Introduction to many-body Green s functions

Size: px
Start display at page:

Download "Introduction to many-body Green s functions"

Transcription

1 Introduction to many-body Green s functions Matteo Gatti European Theoretical Spectroscopy Facility (ETSF) NanoBio Spectroscopy Group - UPV San Sebastián - Spain ELK school - CECAM 2011

2 Outline 1 Motivation 2 One-particle Green s functions: GW approximation 3 Two-particle Green s functions: Bethe-Salpeter equation 4 Micro-macro connection

3 References Francesco Sottile PhD thesis, Ecole Polytechnique (2003) francesco/tesi_dot.pdf Fabien Bruneval PhD thesis, Ecole Polytechnique (2005) bruneval_these.pdf Giovanni Onida, Lucia Reining, and Angel Rubio Rev. Mod. Phys. 74, 601 (2002). G. Strinati Rivista del Nuovo Cimento 11, (12)1 (1988).

4 Outline 1 Motivation 2 One-particle Green s functions: GW approximation 3 Two-particle Green s functions: Bethe-Salpeter equation 4 Micro-macro connection

5 Motivation Theoretical spectroscopy Calculate and reproduce Understand and explain Predict Exp. at 30 K from: P. Lautenschlager et al., Phys. Rev. B 36, 4821 (1987).

6 Theoretical Spectroscopy Which kind of spectra? Which kind of tools?

7 Why do we have to study more than DFT? Absorption spectrum of bulk silicon in DFT How can we understand this?

8 Why do we have to study more than DFT? Absorption spectrum of bulk silicon in DFT Spectroscopy is exciting!

9 MBPT vs. TDDFT: different worlds, same physics MBPT based on Green s functions one-particle G: electron addition and removal - GW two-particle L: electron-hole excitation - BSE moves (quasi)particles around is intuitive (easy) TDDFT based on the density response function χ: neutral excitations moves density around is efficient (simple)

10 Response functions External perturbation V ext applied on the sample V tot acting on the electronic system Potentials Dielectric function δv tot = δv ext + δv ind ɛ = δv ext δv tot δv ind = vδρ = 1 v δρ ɛ 1 = δv tot = 1 + v δv ext δv tot δρ δv ext

11 Response functions External perturbation V ext applied on the sample V tot acting on the electronic system Dielectric function P = ɛ = δv ext δv tot = 1 vp ɛ 1 = δv tot δv ext = 1 + vχ δρ δv tot χ = δρ δv ext χ = P + Pvχ P = χ 0 + χ 0 f xc P

12 Micro-macro connection Microscopic-Macroscopic connection: local fields χ G,G (q, ω) = P G,G (q, ω) + P G,G1 (q, ω)v G1 (q)χ G1,G (q, ω) ɛ 1 G,G (q, ω) = δ G,G + v G (q)χ G,G (q, ω) ɛ M (q, ω) = 1 ɛ 1 G=0,G =0 (q, ω) Adler, Phys. Rev. 126 (1962); Wiser, Phys. Rev. 129 (1963).

13 Micro-macro connection Microscopic-Macroscopic connection: local fields ɛ M (q, ω) = 1 v G=0 (q) χ G=0,G =0(q, ω) χ G,G (q, ω) = P G,G (q, ω) + P G,G1 (q, ω) v G1 (q) χ G1,G (q, ω) v G (q) = 0 for G = 0 v G (q) = v G (q) for G 0 Hanke, Adv. Phys. 27 (1978).

14 Absorption spectra Absorption spectra Abs(ω) = lim q 0 Imɛ M (q, ω) Abs(ω) = lim q 0 Im [v G=0 (q) χ G=0,G =0(q, ω)] Absorption response to V ext + V macro ind

15 Independent particles: Kohn-Sham Independent transitions: ɛ 2 (ω) = 8π2 ϕ Ωω 2 j e v ϕ i 2 δ(ε j ε i ω) ij

16 What is an electron?

17 Outline 1 Motivation 2 One-particle Green s functions: GW approximation 3 Two-particle Green s functions: Bethe-Salpeter equation 4 Micro-macro connection

18 Photoemission Direct Photoemission Inverse Photoemission

19 Why do we have to study more than DFT? adapted from M. van Schilfgaarde et al., PRL 96 (2006).

20 One-particle Green s function The one-particle Green s function G Definition and meaning of G: ig(x 1, t 1 ; x 2, t 2 ) = N T [ ψ(x 1, t 1 )ψ (x 2, t 2 ) ] N for for t 1 > t 2 ig(x 1, t 1 ; x 2, t 2 ) = N ψ(x 1, t 1 )ψ (x 2, t 2 ) N t 1 < t 2 ig(x 1, t 1 ; x 2, t 2 ) = N ψ (x 2, t 2 )ψ(x 1, t 1 ) N

21 One-particle Green s function t 1 > t 2 N ψ(x 1, t 1 )ψ (x 2, t 2 ) N t 1 < t 2 N ψ (x 2, t 2 )ψ(x 1, t 1 ) N

22 One-particle Green s function What is G? Definition and meaning of G: [ ] G(x 1, t 1 ; x 2, t 2 ) = i < N T ψ(x 1, t 1 )ψ (x 2, t 2 ) N > Insert a complete set of N + 1 or N 1-particle states. This yields G(x 1, t 1 ; x 2, t 2 ) = i j f j (x 1 )f j (x 2 )e iε j (t 1 t 2 ) [θ(t 1 t 2 )θ(ε j µ) θ(t 2 t 1 )Θ(µ ε j )]; where: ε j = E(N + 1, j) E(N), ε j > µ E(N) E(N 1, j), ε j < µ f j (x 1 ) = N ψ (x 1) N + 1, j, ε j > µ N 1, j ψ (x 1 ) N, ε j < µ

23 One-particle Green s function What is G? - Fourier transform G(x, x, ω) = j Fourier Transform: f j (x)f j (x ) ω ε j + iηsgn(ε j µ). Spectral function: A(x, x ; ω) = 1 π ImG(x, x ; ω) = j f j (x)f j (x )δ(ω ε j ).

24 Photoemission Direct Photoemission Inverse Photoemission One-particle excitations poles of one-particle Green s function G

25 One-particle Green s function One-particle Green s function From one-particle G we can obtain: one-particle excitation spectra ground-state expectation value of any one-particle operator: e.g. density ρ or density matrix γ: ρ(r, t) = ig(r, r, t, t + ) γ(r, r, t) = ig(r, r, t, t + ) ground-state total energy

26 One-particle Green s function Straightforward? G(x, t; x, t ) = i < N T [ ψ(x, t)ψ (x, t ) ] N > N > =??? Interacting ground state! Perturbation Theory? Time-independent perturbation theories: messy. Textbooks: adiabatically switched on interaction, Gell-Mann-Low theorem, Wick s theorem, expansion (diagrams). Lots of diagrams...

27 One-particle Green s function Straightforward? G(x, t; x, t ) = i < N T [ ψ(x, t)ψ (x, t ) ] N > N > =??? Interacting ground state! Perturbation Theory? Time-independent perturbation theories: messy. Textbooks: adiabatically switched on interaction, Gell-Mann-Low theorem, Wick s theorem, expansion (diagrams). Lots of diagrams...

