Introduction to many-body Green s functions
|
|
|
- Teresa Baldwin
- 10 years ago
- Views:
Transcription
1 Introduction to many-body Green s functions Matteo Gatti European Theoretical Spectroscopy Facility (ETSF) NanoBio Spectroscopy Group - UPV San Sebastián - Spain [email protected] ELK school - CECAM 2011
2 Outline 1 Motivation 2 One-particle Green s functions: GW approximation 3 Two-particle Green s functions: Bethe-Salpeter equation 4 Micro-macro connection
3 References Francesco Sottile PhD thesis, Ecole Polytechnique (2003) francesco/tesi_dot.pdf Fabien Bruneval PhD thesis, Ecole Polytechnique (2005) bruneval_these.pdf Giovanni Onida, Lucia Reining, and Angel Rubio Rev. Mod. Phys. 74, 601 (2002). G. Strinati Rivista del Nuovo Cimento 11, (12)1 (1988).
4 Outline 1 Motivation 2 One-particle Green s functions: GW approximation 3 Two-particle Green s functions: Bethe-Salpeter equation 4 Micro-macro connection
5 Motivation Theoretical spectroscopy Calculate and reproduce Understand and explain Predict Exp. at 30 K from: P. Lautenschlager et al., Phys. Rev. B 36, 4821 (1987).
6 Theoretical Spectroscopy Which kind of spectra? Which kind of tools?
7 Why do we have to study more than DFT? Absorption spectrum of bulk silicon in DFT How can we understand this?
8 Why do we have to study more than DFT? Absorption spectrum of bulk silicon in DFT Spectroscopy is exciting!
9 MBPT vs. TDDFT: different worlds, same physics MBPT based on Green s functions one-particle G: electron addition and removal - GW two-particle L: electron-hole excitation - BSE moves (quasi)particles around is intuitive (easy) TDDFT based on the density response function χ: neutral excitations moves density around is efficient (simple)
10 Response functions External perturbation V ext applied on the sample V tot acting on the electronic system Potentials Dielectric function δv tot = δv ext + δv ind ɛ = δv ext δv tot δv ind = vδρ = 1 v δρ ɛ 1 = δv tot = 1 + v δv ext δv tot δρ δv ext
11 Response functions External perturbation V ext applied on the sample V tot acting on the electronic system Dielectric function P = ɛ = δv ext δv tot = 1 vp ɛ 1 = δv tot δv ext = 1 + vχ δρ δv tot χ = δρ δv ext χ = P + Pvχ P = χ 0 + χ 0 f xc P
12 Micro-macro connection Microscopic-Macroscopic connection: local fields χ G,G (q, ω) = P G,G (q, ω) + P G,G1 (q, ω)v G1 (q)χ G1,G (q, ω) ɛ 1 G,G (q, ω) = δ G,G + v G (q)χ G,G (q, ω) ɛ M (q, ω) = 1 ɛ 1 G=0,G =0 (q, ω) Adler, Phys. Rev. 126 (1962); Wiser, Phys. Rev. 129 (1963).
13 Micro-macro connection Microscopic-Macroscopic connection: local fields ɛ M (q, ω) = 1 v G=0 (q) χ G=0,G =0(q, ω) χ G,G (q, ω) = P G,G (q, ω) + P G,G1 (q, ω) v G1 (q) χ G1,G (q, ω) v G (q) = 0 for G = 0 v G (q) = v G (q) for G 0 Hanke, Adv. Phys. 27 (1978).
14 Absorption spectra Absorption spectra Abs(ω) = lim q 0 Imɛ M (q, ω) Abs(ω) = lim q 0 Im [v G=0 (q) χ G=0,G =0(q, ω)] Absorption response to V ext + V macro ind
15 Independent particles: Kohn-Sham Independent transitions: ɛ 2 (ω) = 8π2 ϕ Ωω 2 j e v ϕ i 2 δ(ε j ε i ω) ij
16 What is an electron?
17 Outline 1 Motivation 2 One-particle Green s functions: GW approximation 3 Two-particle Green s functions: Bethe-Salpeter equation 4 Micro-macro connection
