand *, and P.K.Ghosh ** * Mody Institute of Technology & Science/ECE, Lakshmangarh,

More information

VENDING MACHINE. ECE261 Project Proposal Presentaion. Members: ZHANG,Yulin CHEN, Zhe ZHANG,Yanni ZHANG,Yayuan

VENDING MACHINE. ECE261 Project Proposal Presentaion. Members: ZHANG,Yulin CHEN, Zhe ZHANG,Yanni ZHANG,Yayuan VENDING MACHINE ECE261 Project Proposal Presentaion Members: ZHANG,Yulin CHEN, Zhe ZHANG,Yanni ZHANG,Yayuan Abstract This project will design and implement a coin operated vending machine controller The

More information

UNINTERRUPTIBLE POWER SUPPLIES >9900AUPS UNINTERRUPTIBLE POWER SUPPLIES

UNINTERRUPTIBLE POWER SUPPLIES >9900AUPS UNINTERRUPTIBLE POWER SUPPLIES UNINTERRUPTIBLE POWER SUPPLIES 9900A >9900AUPS UNINTERRUPTIBLE POWER SUPPLIES 9900A The 9900A UPS system uses the most advanced IGBT in both the converter and inverter with Digital Signal Processor (DSP)

More information

PLL frequency synthesizer

PLL frequency synthesizer ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture

More information

OPTICAL COMMUNICATION BASED STEPPER MOTOR CONTROL USING PULSE WIDTH MODULATION

OPTICAL COMMUNICATION BASED STEPPER MOTOR CONTROL USING PULSE WIDTH MODULATION 2011 pp 1-5 OPTICAL COMMUNICATION BASED STEPPER MOTOR CONTROL USING PULSE WIDTH MODULATION Vinayak Abrol* Department of Electronics & Communication, SSGPURC Panjab University Chandigarh, India Votrix13@gmail.com

More information

Design and analysis of flip flops for low power clocking system

Design and analysis of flip flops for low power clocking system Design and analysis of flip flops for low power clocking system Gabariyala sabadini.c PG Scholar, VLSI design, Department of ECE,PSNA college of Engg and Tech, Dindigul,India. Jeya priyanka.p PG Scholar,

More information

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

More information

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to

More information

A simple RF/Microwave frequency counter

A simple RF/Microwave frequency counter Matjaz Vidmar, S53MV A simple RF/Microwave frequency counter I decided to design a simple, easily reproducible counter around a PIC 16F876A. The basic counter range is extended to at least 180MHz using

More information

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

More information

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Sequential Logic Design Principles.Latches and Flip-Flops

Sequential Logic Design Principles.Latches and Flip-Flops Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch

More information

Lecture 200 Clock and Data Recovery Circuits - I (6/26/03) Page 200-1

Lecture 200 Clock and Data Recovery Circuits - I (6/26/03) Page 200-1 Lecture 200 Clock and ata Recovery Circuits - (6/26/03) Page 200-1 LECTURE 200 CLOCK N T RECOVERY CRCUTS (References [6]) Objective The objective of this presentation is: 1.) Understand the applications

More information

How To Test The Performance Of An Oversampling Cdr In An Fgpa, Jitter And Memory On A Black Box (Cdr) In A Test Program

How To Test The Performance Of An Oversampling Cdr In An Fgpa, Jitter And Memory On A Black Box (Cdr) In A Test Program 74 M. KUBÍČEK, Z. KOLKA, BLIND OVERSAMPLING DATA RECOVERY WITH LOW HARDWARE COMPLEXITY Blind Oversampling Data Recovery with Low Hardware Complexity Michal KUBÍČEK, Zdeněk KOLKA Dept. of Radio Electronics,

More information

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters: Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary

More information

Automated Switching Mechanism for Multi-Standard RFID Transponder

Automated Switching Mechanism for Multi-Standard RFID Transponder Automated Switching Mechanism for Multi-Standard RFID Transponder Teh Kim Ting and Khaw Mei Kum Faculty of Engineering Multimedia University Cyberjaya, Malaysia mkkhaw@mmu.edu.my Abstract This paper presents

More information

Fundamentals of HVAC Control Systems

Fundamentals of HVAC Control Systems ASHRAE Hong Kong Chapter Technical Workshop Fundamentals of HVAC Control Systems 18, 19, 25, 26 April 2007 2007 ASHRAE Hong Kong Chapter Slide 1 Chapter 5 Control Diagrams and Sequences 2007 ASHRAE Hong

More information

A New Programmable RF System for System-on-Chip Applications

A New Programmable RF System for System-on-Chip Applications Vol. 6, o., April, 011 A ew Programmable RF System for System-on-Chip Applications Jee-Youl Ryu 1, Sung-Woo Kim 1, Jung-Hun Lee 1, Seung-Hun Park 1, and Deock-Ho Ha 1 1 Dept. of Information and Communications

More information

A Beginning in the Reversible Logic Synthesis of Sequential Circuits

A Beginning in the Reversible Logic Synthesis of Sequential Circuits A Beginning in the Reversible Logic Synthesis of Sequential s Himanshu Thapliyal and M.B Srinivas Centre for VLSI and Embedded System Technologies International Institute of Information Technology, Hyderabad,