28 One-particle Green s function Straightforward? G(x, t; x, t ) = i < N T [ ψ(x, t)ψ (x, t ) ] N > N > =??? Interacting ground state! Perturbation Theory? Time-independent perturbation theories: messy. Textbooks: adiabatically switched on interaction, Gell-Mann-Low theorem, Wick s theorem, expansion (diagrams). Lots of diagrams...

29 Functional approach to the MB problem Equation of motion To determine the 1-particle Green s function: [ ] i h 0 (1) G(1, 2) = δ(1, 2) i t 1 d3v(1, 3)G 2 (1, 3, 2, 3 + ) Do the Fourier transform in frequency space: [ω h 0 ]G(ω) + i vg 2 (ω) = 1 where h 0 = v ext is the independent particle Hamiltonian. The 2-particle Green s function describes the motion of 2 particles.

30 Unfortunately, hierarchy of equations G 1 (1, 2) G 2 (1, 2; 3, 4) G 2 (1, 2; 3, 4) G 3 (1, 2, 3; 4, 5, 6)...

31 Self-energy Perturbation theory starts from what is known to evaluate what is not known, hoping that the difference is small... Let s say we know G 0 (ω) that corresponds to the Hamiltonian h 0 Everything that is unknown is put in Σ(ω) = G 1 0 (ω) G 1 (ω) This is the definition of the self-energy Thus, [ω h 0 ]G(ω) Σ(ω)G(ω) = 1 to be compared with [ω h 0 ]G(ω) + i vg 2 (ω) = 1

32 Self-energy Perturbation theory starts from what is known to evaluate what is not known, hoping that the difference is small... Let s say we know G 0 (ω) that corresponds to the Hamiltonian h 0 Everything that is unknown is put in Σ(ω) = G 1 0 (ω) G 1 (ω) This is the definition of the self-energy Thus, [ω h 0 ]G(ω) Σ(ω)G(ω) = 1 to be compared with [ω h 0 ]G(ω) + i vg 2 (ω) = 1

33 One-particle Green s function Trick due to Schwinger (1951): introduce a small external potential U(3), that will be made equal to zero at the end, and calculate the variations of G with respect to U δg(1, 2) δu(3) = G 2 (1, 3; 2, 3) + G(1, 2)G(3, 3).

34 Hedin s equation Hedin s equations Σ =igw Γ G =G 0 + G 0 ΣG Γ =1 + δσ δg GGΓ P = iggγ W =v + vpw L. Hedin, Phys. Rev. 139 (1965)

35 GW bandstructure: photoemission additional charge

36 GW bandstructure: photoemission additional charge reaction: polarization, screening GW approximation 1 polarization made of noninteracting electron-hole pairs (RPA) 2 classical (Hartree) interaction between additional charge and polarization charge

37 Hedin s equation and GW GW approximation Σ =igw Γ G =G 0 + G 0 ΣG Γ =1 P = iggγ W =v + vpw L. Hedin, Phys. Rev. 139 (1965)

38 Hedin s equation and GW GW approximation Σ =igw G =G 0 + G 0 ΣG Γ =1 P = igg W =v + vpw L. Hedin, Phys. Rev. 139 (1965)

39 GW corrections Standard perturbative G 0 W 0 H 0 (r)φ i (r) + H 0 (r)ϕ i (r) + V xc (r)ϕ i (r) = ɛ i ϕ i (r) dr Σ(r, r, ω = E i ) φ i (r ) = E i φ i (r) First-order perturbative corrections with Σ = igw : E i ɛ i = ϕ i Σ V xc ϕ i Hybersten and Louie, PRB 34 (1986); Godby, Schlüter and Sham, PRB 37 (1988)

40 GW results M. van Schilfgaarde et al., PRL 96 (2006).

41 Independent (quasi)particles: GW Independent transitions: ɛ 2 (ω) = 8π2 ϕ Ωω 2 j e v ϕ i 2 δ(e j E i ω) ij

42 What is wrong? What is missing?

43 Absorption Two-particle excitations poles of two-particle Green s function L Excitonic effects = electron - hole interaction

44 Absorption Two-particle excitations poles of two-particle Green s function L Excitonic effects = electron - hole interaction

45 Absorption Two-particle excitations poles of two-particle Green s function L Excitonic effects = electron - hole interaction

46 Outline 1 Motivation 2 One-particle Green s functions: GW approximation 3 Two-particle Green s functions: Bethe-Salpeter equation 4 Micro-macro connection

47 Beyond RPA P(12) = ig(12)g(21) = P 0 (12) Independent particles (RPA)

48 Beyond RPA P(12) = ig(13)g(42)γ(342) Interacting particles (excitonic effects)

49 From Hedin s equations to BSE From Hedin... P = iggγ Γ = 1 + δσ δg GGΓ

50 From Hedin s equations to BSE From Hedin......to Bethe-Salpeter P = iggγ Γ = 1 + δσ δg GGΓ ( δσ ) L = L 0 + L 0 v + i L δg

51 The Bethe-Salpeter equation Exercise Formal derivation δg(12) L(1234) = i δv = +ig(15) δg 1 (56) ext(34) δv G(62) ext(34) = + ig(15) δ[g 1 0 (56) Vext(56) Σ(56)] G(62) δv ext(34) [ δvh (5)δ(56) = ig(13)g(42) + ig(15)g(62) δσ(56) ] δv ext(34) δv ext(34) [ δvh (5)δ(56) = ig(13)g(42) + ig(15)g(62) δσ(56) ] δg(78) δg(78) δg(78) δv ext(34) [ L(1234) =L 0 (1234) + L 0 (1256) v(57)δ(56)δ(78) + i δσ(56) δg(78) ] L(7834)

52 The Bethe-Salpeter equation [ L(1234) = L 0 (1234) + L 0 (1256) v(57)δ(56)δ(78) + i δσ(56) δg(78) ] L(7834) Polarizabilities δg(12) L(1234) = i δv ext (34) χ(12) = δρ(1) δv ext (2) L(1122) = χ(12)

53 The Bethe-Salpeter equation Approximations ( δσ ) L = L 0 + L 0 v + i L δg

54 The Bethe-Salpeter equation Approximations Σ igw ( δσ ) L = L 0 + L 0 v + i L δg Approximation:

55 The Bethe-Salpeter equation Approximations Σ igw ( δ(gw )) L = L 0 + L 0 v L δg Approximation: δ(gw ) δg = W + GδW δg W

56 The Bethe-Salpeter equation Approximations Final result: L = L 0 + L 0 (v W )L

57 The Bethe-Salpeter equation Bethe-Salpeter equation L(1234) = L 0 (1234)+ L 0 (1256)[v(57)δ(56)δ(78) W (56)δ(57)δ(68)]L(7834)

58 Absorption spectra in BSE Bulk silicon G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).

59 Solving BSE L(1234) = L 0 (1234)+ L 0 (1256)[v(57)δ(56)δ(78) W (56)δ(57)δ(68)]L(7834) Static W Simplification: W (r 1, r 2, t 1 t 2 ) W (r 1, r 2 )δ(t 1 t 2 ) L(1234) L(r 1, r 2, r 3, r 4, t t ) L(r 1, r 2, r 3, r 4, ω)