18 Photoemission Direct Photoemission Inverse Photoemission
19 Why do we have to study more than DFT? adapted from M. van Schilfgaarde et al., PRL 96 (2006).
20 One-particle Green s function The one-particle Green s function G Definition and meaning of G: ig(x 1, t 1 ; x 2, t 2 ) = N T [ ψ(x 1, t 1 )ψ (x 2, t 2 ) ] N for for t 1 > t 2 ig(x 1, t 1 ; x 2, t 2 ) = N ψ(x 1, t 1 )ψ (x 2, t 2 ) N t 1 < t 2 ig(x 1, t 1 ; x 2, t 2 ) = N ψ (x 2, t 2 )ψ(x 1, t 1 ) N
21 One-particle Green s function t 1 > t 2 N ψ(x 1, t 1 )ψ (x 2, t 2 ) N t 1 < t 2 N ψ (x 2, t 2 )ψ(x 1, t 1 ) N
22 One-particle Green s function What is G? Definition and meaning of G: [ ] G(x 1, t 1 ; x 2, t 2 ) = i < N T ψ(x 1, t 1 )ψ (x 2, t 2 ) N > Insert a complete set of N + 1 or N 1-particle states. This yields G(x 1, t 1 ; x 2, t 2 ) = i j f j (x 1 )f j (x 2 )e iε j (t 1 t 2 ) [θ(t 1 t 2 )θ(ε j µ) θ(t 2 t 1 )Θ(µ ε j )]; where: ε j = E(N + 1, j) E(N), ε j > µ E(N) E(N 1, j), ε j < µ f j (x 1 ) = N ψ (x 1) N + 1, j, ε j > µ N 1, j ψ (x 1 ) N, ε j < µ
23 One-particle Green s function What is G? - Fourier transform G(x, x, ω) = j Fourier Transform: f j (x)f j (x ) ω ε j + iηsgn(ε j µ). Spectral function: A(x, x ; ω) = 1 π ImG(x, x ; ω) = j f j (x)f j (x )δ(ω ε j ).
24 Photoemission Direct Photoemission Inverse Photoemission One-particle excitations poles of one-particle Green s function G
25 One-particle Green s function One-particle Green s function From one-particle G we can obtain: one-particle excitation spectra ground-state expectation value of any one-particle operator: e.g. density ρ or density matrix γ: ρ(r, t) = ig(r, r, t, t + ) γ(r, r, t) = ig(r, r, t, t + ) ground-state total energy
26 One-particle Green s function Straightforward? G(x, t; x, t ) = i < N T [ ψ(x, t)ψ (x, t ) ] N > N > =??? Interacting ground state! Perturbation Theory? Time-independent perturbation theories: messy. Textbooks: adiabatically switched on interaction, Gell-Mann-Low theorem, Wick s theorem, expansion (diagrams). Lots of diagrams...
27 One-particle Green s function Straightforward? G(x, t; x, t ) = i < N T [ ψ(x, t)ψ (x, t ) ] N > N > =??? Interacting ground state! Perturbation Theory? Time-independent perturbation theories: messy. Textbooks: adiabatically switched on interaction, Gell-Mann-Low theorem, Wick s theorem, expansion (diagrams). Lots of diagrams...
28 One-particle Green s function Straightforward? G(x, t; x, t ) = i < N T [ ψ(x, t)ψ (x, t ) ] N > N > =??? Interacting ground state! Perturbation Theory? Time-independent perturbation theories: messy. Textbooks: adiabatically switched on interaction, Gell-Mann-Low theorem, Wick s theorem, expansion (diagrams). Lots of diagrams...
29 Functional approach to the MB problem Equation of motion To determine the 1-particle Green s function: [ ] i h 0 (1) G(1, 2) = δ(1, 2) i t 1 d3v(1, 3)G 2 (1, 3, 2, 3 + ) Do the Fourier transform in frequency space: [ω h 0 ]G(ω) + i vg 2 (ω) = 1 where h 0 = v ext is the independent particle Hamiltonian. The 2-particle Green s function describes the motion of 2 particles.