More information

TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN

TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department

More information

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

Sequential 4-bit Adder Design Report

Sequential 4-bit Adder Design Report UNIVERSITY OF WATERLOO Faculty of Engineering E&CE 438: Digital Integrated Circuits Sequential 4-bit Adder Design Report Prepared by: Ian Hung (ixxxxxx), 99XXXXXX Annette Lo (axxxxxx), 99XXXXXX Pamela

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Creating a Usable Power Supply from a Solar Panel

Creating a Usable Power Supply from a Solar Panel Creating a Usable Power Supply from a Solar Panel An exploration in DC- DC converters By Kathleen Ellis Advised by Dr. Derin Sherman Department of Physics, Cornell College November 21, 2012 Introduction

More information

WINNER-TAKE-ALL ABSTRACT

WINNER-TAKE-ALL ABSTRACT 703 WINNER-TAKE-ALL NETWORKS OF O(N) COMPLEXITY J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125 ABSTRACT We have designed, fabricated, and

More information

POWER-VOLTAGE MONITORING IC WITH WATCHDOG TIMER

POWER-VOLTAGE MONITORING IC WITH WATCHDOG TIMER FUJITSU SEMICONDUCTOR DATA SHEET DS04-27402-2E ASSP POWER-VOLTAGE MONITORING IC WITH WATCHDOG TIMER MB3793-42/30 DESCRIPTION The MB3793 is an integrated circuit to monitor power voltage; it incorporates

More information

Performance Comparison of an Algorithmic Current- Mode ADC Implemented using Different Current Comparators

Performance Comparison of an Algorithmic Current- Mode ADC Implemented using Different Current Comparators Performance Comparison of an Algorithmic Current- Mode ADC Implemented using Different Current Comparators Veepsa Bhatia Indira Gandhi Delhi Technical University for Women Delhi, India Neeta Pandey Delhi

More information

Features. Applications

Features. Applications LM555 Timer General Description The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the

More information

BUILD YOUR OWN RC SWITCH (Issue 3)

BUILD YOUR OWN RC SWITCH (Issue 3) PART ONE SINGLE ELECTRONIC RC SWITCH Fancy switching the lights using your radio, then here is a circuit you may consider building. It only uses one IC and seven other components for a single switch and

More information

The components. E3: Digital electronics. Goals:

The components. E3: Digital electronics. Goals: E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

More information

(Refer Slide Time: 00:01:16 min)

(Refer Slide Time: 00:01:16 min) Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control

More information

Using quantum computing to realize the Fourier Transform in computer vision applications

Using quantum computing to realize the Fourier Transform in computer vision applications Using quantum computing to realize the Fourier Transorm in computer vision applications Renato O. Violin and José H. Saito Computing Department Federal University o São Carlos {renato_violin, saito }@dc.uscar.br

More information

AN2680 Application note

AN2680 Application note Application note Fan speed controller based on STDS75 or STLM75 digital temperature sensor and ST72651AR6 MCU Introduction This application note describes the method of defining the system for regulating

More information

An Intelligent Middleware Platform and Framework for RFID Reverse Logistics

An Intelligent Middleware Platform and Framework for RFID Reverse Logistics International Journal of Future Generation Communication and Networking 75 An Intelligent Middleware Platform and Framework for RFID Reverse Logistics Jihyun Yoo, and Yongjin Park Department of Electronics

More information

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset October 1987 Revised March 2002 CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset General Description The CD4027BC dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits

More information

Room Temperature based Fan Speed Control System using Pulse Width Modulation Technique

Room Temperature based Fan Speed Control System using Pulse Width Modulation Technique Room Temperature based Fan Speed Control System using Pulse Width Modulation Technique Vaibhav Bhatia Department of Electrical and Electronics Engg., Bhagwan Parshuram Institute of Technology, New Delhi-110089,

More information

8051 MICROCONTROLLER COURSE

8051 MICROCONTROLLER COURSE 8051 MICROCONTROLLER COURSE Objective: 1. Familiarization with different types of Microcontroller 2. To know 8051 microcontroller in detail 3. Programming and Interfacing 8051 microcontroller Prerequisites:

More information

Keywords: rainfall detection, rain sensor, buzzer and alarm system.

Keywords: rainfall detection, rain sensor, buzzer and alarm system. Volume 5, Issue 4, April 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Design of Rain

More information

. MEDIUM SPEED OPERATION - 8MHz (typ.) @ . MULTI-PACKAGE PARALLEL CLOCKING FOR HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE

. MEDIUM SPEED OPERATION - 8MHz (typ.) @ . MULTI-PACKAGE PARALLEL CLOCKING FOR HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE. MEDIUM SPEED OPERATION - 8MHz (typ.) @ CL = 50pF AND DD-SS = 10. MULTI-PACKAGE PARALLEL CLOCKING FOR SYNCHRONOUS HIGH SPEED OUTPUT RES-

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. PRESETTABLE BCD/DECADE UP/DOWN COUNTERS PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS The SN54/74LS90 is a synchronous UP/DOWN BCD Decade (842) Counter and the SN54/74LS9 is a synchronous UP/DOWN Modulo-6

More information