60 Solving BSE L(1234) = L 0 (1234)+ L 0 (1256)[ v(57)δ(56)δ(78) W (56)δ(57)δ(68)] L(7834) Static W Simplification: W (r 1, r 2, t 1 t 2 ) W (r 1, r 2 )δ(t 1 t 2 ) L(1234) L(r 1, r 2, r 3, r 4, t t ) L(r 1, r 2, r 3, r 4, ω)

61 Solving BSE L(1234) = L 0 (1234)+ L 0 (1256)[ v(57)δ(56)δ(78) W (56)δ(57)δ(68)] L(7834) Static W Simplification: W (r 1, r 2, t 1 t 2 ) W (r 1, r 2 )δ(t 1 t 2 ) L(1234) L(r 1, r 2, r 3, r 4, t t ) L(r 1, r 2, r 3, r 4, ω)

62 Solving BSE Dielectric function L(r 1 r 2 r 3 r 4 ω) = L 0 (r 1 r 2 r 3 r 4 ω) + dr 5 dr 6 dr 7 dr 8 L 0 (r 1 r 2 r 5 r 6 ω) [ v(r 5 r 7 )δ(r 5 r 6 )δ(r 7 r 8 ) W (r 5 r 6 )δ(r 5 r 7 )δ(r 6 r 8 )] L(r 7 r 8 r 3 r 4 ω) [ ɛ M (ω) = 1 lim v G=0 (q) q 0 ] drdr e iq(r r ) L(r, r, r, r, ω)

63 Solving BSE L(r 1 r 2 r 3 r 4 ω) = L 0 (r 1 r 2 r 3 r 4 ω) + dr 5 dr 6 dr 7 dr 8 L 0 (r 1 r 2 r 5 r 6 ω) [ v(r 5 r 7 )δ(r 5 r 6 )δ(r 7 r 8 ) W (r 5 r 6 )δ(r 5 r 7 )δ(r 6 r 8 )] L(r 7 r 8 r 3 r 4 ω) Transition space How to solve it? L (n1 n 2 )(n 3 n 4 )(ω) = φ n 1 (r 1 )φ n2 (r 2 ) L(r 1 r 2 r 3 r 4 ω) φ n 3 (r 3 )φ n4 (r 4 ) = L

64 Solving BSE L(r 1 r 2 r 3 r 4 ω) = L 0 (r 1 r 2 r 3 r 4 ω) + dr 5 dr 6 dr 7 dr 8 L 0 (r 1 r 2 r 5 r 6 ω) [ v(r 5 r 7 )δ(r 5 r 6 )δ(r 7 r 8 ) W (r 5 r 6 )δ(r 5 r 7 )δ(r 6 r 8 )] L(r 7 r 8 r 3 r 4 ω) Transition space How to solve it? L (n1 n 2 )(n 3 n 4 )(ω) = φ n 1 (r 1 )φ n2 (r 2 ) L(r 1 r 2 r 3 r 4 ω) φ n 3 (r 3 )φ n4 (r 4 ) = L

65 Exercise Calculate: L 0 (r 1, r 2, r 3, r 4, ω) = ij L 0 = (f j f i ) φ i (r 1)φ j (r 2 )φ i (r 3 )φ j (r 4) ω (E i E j ) f n1 f n2 ω (E n2 E n1 ) δ n 1 n 3 δ n2 n 4

66 Solving BSE BSE in transition space We consider only resonant optical transitions for a nonmetallic system: (n 1 n 2 ) = (vkck) (vc) L = L 0 + L 0 ( v W ) L L = [1 L 0 ( v W )] 1 L 0 L = [L 1 0 ( v W )] 1 L (vc)(v c )(ω) = [(E c E v ω)δ vv δ cc + (f v f c ) v W ] 1 (f c f v )

67 Solving BSE L (vc)(v c )(ω) = [(E c E v ω)δ vv δ cc + (f v f c ) v W ] 1 (f c f v ) Spectral representation of a hermitian operator [H exc ωi ] 1 = λ L (vc)(v c )(ω) = λ H exc A λ = E λ A λ A λ A λ E λ ω A (vc) λ A (v c ) λ E λ ω (f c f v )

68 Solving BSE L (vc)(v c )(ω) = [(E c E v ω)δ vv δ cc + (f v f c ) v W ] 1 (f c f v ) L [H exc ωi ] 1 Spectral representation of a hermitian operator [H exc ωi ] 1 = λ L (vc)(v c )(ω) = λ H exc A λ = E λ A λ A λ A λ E λ ω A (vc) λ A (v c ) λ E λ ω (f c f v )

69 Absorption spectra in BSE Independent (quasi)particles Abs(ω) vc v D c 2 δ(e c E v ω) Excitonic effects [H el + H hole +H el hole ] A λ = E λ A λ Abs(ω) λ vc A (vc) λ v D c 2 δ(e λ ω) mixing of transitions: v D c 2 vc A(vc) λ v D c 2 modification of excitation energies: E c E v E λ

70 BSE calculations A three-step method 1 LDA calculation Kohn-Sham wavefunctions ϕ i 2 GW calculation GW energies E i and screened Coulomb interaction W 3 BSE calculation solution of H exc A λ = E λ A λ with: H (vc)(v c ) exc = (E c E v )δ vv δ cc + (f v f c ) vc v W v c excitonic eigenstates A λ, E λ spectra ɛ M (ω)

71 A bit of history derivation of the equation (bound state of deuteron) E. E. Salpeter and H. A. Bethe, PR 84, 1232 (1951). BSE for exciton calculations L.J. Sham and T.M. Rice, PR 144, 708 (1966). W. Hanke and L. J. Sham, PRL 43, 387 (1979). first ab initio calculation G. Onida, L. Reining, R. W. Godby, R. Del Sole, and W. Andreoni, PRL 75, 818 (1995). first ab initio calculations in extended systems S. Albrecht, L. Reining, R. Del Sole, and G. Onida, PRL 80, 4510 (1998). L. X. Benedict, E. L. Shirley, and R. B. Bohn, PRL 80, 4514 (1998). M. Rohlfing and S. G. Louie, PRL 81, 2312 (1998).

72 Continuum excitons Bulk silicon G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).

73 Bound excitons Solid argon F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76 (2007).

74 The Wannier model Bethe-Salpeter equation H exca λ = E λ A λ H (vc)(v c ) exc = (E c E v)δ vv δ cc + v W Wannier model two parabolic bands E c E v = E g + k 2 2µ 2 2µ no local fields ( v = 0) and effective screened W W (r, r ) = 1 ɛ 0 r r solution = Rydberg series for effective H atom E n = E g R eff n 2 with R eff = R µ ɛ 2 0

75 Exciton analysis Exciton amplitude: Ψ λ (r h, r e ) = vc A (vc) λ φ v(r h )φ c (r e ) Graphene nanoribbon Manganese Oxide D. Prezzi, et al., PRB 77 (2008). C. Rödl, et al., PRB 77 (2008).