30 Unfortunately, hierarchy of equations G 1 (1, 2) G 2 (1, 2; 3, 4) G 2 (1, 2; 3, 4) G 3 (1, 2, 3; 4, 5, 6)...
31 Self-energy Perturbation theory starts from what is known to evaluate what is not known, hoping that the difference is small... Let s say we know G 0 (ω) that corresponds to the Hamiltonian h 0 Everything that is unknown is put in Σ(ω) = G 1 0 (ω) G 1 (ω) This is the definition of the self-energy Thus, [ω h 0 ]G(ω) Σ(ω)G(ω) = 1 to be compared with [ω h 0 ]G(ω) + i vg 2 (ω) = 1
32 Self-energy Perturbation theory starts from what is known to evaluate what is not known, hoping that the difference is small... Let s say we know G 0 (ω) that corresponds to the Hamiltonian h 0 Everything that is unknown is put in Σ(ω) = G 1 0 (ω) G 1 (ω) This is the definition of the self-energy Thus, [ω h 0 ]G(ω) Σ(ω)G(ω) = 1 to be compared with [ω h 0 ]G(ω) + i vg 2 (ω) = 1
33 One-particle Green s function Trick due to Schwinger (1951): introduce a small external potential U(3), that will be made equal to zero at the end, and calculate the variations of G with respect to U δg(1, 2) δu(3) = G 2 (1, 3; 2, 3) + G(1, 2)G(3, 3).
34 Hedin s equation Hedin s equations Σ =igw Γ G =G 0 + G 0 ΣG Γ =1 + δσ δg GGΓ P = iggγ W =v + vpw L. Hedin, Phys. Rev. 139 (1965)
35 GW bandstructure: photoemission additional charge
36 GW bandstructure: photoemission additional charge reaction: polarization, screening GW approximation 1 polarization made of noninteracting electron-hole pairs (RPA) 2 classical (Hartree) interaction between additional charge and polarization charge
37 Hedin s equation and GW GW approximation Σ =igw Γ G =G 0 + G 0 ΣG Γ =1 P = iggγ W =v + vpw L. Hedin, Phys. Rev. 139 (1965)
38 Hedin s equation and GW GW approximation Σ =igw G =G 0 + G 0 ΣG Γ =1 P = igg W =v + vpw L. Hedin, Phys. Rev. 139 (1965)
39 GW corrections Standard perturbative G 0 W 0 H 0 (r)φ i (r) + H 0 (r)ϕ i (r) + V xc (r)ϕ i (r) = ɛ i ϕ i (r) dr Σ(r, r, ω = E i ) φ i (r ) = E i φ i (r) First-order perturbative corrections with Σ = igw : E i ɛ i = ϕ i Σ V xc ϕ i Hybersten and Louie, PRB 34 (1986); Godby, Schlüter and Sham, PRB 37 (1988)
40 GW results M. van Schilfgaarde et al., PRL 96 (2006).
41 Independent (quasi)particles: GW Independent transitions: ɛ 2 (ω) = 8π2 ϕ Ωω 2 j e v ϕ i 2 δ(e j E i ω) ij
42 What is wrong? What is missing?
43 Absorption Two-particle excitations poles of two-particle Green s function L Excitonic effects = electron - hole interaction
44 Absorption Two-particle excitations poles of two-particle Green s function L Excitonic effects = electron - hole interaction
45 Absorption Two-particle excitations poles of two-particle Green s function L Excitonic effects = electron - hole interaction
46 Outline 1 Motivation 2 One-particle Green s functions: GW approximation 3 Two-particle Green s functions: Bethe-Salpeter equation 4 Micro-macro connection
47 Beyond RPA P(12) = ig(12)g(21) = P 0 (12) Independent particles (RPA)
48 Beyond RPA P(12) = ig(13)g(42)γ(342) Interacting particles (excitonic effects)
49 From Hedin s equations to BSE From Hedin... P = iggγ Γ = 1 + δσ δg GGΓ
50 From Hedin s equations to BSE From Hedin......to Bethe-Salpeter P = iggγ Γ = 1 + δσ δg GGΓ ( δσ ) L = L 0 + L 0 v + i L δg
51 The Bethe-Salpeter equation Exercise Formal derivation δg(12) L(1234) = i δv = +ig(15) δg 1 (56) ext(34) δv G(62) ext(34) = + ig(15) δ[g 1 0 (56) Vext(56) Σ(56)] G(62) δv ext(34) [ δvh (5)δ(56) = ig(13)g(42) + ig(15)g(62) δσ(56) ] δv ext(34) δv ext(34) [ δvh (5)δ(56) = ig(13)g(42) + ig(15)g(62) δσ(56) ] δg(78) δg(78) δg(78) δv ext(34) [ L(1234) =L 0 (1234) + L 0 (1256) v(57)δ(56)δ(78) + i δσ(56) δg(78) ] L(7834)
52 The Bethe-Salpeter equation [ L(1234) = L 0 (1234) + L 0 (1256) v(57)δ(56)δ(78) + i δσ(56) δg(78) ] L(7834) Polarizabilities δg(12) L(1234) = i δv ext (34) χ(12) = δρ(1) δv ext (2) L(1122) = χ(12)
53 The Bethe-Salpeter equation Approximations ( δσ ) L = L 0 + L 0 v + i L δg
54 The Bethe-Salpeter equation Approximations Σ igw ( δσ ) L = L 0 + L 0 v + i L δg Approximation:
55 The Bethe-Salpeter equation Approximations Σ igw ( δ(gw )) L = L 0 + L 0 v L δg Approximation: δ(gw ) δg = W + GδW δg W
56 The Bethe-Salpeter equation Approximations Final result: L = L 0 + L 0 (v W )L
57 The Bethe-Salpeter equation Bethe-Salpeter equation L(1234) = L 0 (1234)+ L 0 (1256)[v(57)δ(56)δ(78) W (56)δ(57)δ(68)]L(7834)