76 Outline 1 Motivation 2 One-particle Green s functions: GW approximation 3 Two-particle Green s functions: Bethe-Salpeter equation 4 Micro-macro connection

77 Micro-macro connection Observation At long wavelength, external fields are slowly varying over the unit cell: dimension of the unit cell for silicon: 0.5 nm visible radiation 400 nm < λ < 800 nm Total and induced fields are rapidly varying: they include the contribution from electrons in all regions of the cell. Large and irregular fluctuations over the atomic scale.

78 Micro-macro connection Observation One usually measures quantities that vary on a macroscopic scale. When we calculate microscopic quantities we need to average over distances that are large compared to the cell parameter small compared to the wavelength of the external perturbation. The differences between the microscopic fields and the averaged (macroscopic) fields are called the crystal local fields.

79 Suppose that we are able to calculate the microscopic dielectric function ɛ, how do we obtain the macroscopic dielectric function ɛ M that we measure in experiments?

80 Micro-macro connection Fourier transform In a periodic medium, every function V (r, ω) can be represented by the Fourier series V (r, ω) = qg V (q + G, ω)e i(q+g)r or: V (r, ω) = q e iqr G V (q + G, ω)e igr = q e iqr V (q, r, ω) where: V (q, r, ω) = G V (q + G, ω)e igr V (q, r, ω) is periodic with respect to the Bravais lattice and hence is the quantity that one has to average to get the corresponding macroscopic potential V M (q, ω).

81 Micro-macro connection Averages V M (q, ω) = 1 Ω c drv (q, r, ω) V (q, r, ω) = G V (q + G, ω)e igr Therefore: V M (q, ω) = G V (q + G, ω) 1 Ω c dre igr = V (q + 0, ω) The macroscopic average V M corresponds to the G = 0 component of the microscopic V. Example V ext (q, ω) = ɛ M (q, ω)v tot,m (q, ω)

82 Micro-macro connection Averages V M (q, ω) = 1 Ω c drv (q, r, ω) V (q, r, ω) = G V (q + G, ω)e igr Therefore: V M (q, ω) = G V (q + G, ω) 1 Ω c dre igr = V (q + 0, ω) The macroscopic average V M corresponds to the G = 0 component of the microscopic V. Example V ext (q, ω) = ɛ M (q, ω)v tot,m (q, ω)

83 Micro-macro connection Fourier transforms Fourier transform of a function f (r, r, ω): f (q + G, q + G, ω) = drdr e i(q+g)r f (r, r, ω)e +i(q+g )r f G,G (q, ω) Therefore the relation V tot (r 1, ω) = dr 2 ɛ 1 (r 1, r 2, ω)v ext (r 2, ω) in the Fourier space becomes: V tot (q + G, ω) = G ɛ 1 G,G (q, ω)v ext (q + G, ω)

84 Micro-macro connection Fourier transforms Fourier transform of a function f (r, r, ω): f (q + G, q + G, ω) = drdr e i(q+g)r f (r, r, ω)e +i(q+g )r f G,G (q, ω) Therefore the relation V tot (r 1, ω) = dr 2 ɛ 1 (r 1, r 2, ω)v ext (r 2, ω) in the Fourier space becomes: V tot (q + G, ω) = G ɛ 1 G,G (q, ω)v ext (q + G, ω)

85 Micro-macro connection Example Macroscopic dielectric function V tot,m (q, ω) = ɛ 1 M (q, ω)v ext(q, ω) V tot(q + G, ω) = G ɛ 1 G,G (q, ω)vext(q + G, ω) V ext is a macroscopic quantity: V M,tot (q, ω) = V tot(q + 0, ω) V tot,m (q, ω) = ɛ 1 G=0,G =0 (q, ω)vext(q, ω) ɛ 1 M (q, ω) = ɛ 1 ɛ M (q, ω) = G=0,G =0 1 (q, ω) ɛ 1 G=0,G =0 (q, ω)

86 Micro-macro connection Example Macroscopic dielectric function V tot,m (q, ω) = ɛ 1 M (q, ω)v ext(q, ω) V tot(q + G, ω) = G ɛ 1 G,G (q, ω)vext(q + G, ω) V ext is a macroscopic quantity: V M,tot (q, ω) = V tot(q + 0, ω) V tot,m (q, ω) = ɛ 1 G=0,G =0 (q, ω)vext(q, ω) ɛ 1 M (q, ω) = ɛ 1 ɛ M (q, ω) = G=0,G =0 1 (q, ω) ɛ 1 G=0,G =0 (q, ω)

87 Micro-macro connection Example Macroscopic dielectric function V tot,m (q, ω) = ɛ 1 M (q, ω)v ext(q, ω) V tot(q + G, ω) = G ɛ 1 G,G (q, ω)vext(q + G, ω) V ext is a macroscopic quantity: V M,tot (q, ω) = V tot(q + 0, ω) V tot,m (q, ω) = ɛ 1 G=0,G =0 (q, ω)vext(q, ω) ɛ 1 M (q, ω) = ɛ 1 ɛ M (q, ω) = G=0,G =0 1 (q, ω) ɛ 1 G=0,G =0 (q, ω)

88 Micro-macro connection Example Macroscopic dielectric function V tot,m (q, ω) = ɛ 1 M (q, ω)v ext(q, ω) V tot(q + G, ω) = G ɛ 1 G,G (q, ω)vext(q + G, ω) V ext is a macroscopic quantity: V M,tot (q, ω) = V tot(q + 0, ω) V tot,m (q, ω) = ɛ 1 G=0,G =0 (q, ω)vext(q, ω) ɛ 1 M (q, ω) = ɛ 1 ɛ M (q, ω) = G=0,G =0 1 (q, ω) ɛ 1 G=0,G =0 (q, ω)

89 Micro-macro connection Example Macroscopic dielectric function V tot,m (q, ω) = ɛ 1 M (q, ω)v ext(q, ω) V tot(q + G, ω) = G ɛ 1 G,G (q, ω)vext(q + G, ω) V ext is a macroscopic quantity: V M,tot (q, ω) = V tot(q + 0, ω) V tot,m (q, ω) = ɛ 1 G=0,G =0 (q, ω)vext(q, ω) ɛ 1 M (q, ω) = ɛ 1 ɛ M (q, ω) = G=0,G =0 1 (q, ω) ɛ 1 G=0,G =0 (q, ω)

90 Micro-macro connection Macroscopic dielectric function V ext (q + G, ω) = G ɛ G,G (q, ω)v tot (q + G, ω) Remember: V ext is a macroscopic quantity: V ext (q, ω) = G ɛ G=0,G (q, ω)v tot (q + G, ω) V ext (q, ω) = ɛ G=0,G =0(q, ω)v tot,m (q, ω)+ G 0 ɛ G=0,G (q, ω)v tot (q+g, ω) V ext (q, ω) = ɛ M (q, ω)v tot,m (q, ω) ɛ M (q, ω) ɛ G=0,G =0(q, ω)

91 Micro-macro connection Macroscopic dielectric function V ext (q + G, ω) = G ɛ G,G (q, ω)v tot (q + G, ω) Remember: V ext is a macroscopic quantity: V ext (q, ω) = G ɛ G=0,G (q, ω)v tot (q + G, ω) V ext (q, ω) = ɛ G=0,G =0(q, ω)v tot,m (q, ω)+ G 0 ɛ G=0,G (q, ω)v tot (q+g, ω) V ext (q, ω) = ɛ M (q, ω)v tot,m (q, ω) ɛ M (q, ω) ɛ G=0,G =0(q, ω)