58 Absorption spectra in BSE Bulk silicon G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).
59 Solving BSE L(1234) = L 0 (1234)+ L 0 (1256)[v(57)δ(56)δ(78) W (56)δ(57)δ(68)]L(7834) Static W Simplification: W (r 1, r 2, t 1 t 2 ) W (r 1, r 2 )δ(t 1 t 2 ) L(1234) L(r 1, r 2, r 3, r 4, t t ) L(r 1, r 2, r 3, r 4, ω)
60 Solving BSE L(1234) = L 0 (1234)+ L 0 (1256)[ v(57)δ(56)δ(78) W (56)δ(57)δ(68)] L(7834) Static W Simplification: W (r 1, r 2, t 1 t 2 ) W (r 1, r 2 )δ(t 1 t 2 ) L(1234) L(r 1, r 2, r 3, r 4, t t ) L(r 1, r 2, r 3, r 4, ω)
61 Solving BSE L(1234) = L 0 (1234)+ L 0 (1256)[ v(57)δ(56)δ(78) W (56)δ(57)δ(68)] L(7834) Static W Simplification: W (r 1, r 2, t 1 t 2 ) W (r 1, r 2 )δ(t 1 t 2 ) L(1234) L(r 1, r 2, r 3, r 4, t t ) L(r 1, r 2, r 3, r 4, ω)
62 Solving BSE Dielectric function L(r 1 r 2 r 3 r 4 ω) = L 0 (r 1 r 2 r 3 r 4 ω) + dr 5 dr 6 dr 7 dr 8 L 0 (r 1 r 2 r 5 r 6 ω) [ v(r 5 r 7 )δ(r 5 r 6 )δ(r 7 r 8 ) W (r 5 r 6 )δ(r 5 r 7 )δ(r 6 r 8 )] L(r 7 r 8 r 3 r 4 ω) [ ɛ M (ω) = 1 lim v G=0 (q) q 0 ] drdr e iq(r r ) L(r, r, r, r, ω)
63 Solving BSE L(r 1 r 2 r 3 r 4 ω) = L 0 (r 1 r 2 r 3 r 4 ω) + dr 5 dr 6 dr 7 dr 8 L 0 (r 1 r 2 r 5 r 6 ω) [ v(r 5 r 7 )δ(r 5 r 6 )δ(r 7 r 8 ) W (r 5 r 6 )δ(r 5 r 7 )δ(r 6 r 8 )] L(r 7 r 8 r 3 r 4 ω) Transition space How to solve it? L (n1 n 2 )(n 3 n 4 )(ω) = φ n 1 (r 1 )φ n2 (r 2 ) L(r 1 r 2 r 3 r 4 ω) φ n 3 (r 3 )φ n4 (r 4 ) = L
64 Solving BSE L(r 1 r 2 r 3 r 4 ω) = L 0 (r 1 r 2 r 3 r 4 ω) + dr 5 dr 6 dr 7 dr 8 L 0 (r 1 r 2 r 5 r 6 ω) [ v(r 5 r 7 )δ(r 5 r 6 )δ(r 7 r 8 ) W (r 5 r 6 )δ(r 5 r 7 )δ(r 6 r 8 )] L(r 7 r 8 r 3 r 4 ω) Transition space How to solve it? L (n1 n 2 )(n 3 n 4 )(ω) = φ n 1 (r 1 )φ n2 (r 2 ) L(r 1 r 2 r 3 r 4 ω) φ n 3 (r 3 )φ n4 (r 4 ) = L
65 Exercise Calculate: L 0 (r 1, r 2, r 3, r 4, ω) = ij L 0 = (f j f i ) φ i (r 1)φ j (r 2 )φ i (r 3 )φ j (r 4) ω (E i E j ) f n1 f n2 ω (E n2 E n1 ) δ n 1 n 3 δ n2 n 4
66 Solving BSE BSE in transition space We consider only resonant optical transitions for a nonmetallic system: (n 1 n 2 ) = (vkck) (vc) L = L 0 + L 0 ( v W ) L L = [1 L 0 ( v W )] 1 L 0 L = [L 1 0 ( v W )] 1 L (vc)(v c )(ω) = [(E c E v ω)δ vv δ cc + (f v f c ) v W ] 1 (f c f v )
67 Solving BSE L (vc)(v c )(ω) = [(E c E v ω)δ vv δ cc + (f v f c ) v W ] 1 (f c f v ) Spectral representation of a hermitian operator [H exc ωi ] 1 = λ L (vc)(v c )(ω) = λ H exc A λ = E λ A λ A λ A λ E λ ω A (vc) λ A (v c ) λ E λ ω (f c f v )
68 Solving BSE L (vc)(v c )(ω) = [(E c E v ω)δ vv δ cc + (f v f c ) v W ] 1 (f c f v ) L [H exc ωi ] 1 Spectral representation of a hermitian operator [H exc ωi ] 1 = λ L (vc)(v c )(ω) = λ H exc A λ = E λ A λ A λ A λ E λ ω A (vc) λ A (v c ) λ E λ ω (f c f v )
69 Absorption spectra in BSE Independent (quasi)particles Abs(ω) vc v D c 2 δ(e c E v ω) Excitonic effects [H el + H hole +H el hole ] A λ = E λ A λ Abs(ω) λ vc A (vc) λ v D c 2 δ(e λ ω) mixing of transitions: v D c 2 vc A(vc) λ v D c 2 modification of excitation energies: E c E v E λ
70 BSE calculations A three-step method 1 LDA calculation Kohn-Sham wavefunctions ϕ i 2 GW calculation GW energies E i and screened Coulomb interaction W 3 BSE calculation solution of H exc A λ = E λ A λ with: H (vc)(v c ) exc = (E c E v )δ vv δ cc + (f v f c ) vc v W v c excitonic eigenstates A λ, E λ spectra ɛ M (ω)
71 A bit of history derivation of the equation (bound state of deuteron) E. E. Salpeter and H. A. Bethe, PR 84, 1232 (1951). BSE for exciton calculations L.J. Sham and T.M. Rice, PR 144, 708 (1966). W. Hanke and L. J. Sham, PRL 43, 387 (1979). first ab initio calculation G. Onida, L. Reining, R. W. Godby, R. Del Sole, and W. Andreoni, PRL 75, 818 (1995). first ab initio calculations in extended systems S. Albrecht, L. Reining, R. Del Sole, and G. Onida, PRL 80, 4510 (1998). L. X. Benedict, E. L. Shirley, and R. B. Bohn, PRL 80, 4514 (1998). M. Rohlfing and S. G. Louie, PRL 81, 2312 (1998).
72 Continuum excitons Bulk silicon G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).
73 Bound excitons Solid argon F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76 (2007).
74 The Wannier model Bethe-Salpeter equation H exca λ = E λ A λ H (vc)(v c ) exc = (E c E v)δ vv δ cc + v W Wannier model two parabolic bands E c E v = E g + k 2 2µ 2 2µ no local fields ( v = 0) and effective screened W W (r, r ) = 1 ɛ 0 r r solution = Rydberg series for effective H atom E n = E g R eff n 2 with R eff = R µ ɛ 2 0
75 Exciton analysis Exciton amplitude: Ψ λ (r h, r e ) = vc A (vc) λ φ v(r h )φ c (r e ) Graphene nanoribbon Manganese Oxide D. Prezzi, et al., PRB 77 (2008). C. Rödl, et al., PRB 77 (2008).
76 Outline 1 Motivation 2 One-particle Green s functions: GW approximation 3 Two-particle Green s functions: Bethe-Salpeter equation 4 Micro-macro connection
77 Micro-macro connection Observation At long wavelength, external fields are slowly varying over the unit cell: dimension of the unit cell for silicon: 0.5 nm visible radiation 400 nm < λ < 800 nm Total and induced fields are rapidly varying: they include the contribution from electrons in all regions of the cell. Large and irregular fluctuations over the atomic scale.