92 Micro-macro connection Macroscopic dielectric function V ext (q + G, ω) = G ɛ G,G (q, ω)v tot (q + G, ω) Remember: V ext is a macroscopic quantity: V ext (q, ω) = G ɛ G=0,G (q, ω)v tot (q + G, ω) V ext (q, ω) = ɛ G=0,G =0(q, ω)v tot,m (q, ω)+ G 0 ɛ G=0,G (q, ω)v tot (q+g, ω) V ext (q, ω) = ɛ M (q, ω)v tot,m (q, ω) ɛ M (q, ω) ɛ G=0,G =0(q, ω)

93 Micro-macro connection Spectra ɛ M (q, ω) = 1 ɛ 1 G=0,G =0 (q, ω) Abs(ω) = lim q 0 Imɛ M (ω) = lim EELS(ω) = lim Imɛ 1 M q 0 q 0 Im (ω) = lim q 0 Imɛ 1 1 ɛ 1 G=0,G =0 (q, ω) G=0,G =0 (q, ω)

94 Micro-macro connection Spectra ɛ M (q, ω) = 1 ɛ 1 G=0,G =0 (q, ω) Abs(ω) = lim q 0 Imɛ M (ω) = lim EELS(ω) = lim Imɛ 1 M q 0 q 0 Im (ω) = lim q 0 Imɛ 1 1 ɛ 1 G=0,G =0 (q, ω) G=0,G =0 (q, ω)

95 BSE vs. TDDFT: what in common? BSE L = L 0 + L 0 (v + Ξ)L TDDFT χ = χ 0 + χ 0 (v + f xc )χ

96 The Coulomb term v The Coulomb term v = v 0 + v

97 Local fields reloaded Microscopic-Macroscopic connection: local fields χ G,G (q, ω) = P G,G (q, ω) + P G,G1 (q, ω)v G1 (q)χ G1,G (q, ω) G 1 ɛ 1 G,G (q, ω) = δ G,G + v G (q)χ G,G (q, ω) ɛ M (q, ω) = 1 ɛ 1 G=0,G =0 (q, ω) Adler, Phys. Rev. 126 (1962); Wiser, Phys. Rev. 129 (1963).

98 Local fields reloaded Microscopic-Macroscopic connection: local fields ɛ M (q, ω) = 1 v G=0 (q) χ G=0,G =0(q, ω) χ G,G (q, ω) = P G,G (q, ω) + P G,G1 (q, ω) v G1 (q) χ G1,G (q, ω) G 1 v G (q) = 0 for G = 0 v G (q) = v G (q) for G 0 Hanke, Adv. Phys. 27 (1978).

99 Absorption Abs(ω) = lim q 0 Imɛ M (q, ω) Abs(ω) = lim q 0 Im [v G=0 (q) χ G=0,G =0(q, ω)] χ = P + P v χ EELS Absorption response to V ext + V macro ind Eels(ω) = lim q 0 Im[1/ɛ M (q, ω)] Eels(ω) = lim q 0 Im [v G=0 (q)χ G=0,G =0(q, ω)] χ = P + P(v 0 + v)χ Eels response to V ext

100 The Coulomb term v The Coulomb term v = v 0 + v long-range v 0 difference between Abs and Eels

101 Coulomb term v 0 : Abs vs. Eels F. Sottile, PhD thesis (2003) - Bulk silicon: absorption vs. EELS.

102 The Coulomb term v The Coulomb term v = v 0 + v long-range v 0 difference between Abs and Eels what about v?

103 The Coulomb term v The Coulomb term v = v 0 + v long-range v 0 difference between Abs and Eels what about v? v is responsible for crystal local-field effects

104 Coulomb term v: local fields v: local fields ɛ M = 1 v G=0 χ G=0,G =0 Set v = 0 in: χ G,G = χ 0 G,G + G 1 χ 0 G,G 1 v G1 χ G1,G χ G,G = χ 0 G,G Result: ɛ M = 1 v G=0 χ 0 G=0,G =0 that is: no local-field effects! (equivalent to Fermi s golden rule)

105 Coulomb term v: local fields v: local fields ɛ M = 1 v G=0 χ G=0,G =0 Set v = 0 in: χ G,G = χ 0 G,G + G 1 χ 0 G,G 1 v G1 χ G1,G χ G,G = χ 0 G,G Result: ɛ M = 1 v G=0 χ 0 G=0,G =0 that is: no local-field effects! (equivalent to Fermi s golden rule)

106 Coulomb term v: local fields v: local fields ɛ M = 1 v G=0 χ G=0,G =0 Set v = 0 in: χ G,G = χ 0 G,G + G 1 χ 0 G,G 1 v G1 χ G1,G χ G,G = χ 0 G,G Result: ɛ M = 1 v G=0 χ 0 G=0,G =0 that is: no local-field effects! (equivalent to Fermi s golden rule)

107 Coulomb term v: local fields Bulk silicon: absorption

108 Coulomb term v: local fields A. G. Marinopoulos et al., PRL 89 (2002) - Graphite EELS

109 What are local fields? Effective medium theory Uniform field E 0 applied to a dielectric sphere with dielectric constant ɛ in vacuum. From continuity conditions at the interface: P = 3 ɛ 1 4π ɛ + 2 E 0 Jackson, Classical electrodynamics, Sec. 4.4.

110 What are local fields? Effective medium theory Regular lattice of objects dimensionality d of material ɛ 1 in vacuum Maxwell-Garnett formulas dot (O D system) wire (1D system) Imɛ 1 (ω) Imɛ M (ω) 9 [Reɛ 1 (ω) + 2] 2 + [Imɛ 1 (ω)] 2 Imɛ M (ω) Imɛ 1(ω) Imɛ Imɛ 1 (ω) M (ω) 4 [Reɛ 1 (ω) + 1] 2 + [Imɛ 1 (ω)] 2

111 What are local fields? F. Bruneval et al., PRL 94 (2005) - Si nanowires S. Botti et al., PRB 79 (2009) - SiGe nanodots

112 MBPT & TDDFT MBPT helps improving DFT & TDDFT DFT & TDDFT help improving MBPT

113 Conclusion (TD)DFT & MBPT... try to learn both!

114 Many thanks!

115 Acknowledgements Silvana Botti Fabien Bruneval Valerio Olevano Lucia Reining Francesco Sottile Valérie Véniard

Introduction to Green s functions

Introduction to Green s functions Introduction to Green s functions Matteo Gatti ETSF Users Meeting and Training Day Ecole Polytechnique - 22 October 2010 Outline 1 Motivation 2 Green s functions 3 The GW Approximation 4 The Bethe-Salpeter

More information

Università degli Studi Roma TRE. Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia

Università degli Studi Roma TRE. Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia Università degli Studi Roma TRE e Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia Dottorato di Ricerca in Scienze Fisiche della Materia XXIII ciclo Challenges for first principles

More information

Optical Properties of Solids. Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria

Optical Properties of Solids. Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria Optical Properties of Solids Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria Outline Basics Program Examples Outlook light scattering dielectric tensor