78 Micro-macro connection Observation One usually measures quantities that vary on a macroscopic scale. When we calculate microscopic quantities we need to average over distances that are large compared to the cell parameter small compared to the wavelength of the external perturbation. The differences between the microscopic fields and the averaged (macroscopic) fields are called the crystal local fields.
79 Suppose that we are able to calculate the microscopic dielectric function ɛ, how do we obtain the macroscopic dielectric function ɛ M that we measure in experiments?
80 Micro-macro connection Fourier transform In a periodic medium, every function V (r, ω) can be represented by the Fourier series V (r, ω) = qg V (q + G, ω)e i(q+g)r or: V (r, ω) = q e iqr G V (q + G, ω)e igr = q e iqr V (q, r, ω) where: V (q, r, ω) = G V (q + G, ω)e igr V (q, r, ω) is periodic with respect to the Bravais lattice and hence is the quantity that one has to average to get the corresponding macroscopic potential V M (q, ω).
81 Micro-macro connection Averages V M (q, ω) = 1 Ω c drv (q, r, ω) V (q, r, ω) = G V (q + G, ω)e igr Therefore: V M (q, ω) = G V (q + G, ω) 1 Ω c dre igr = V (q + 0, ω) The macroscopic average V M corresponds to the G = 0 component of the microscopic V. Example V ext (q, ω) = ɛ M (q, ω)v tot,m (q, ω)
82 Micro-macro connection Averages V M (q, ω) = 1 Ω c drv (q, r, ω) V (q, r, ω) = G V (q + G, ω)e igr Therefore: V M (q, ω) = G V (q + G, ω) 1 Ω c dre igr = V (q + 0, ω) The macroscopic average V M corresponds to the G = 0 component of the microscopic V. Example V ext (q, ω) = ɛ M (q, ω)v tot,m (q, ω)
83 Micro-macro connection Fourier transforms Fourier transform of a function f (r, r, ω): f (q + G, q + G, ω) = drdr e i(q+g)r f (r, r, ω)e +i(q+g )r f G,G (q, ω) Therefore the relation V tot (r 1, ω) = dr 2 ɛ 1 (r 1, r 2, ω)v ext (r 2, ω) in the Fourier space becomes: V tot (q + G, ω) = G ɛ 1 G,G (q, ω)v ext (q + G, ω)
84 Micro-macro connection Fourier transforms Fourier transform of a function f (r, r, ω): f (q + G, q + G, ω) = drdr e i(q+g)r f (r, r, ω)e +i(q+g )r f G,G (q, ω) Therefore the relation V tot (r 1, ω) = dr 2 ɛ 1 (r 1, r 2, ω)v ext (r 2, ω) in the Fourier space becomes: V tot (q + G, ω) = G ɛ 1 G,G (q, ω)v ext (q + G, ω)
85 Micro-macro connection Example Macroscopic dielectric function V tot,m (q, ω) = ɛ 1 M (q, ω)v ext(q, ω) V tot(q + G, ω) = G ɛ 1 G,G (q, ω)vext(q + G, ω) V ext is a macroscopic quantity: V M,tot (q, ω) = V tot(q + 0, ω) V tot,m (q, ω) = ɛ 1 G=0,G =0 (q, ω)vext(q, ω) ɛ 1 M (q, ω) = ɛ 1 ɛ M (q, ω) = G=0,G =0 1 (q, ω) ɛ 1 G=0,G =0 (q, ω)
86 Micro-macro connection Example Macroscopic dielectric function V tot,m (q, ω) = ɛ 1 M (q, ω)v ext(q, ω) V tot(q + G, ω) = G ɛ 1 G,G (q, ω)vext(q + G, ω) V ext is a macroscopic quantity: V M,tot (q, ω) = V tot(q + 0, ω) V tot,m (q, ω) = ɛ 1 G=0,G =0 (q, ω)vext(q, ω) ɛ 1 M (q, ω) = ɛ 1 ɛ M (q, ω) = G=0,G =0 1 (q, ω) ɛ 1 G=0,G =0 (q, ω)
87 Micro-macro connection Example Macroscopic dielectric function V tot,m (q, ω) = ɛ 1 M (q, ω)v ext(q, ω) V tot(q + G, ω) = G ɛ 1 G,G (q, ω)vext(q + G, ω) V ext is a macroscopic quantity: V M,tot (q, ω) = V tot(q + 0, ω) V tot,m (q, ω) = ɛ 1 G=0,G =0 (q, ω)vext(q, ω) ɛ 1 M (q, ω) = ɛ 1 ɛ M (q, ω) = G=0,G =0 1 (q, ω) ɛ 1 G=0,G =0 (q, ω)
88 Micro-macro connection Example Macroscopic dielectric function V tot,m (q, ω) = ɛ 1 M (q, ω)v ext(q, ω) V tot(q + G, ω) = G ɛ 1 G,G (q, ω)vext(q + G, ω) V ext is a macroscopic quantity: V M,tot (q, ω) = V tot(q + 0, ω) V tot,m (q, ω) = ɛ 1 G=0,G =0 (q, ω)vext(q, ω) ɛ 1 M (q, ω) = ɛ 1 ɛ M (q, ω) = G=0,G =0 1 (q, ω) ɛ 1 G=0,G =0 (q, ω)
89 Micro-macro connection Example Macroscopic dielectric function V tot,m (q, ω) = ɛ 1 M (q, ω)v ext(q, ω) V tot(q + G, ω) = G ɛ 1 G,G (q, ω)vext(q + G, ω) V ext is a macroscopic quantity: V M,tot (q, ω) = V tot(q + 0, ω) V tot,m (q, ω) = ɛ 1 G=0,G =0 (q, ω)vext(q, ω) ɛ 1 M (q, ω) = ɛ 1 ɛ M (q, ω) = G=0,G =0 1 (q, ω) ɛ 1 G=0,G =0 (q, ω)
90 Micro-macro connection Macroscopic dielectric function V ext (q + G, ω) = G ɛ G,G (q, ω)v tot (q + G, ω) Remember: V ext is a macroscopic quantity: V ext (q, ω) = G ɛ G=0,G (q, ω)v tot (q + G, ω) V ext (q, ω) = ɛ G=0,G =0(q, ω)v tot,m (q, ω)+ G 0 ɛ G=0,G (q, ω)v tot (q+g, ω) V ext (q, ω) = ɛ M (q, ω)v tot,m (q, ω) ɛ M (q, ω) ɛ G=0,G =0(q, ω)
91 Micro-macro connection Macroscopic dielectric function V ext (q + G, ω) = G ɛ G,G (q, ω)v tot (q + G, ω) Remember: V ext is a macroscopic quantity: V ext (q, ω) = G ɛ G=0,G (q, ω)v tot (q + G, ω) V ext (q, ω) = ɛ G=0,G =0(q, ω)v tot,m (q, ω)+ G 0 ɛ G=0,G (q, ω)v tot (q+g, ω) V ext (q, ω) = ɛ M (q, ω)v tot,m (q, ω) ɛ M (q, ω) ɛ G=0,G =0(q, ω)
92 Micro-macro connection Macroscopic dielectric function V ext (q + G, ω) = G ɛ G,G (q, ω)v tot (q + G, ω) Remember: V ext is a macroscopic quantity: V ext (q, ω) = G ɛ G=0,G (q, ω)v tot (q + G, ω) V ext (q, ω) = ɛ G=0,G =0(q, ω)v tot,m (q, ω)+ G 0 ɛ G=0,G (q, ω)v tot (q+g, ω) V ext (q, ω) = ɛ M (q, ω)v tot,m (q, ω) ɛ M (q, ω) ɛ G=0,G =0(q, ω)
93 Micro-macro connection Spectra ɛ M (q, ω) = 1 ɛ 1 G=0,G =0 (q, ω) Abs(ω) = lim q 0 Imɛ M (ω) = lim EELS(ω) = lim Imɛ 1 M q 0 q 0 Im (ω) = lim q 0 Imɛ 1 1 ɛ 1 G=0,G =0 (q, ω) G=0,G =0 (q, ω)
94 Micro-macro connection Spectra ɛ M (q, ω) = 1 ɛ 1 G=0,G =0 (q, ω) Abs(ω) = lim q 0 Imɛ M (ω) = lim EELS(ω) = lim Imɛ 1 M q 0 q 0 Im (ω) = lim q 0 Imɛ 1 1 ɛ 1 G=0,G =0 (q, ω) G=0,G =0 (q, ω)
95 BSE vs. TDDFT: what in common? BSE L = L 0 + L 0 (v + Ξ)L TDDFT χ = χ 0 + χ 0 (v + f xc )χ
96 The Coulomb term v The Coulomb term v = v 0 + v
97 Local fields reloaded Microscopic-Macroscopic connection: local fields χ G,G (q, ω) = P G,G (q, ω) + P G,G1 (q, ω)v G1 (q)χ G1,G (q, ω) G 1 ɛ 1 G,G (q, ω) = δ G,G + v G (q)χ G,G (q, ω) ɛ M (q, ω) = 1 ɛ 1 G=0,G =0 (q, ω) Adler, Phys. Rev. 126 (1962); Wiser, Phys. Rev. 129 (1963).