More information

Chapter 2. Theoretical framework

Chapter 2. Theoretical framework Theoretical framework For studying the properties of thin films and surfaces on the atomic scale a wealth of experimental techniques is available. For brevity, we will introduce only those that will be

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

The Application of Density Functional Theory in Materials Science

The Application of Density Functional Theory in Materials Science The Application of Density Functional Theory in Materials Science Slide 1 Outline Atomistic Modelling Group at MUL Density Functional Theory Numerical Details HPC Cluster at the MU Leoben Applications

More information

PCV Project: Excitons in Molecular Spectroscopy

PCV Project: Excitons in Molecular Spectroscopy PCV Project: Excitons in Molecular Spectroscopy Introduction The concept of excitons was first introduced by Frenkel (1) in 1931 as a general excitation delocalization mechanism to account for the ability

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0

= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0 Chapter 1 Thomas-Fermi Theory The Thomas-Fermi theory provides a functional form for the kinetic energy of a non-interacting electron gas in some known external potential V (r) (usually due to impurities)

More information

arxiv:1006.4085v1 [cond-mat.mtrl-sci] 21 Jun 2010

arxiv:1006.4085v1 [cond-mat.mtrl-sci] 21 Jun 2010 Quasiparticle and Optical Properties of Rutile and Anatase TiO 2 Wei Kang and Mark S. Hybertsen Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (Dated: June 22, 21)

More information

Exciton dissociation in solar cells:

Exciton dissociation in solar cells: Exciton dissociation in solar cells: Xiaoyang Zhu Department of Chemistry University of Minnesota, Minneapolis t (fs) 3h! E, k h! Pc Bi e - 1 Acknowledgement Organic semiconductors: Mutthias Muntwiler,

More information

Quick and Dirty Introduction to Mott Insulators

Quick and Dirty Introduction to Mott Insulators Quick and Dirty Introduction to Mott Insulators Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 64: Introduction to Solid State Physics http://www.physics.udel.edu/~bnikolic/teaching/phys64/phys64.html

More information

What is molecular dynamics (MD) simulation and how does it work?

What is molecular dynamics (MD) simulation and how does it work? What is molecular dynamics (MD) simulation and how does it work? A lecture for CHM425/525 Fall 2011 The underlying physical laws necessary for the mathematical theory of a large part of physics and the

More information

The electronic and optical properties of conjugated polymers:

The electronic and optical properties of conjugated polymers: The electronic and optical properties of conjugated polymers: predictions from first-principles solid-state methods PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven,

More information

Basic techniques and tools for the development and maintenance of atomic-scale software : the context

Basic techniques and tools for the development and maintenance of atomic-scale software : the context CECAM Lyon February 2008 Basic techniques and tools for the development and maintenance of atomic-scale software : the context X. Gonze Université Catholique de Louvain CECAM 2008 Developer School : The

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

Electric Dipole moments as probes of physics beyond the Standard Model

Electric Dipole moments as probes of physics beyond the Standard Model Electric Dipole moments as probes of physics beyond the Standard Model K. V. P. Latha Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Plan of the Talk Parity (P) and Time-reversal

More information

Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain. April 2, 2014

Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain. April 2, 2014 Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain April 2, 2014 ICFO The Institute of Photonic Sciences 10 minute walk 11 years old 22 Research Groups 300 people Research themes: Quantum

More information

Structure Factors 59-553 78

Structure Factors 59-553 78 78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal

More information

Hard Condensed Matter WZI

Hard Condensed Matter WZI Hard Condensed Matter WZI Tom Gregorkiewicz University of Amsterdam VU-LaserLab Dec 10, 2015 Hard Condensed Matter Cluster Quantum Matter Optoelectronic Materials Quantum Matter Amsterdam Mark Golden Anne

More information

DFT in practice : Part I. Ersen Mete

DFT in practice : Part I. Ersen Mete plane wave expansion & the Brillouin zone integration Department of Physics Balıkesir University, Balıkesir - Turkey August 13, 2009 - NanoDFT 09, İzmir Institute of Technology, İzmir Outline Plane wave

More information

Computer lab: Density functional perturbation theory. theory for lattice dynamics

Computer lab: Density functional perturbation theory. theory for lattice dynamics Computer lab: density functional perturbation theory for lattice dynamics SISSA and DEMOCRITOS Trieste (Italy) Outline 1 The dynamical matrix 2 3 4 5 Dynamical matrix We want to write a small computer

More information

Theoretical approaches to the ab-initio study of complex systems

Theoretical approaches to the ab-initio study of complex systems Theoretical approaches to the ab-initio study of complex systems Olivia Pulci European Theoretical Spectroscopy Facilty (ETSF), and CNR-INFM, Dipartimento di Fisica Università di Roma Tor Vergata NAST-ISM

More information

The quantum mechanics of particles in a periodic potential: Bloch s theorem

The quantum mechanics of particles in a periodic potential: Bloch s theorem Handout 2 The quantum mechanics of particles in a periodic potential: Bloch s theorem 2.1 Introduction and health warning We are going to set up the formalism for dealing with a periodic potential; this

More information

Electromagnetic Radiation

Electromagnetic Radiation Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

More information

Lecture 2: Semiconductors: Introduction

Lecture 2: Semiconductors: Introduction Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical

More information

Spatially separated excitons in 2D and 1D

Spatially separated excitons in 2D and 1D Spatially separated excitons in 2D and 1D David Abergel March 10th, 2015 D.S.L. Abergel 3/10/15 1 / 24 Outline 1 Introduction 2 Spatially separated excitons in 2D The role of disorder 3 Spatially separated

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction

More information

Boltzmann Distribution Law

Boltzmann Distribution Law Boltzmann Distribution Law The motion of molecules is extremely chaotic Any individual molecule is colliding with others at an enormous rate Typically at a rate of a billion times per second We introduce

More information

Probing the Vacuum Induced Coherence in a Λ-system

Probing the Vacuum Induced Coherence in a Λ-system Probing the Vacuum Induced Coherence in a Λ-system Sunish Menon and G. S. Agarwal Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India. (February 8, 1999) We propose a simple test to demonstrate

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Chapter 7: Polarization

Chapter 7: Polarization Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces

More information

Simulation of infrared and Raman spectra

Simulation of infrared and Raman spectra Simulation of infrared and Raman spectra, 1 Bernard Kirtman, 2 Michel Rérat, 3 Simone Salustro, 1 Marco De La Pierre, 1 Roberto Orlando, 1 Roberto Dovesi 1 1) Dipartimento di Chimica, Università di Torino

More information

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University

More information

Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th. Properties of Light Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

The Passage of Fast Electrons Through Matter

The Passage of Fast Electrons Through Matter The Passage of Fast Electrons Through Matter Adam P. Sorini A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2008 Program

More information

Broadband THz Generation from Photoconductive Antenna

Broadband THz Generation from Photoconductive Antenna Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 331 Broadband THz Generation from Photoconductive Antenna Qing Chang 1, Dongxiao Yang 1,2, and Liang Wang 1 1 Zhejiang

More information

The plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures

The plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures The plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures Matthew T. Sheldon and Harry A. Atwater Thomas J. Watson Laboratories of Applied Physics, California

More information

Chapter 9 Unitary Groups and SU(N)

Chapter 9 Unitary Groups and SU(N) Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three

More information

2. Molecular stucture/basic

2. Molecular stucture/basic 2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Spectral regions

More information

L5. P1. Lecture 5. Solids. The free electron gas

L5. P1. Lecture 5. Solids. The free electron gas Lecture 5 Page 1 Lecture 5 L5. P1 Solids The free electron gas In a solid state, a few loosely bound valence (outermost and not in completely filled shells) elections become detached from atoms and move

More information

Chapter 8 Molecules. Some molecular bonds involve sharing of electrons between atoms. These are covalent bonds.

Chapter 8 Molecules. Some molecular bonds involve sharing of electrons between atoms. These are covalent bonds. Chapter 8 Molecules (We have only three days for chapter 8!) 8.1 The Molecular Bond A molecule is an electrically neutral group of atoms held together strongly enough to behave as a single particle. A

More information

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself. The Electron Oscillator/Lorentz Atom Consider a simple model of a classical atom, in which the electron is harmonically bound to the nucleus n x e F en = mω 0 2 x origin resonance frequency Note: We should

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

arxiv:1204.4608v1 [cond-mat.mtrl-sci] 20 Apr 2012

arxiv:1204.4608v1 [cond-mat.mtrl-sci] 20 Apr 2012 arxiv:1204.4608v1 [cond-mat.mtrl-sci] 20 Apr 2012 GW quasiparticle band gaps of anatase TiO 2 starting from DFT+U Christopher E. Patrick and Feliciano Giustino Department of Materials, University of Oxford,

More information

Numerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor

Numerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor Numerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor M. Gabalis *1, D. Urbonas 1, and R. Petruškevičius 1 1 Institute of Physics of Center for Physical Sciences and Technology,

More information

An Introduction to Hartree-Fock Molecular Orbital Theory

An Introduction to Hartree-Fock Molecular Orbital Theory An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental

More information

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

More information

The Schwinger Mechanism and Graphene. D. Allor *, T.DC, D. A. McGady * arxiv:0708.1471 * University of Maryland Undergrads

The Schwinger Mechanism and Graphene. D. Allor *, T.DC, D. A. McGady * arxiv:0708.1471 * University of Maryland Undergrads The Schwinger Mechanism and Graphene & D. Allor *, T.DC, D. A. McGady * arxiv:0708.1471 * University of Maryland Undergrads Outline What is the Schwinger Mechanism? Why is it worth worrying about? How

More information

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30 Chemical Synthesis Spontaneous organization of molecules into stable, structurally well-defined aggregates at the nanometer length scale. Overview The 1-100 nm nanoscale length is in between traditional

More information

Chapter 18 Electric Forces and Electric Fields. Key Concepts:

Chapter 18 Electric Forces and Electric Fields. Key Concepts: Chapter 18 Lectures Monday, January 25, 2010 7:33 AM Chapter 18 Electric Forces and Electric Fields Key Concepts: electric charge principle of conservation of charge charge polarization, both permanent

More information

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany. NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester

More information

Specific Intensity. I ν =

Specific Intensity. I ν = Specific Intensity Initial question: A number of active galactic nuclei display jets, that is, long, nearly linear, structures that can extend for hundreds of kiloparsecs. Many have two oppositely-directed

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

ENERGY TRANSFER IN THE WEAK AND STRONG COUPLING REGIME

ENERGY TRANSFER IN THE WEAK AND STRONG COUPLING REGIME ERC Starting Grant 2011 Dipar)mento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1, 35131 Padova Italy ENERGY TRANSFER IN THE WEAK AND STRONG COUPLING REGIME [1] Vekshin, N. L. Energy

More information

Lecture 1: Microscopic Theory of Radiation

Lecture 1: Microscopic Theory of Radiation 253a: QFT Fall 2009 Matthew Schwartz Lecture : Microscopic Theory of Radiation Blackbody Radiation Quantum Mechanics began on October 9, 900 with Max Planck s explanation of the blackbody radiation spectrum.

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Energy. Mechanical Energy

Energy. Mechanical Energy Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

More information

Photoinduced volume change in chalcogenide glasses

Photoinduced volume change in chalcogenide glasses Photoinduced volume change in chalcogenide glasses (Ph.D. thesis points) Rozália Lukács Budapest University of Technology and Economics Department of Theoretical Physics Supervisor: Dr. Sándor Kugler 2010

More information

Collaborative software development for nanoscale physics

Collaborative software development for nanoscale physics Collaborative software development for nanoscale physics Yann Pouillon mailto:yann.pouillon@ehu.es Nano-Bio Spectroscopy Group Universidad del País Vasco (UPV/EHU) & CSIC, Donostia-San Sebastián, Spain

More information

Spectroscopic Ellipsometry:

Spectroscopic Ellipsometry: Spectroscopic : What it is, what it will do, and what it won t do by Harland G. Tompkins Introduction Fundamentals Anatomy of an ellipsometric spectrum Analysis of an ellipsometric spectrum What you can

More information

Introduction to Quantum Dot Nanocrystals and Nanocrystal Solids. Nuri Yazdani, 10.03.15

Introduction to Quantum Dot Nanocrystals and Nanocrystal Solids. Nuri Yazdani, 10.03.15 Introduction to Quantum Dot Nanocrystals and Nanocrystal Solids Nuri Yazdani, 10.03.15 What is a QD Nanocrystal Time: ~15m What is a QD nanocrystal? Bulk Crystal Periodic lattice of atoms which extends

More information

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy. Solar Energy The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

More information

The Role of Electric Polarization in Nonlinear optics

The Role of Electric Polarization in Nonlinear optics The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research

More information

Applications of Quantum Chemistry HΨ = EΨ

Applications of Quantum Chemistry HΨ = EΨ Applications of Quantum Chemistry HΨ = EΨ Areas of Application Explaining observed phenomena (e.g., spectroscopy) Simulation and modeling: make predictions New techniques/devices use special quantum properties

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Applied Physics of solar energy conversion

Applied Physics of solar energy conversion Applied Physics of solar energy conversion Conventional solar cells, and how lazy thinking can slow you down Some new ideas *************************************************************** Our work on semiconductor

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples where capacitors are used: radio receivers filters in power supplies energy-storing devices

More information

5.6 Binary rare earth alloys

5.6 Binary rare earth alloys 5.6 BINARY RARE EARTH ALLOYS 247 5.6 Binary rare earth alloys The great similarity in the chemical properties of the different rare earth metals allows almost complete mutual solubility. It is therefore

More information

Blackbody radiation derivation of Planck s radiation low

Blackbody radiation derivation of Planck s radiation low Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

Ab Initio Second-Order Nonlinear Optics in Solids: Second-Harmonic Generation Spectroscopy from Time-Dependent Density-Functional Theory.

Ab Initio Second-Order Nonlinear Optics in Solids: Second-Harmonic Generation Spectroscopy from Time-Dependent Density-Functional Theory. Ab Initio Second-Order Nonlinear Optics in Solids: Second-Harmonic Generation Spectroscopy from Time-Dependent Density-Functional Theory Eleonora Luppi, Hannes Hübener, and Valérie Véniard Laboratoire

More information

Tobias Märkl. November 16, 2009

Tobias Märkl. November 16, 2009 ,, Tobias Märkl to 1/f November 16, 2009 1 / 33 Content 1 duction to of Statistical Comparison to Other Types of Noise of of 2 Random duction to Random General of, to 1/f 3 4 2 / 33 , to 1/f 3 / 33 What

More information

Electrical Conductivity

Electrical Conductivity Advanced Materials Science - Lab Intermediate Physics University of Ulm Solid State Physics Department Electrical Conductivity Translated by Michael-Stefan Rill January 20, 2003 CONTENTS 1 Contents 1 Introduction

More information

Analysis of Electromagnetic Propulsion on a Two-Electric-Dipole System

Analysis of Electromagnetic Propulsion on a Two-Electric-Dipole System Electronics and Communications in Japan, Part 2, Vol. 83, No. 4, 2000 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J82-C-I, No. 6, June 1999, pp. 310 317 Analysis of Electromagnetic Propulsion

More information

Orbits of the Lennard-Jones Potential

Orbits of the Lennard-Jones Potential Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials

More information

3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas.

3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas. Tentamen i Statistisk Fysik I den tjugosjunde februari 2009, under tiden 9.00-15.00. Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6

More information

Electric Field Mapping Lab 3. Precautions

Electric Field Mapping Lab 3. Precautions HB 09-25-07 Electric Field Mapping Lab 3 1 Electric Field Mapping Lab 3 Equipment mapping board, U-probe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading

More information

The Nature of Electromagnetic Radiation

The Nature of Electromagnetic Radiation II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

More information

Physics 551: Solid State Physics F. J. Himpsel

Physics 551: Solid State Physics F. J. Himpsel Physics 551: Solid State Physics F. J. Himpsel Background Most of the objects around us are in the solid state. Today s technology relies heavily on new materials, electronics is predominantly solid state.

More information

fotoelektron-spektroszkópia Rakyta Péter

fotoelektron-spektroszkópia Rakyta Péter Spin-pálya kölcsönhatás grafénben, fotoelektron-spektroszkópia Rakyta Péter EÖTVÖS LORÁND TUDOMÁNYEGYETEM, KOMPLEX RENDSZEREK FIZIKÁJA TANSZÉK 1 Introduction to graphene Sp 2 hybridization p z orbitals

More information

Electronic Structure and the Periodic Table Learning Outcomes

Electronic Structure and the Periodic Table Learning Outcomes Electronic Structure and the Periodic Table Learning Outcomes (a) Electronic structure (i) Electromagnetic spectrum and associated calculations Electromagnetic radiation may be described in terms of waves.

More information

The CVD diamond booklet

The CVD diamond booklet available at: www.diamond-materials.com/download Content 1. General properties of diamond... 2 2. Optical Properties... 4 Optical transparency...4 Absorption coefficient at 10.6 µm...5 Refractive index:

More information

Nanoparticle Enhanced Thin Film Solar Cells

Nanoparticle Enhanced Thin Film Solar Cells Nanoparticle Enhanced Thin Film Solar Cells Solar Cells Solar cells convert visible light to electricity. It is one of the clean sources of energy. In theory a 100 square mile area covered with solar panels

More information

The Radiation Theories of Tomonaga, Schwinger, and Feynman

The Radiation Theories of Tomonaga, Schwinger, and Feynman F. J. Dyson, Phys. Rev. 75, 486 1949 The Radiation Theories of Tomonaga, Schwinger, and Feynman F.J. Dyson Institute for Advanced Study, Princeton, New Jersey (Received October 6, 1948) Reprinted in Quantum

More information

Quantum Effects and Dynamics in Hydrogen-Bonded Systems: A First-Principles Approach to Spectroscopic Experiments

Quantum Effects and Dynamics in Hydrogen-Bonded Systems: A First-Principles Approach to Spectroscopic Experiments Quantum Effects and Dynamics in Hydrogen-Bonded Systems: A First-Principles Approach to Spectroscopic Experiments Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften am Fachbereich Physik

More information

Electron spectroscopy Lecture 1-21. Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy

Electron spectroscopy Lecture 1-21. Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy Electron spectroscopy Lecture 1-21 Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy 653: Electron Spectroscopy urse structure cture 1. Introduction to electron spectroscopies

More information

Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential

Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential I. Avgin Department of Electrical and Electronics Engineering,

More information

Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid

Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid and driven dynamics of a mobile impurity in a quantum fluid Oleg Lychkovskiy Russian Quantum Center Seminaire du LPTMS, 01.12.2015 Seminaire du LPTMS, 01.12.2015 1 / Plan of the talk 1 Perpetual motion

More information

Hydrogen Bonds in Water-Methanol Mixture

Hydrogen Bonds in Water-Methanol Mixture Bulg. J. Phys. 34 (2007) 103 107 Hydrogen Bonds in Water-Methanol Mixture G.M. Georgiev, K. Vasilev, K. Gyamchev Faculty of Physics, University of Sofia 5J.Bourchier Blvd., 1164 Sofia, Bulgaria Received

More information

Sucesses and limitations of dynamical mean field theory. A.-M. Tremblay G. Sordi, D. Sénéchal, K. Haule, S. Okamoto, B. Kyung, M.

Sucesses and limitations of dynamical mean field theory. A.-M. Tremblay G. Sordi, D. Sénéchal, K. Haule, S. Okamoto, B. Kyung, M. Sucesses and limitations of dynamical mean field theory A.-M. Tremblay G. Sordi, D. Sénéchal, K. Haule, S. Okamoto, B. Kyung, M. Civelli MIT, 20 October, 2011 How to make a metal Courtesy, S. Julian r

More information

Magnetic domain walls in ultrathin films: Contribution of the Dzyaloshinsky-Moriya interaction

Magnetic domain walls in ultrathin films: Contribution of the Dzyaloshinsky-Moriya interaction Magnetic domain walls in ultrathin films: Contribution of the Dzyaloshinsky-Moriya interaction Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen

More information

Spatial and temporal coherence of polariton condensates

Spatial and temporal coherence of polariton condensates Spatial and temporal coherence of polariton condensates R. Spano Dpt. Fisica de Materiales, Universidad Autónoma Madrid. SPAIN XIV JORNADA DE JÓVENES CIENTÍFICOS DEL INSTITUTO DE CIENCIA DE MATERIALES

More information

Electronic transport properties of nano-scale Si films: an ab initio study

Electronic transport properties of nano-scale Si films: an ab initio study Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill University, Montreal, Canada Motivation (of

More information

Der Einsatz der Dichtefunktionaltheorie in der Materialphysik: Ein atomistischer Blick auf moderne Werkstoffe

Der Einsatz der Dichtefunktionaltheorie in der Materialphysik: Ein atomistischer Blick auf moderne Werkstoffe Der Einsatz der Dichtefunktionaltheorie in der Materialphysik: Ein atomistischer Blick auf moderne Werkstoffe Slide 1 Inhalt I. Atomistische Modellierung von Materialien II. Dichtefunktionaltheorie (DFT)

More information

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations 1. Growth and structure 2. Magnetism and MAE 3. Induced magnetism at oxygen Klaus Baberschke Institut

More information