98 Local fields reloaded Microscopic-Macroscopic connection: local fields ɛ M (q, ω) = 1 v G=0 (q) χ G=0,G =0(q, ω) χ G,G (q, ω) = P G,G (q, ω) + P G,G1 (q, ω) v G1 (q) χ G1,G (q, ω) G 1 v G (q) = 0 for G = 0 v G (q) = v G (q) for G 0 Hanke, Adv. Phys. 27 (1978).
99 Absorption Abs(ω) = lim q 0 Imɛ M (q, ω) Abs(ω) = lim q 0 Im [v G=0 (q) χ G=0,G =0(q, ω)] χ = P + P v χ EELS Absorption response to V ext + V macro ind Eels(ω) = lim q 0 Im[1/ɛ M (q, ω)] Eels(ω) = lim q 0 Im [v G=0 (q)χ G=0,G =0(q, ω)] χ = P + P(v 0 + v)χ Eels response to V ext
100 The Coulomb term v The Coulomb term v = v 0 + v long-range v 0 difference between Abs and Eels
101 Coulomb term v 0 : Abs vs. Eels F. Sottile, PhD thesis (2003) - Bulk silicon: absorption vs. EELS.
102 The Coulomb term v The Coulomb term v = v 0 + v long-range v 0 difference between Abs and Eels what about v?
103 The Coulomb term v The Coulomb term v = v 0 + v long-range v 0 difference between Abs and Eels what about v? v is responsible for crystal local-field effects
104 Coulomb term v: local fields v: local fields ɛ M = 1 v G=0 χ G=0,G =0 Set v = 0 in: χ G,G = χ 0 G,G + G 1 χ 0 G,G 1 v G1 χ G1,G χ G,G = χ 0 G,G Result: ɛ M = 1 v G=0 χ 0 G=0,G =0 that is: no local-field effects! (equivalent to Fermi s golden rule)
105 Coulomb term v: local fields v: local fields ɛ M = 1 v G=0 χ G=0,G =0 Set v = 0 in: χ G,G = χ 0 G,G + G 1 χ 0 G,G 1 v G1 χ G1,G χ G,G = χ 0 G,G Result: ɛ M = 1 v G=0 χ 0 G=0,G =0 that is: no local-field effects! (equivalent to Fermi s golden rule)
106 Coulomb term v: local fields v: local fields ɛ M = 1 v G=0 χ G=0,G =0 Set v = 0 in: χ G,G = χ 0 G,G + G 1 χ 0 G,G 1 v G1 χ G1,G χ G,G = χ 0 G,G Result: ɛ M = 1 v G=0 χ 0 G=0,G =0 that is: no local-field effects! (equivalent to Fermi s golden rule)
107 Coulomb term v: local fields Bulk silicon: absorption
108 Coulomb term v: local fields A. G. Marinopoulos et al., PRL 89 (2002) - Graphite EELS
109 What are local fields? Effective medium theory Uniform field E 0 applied to a dielectric sphere with dielectric constant ɛ in vacuum. From continuity conditions at the interface: P = 3 ɛ 1 4π ɛ + 2 E 0 Jackson, Classical electrodynamics, Sec. 4.4.
110 What are local fields? Effective medium theory Regular lattice of objects dimensionality d of material ɛ 1 in vacuum Maxwell-Garnett formulas dot (O D system) wire (1D system) Imɛ 1 (ω) Imɛ M (ω) 9 [Reɛ 1 (ω) + 2] 2 + [Imɛ 1 (ω)] 2 Imɛ M (ω) Imɛ 1(ω) Imɛ Imɛ 1 (ω) M (ω) 4 [Reɛ 1 (ω) + 1] 2 + [Imɛ 1 (ω)] 2
111 What are local fields? F. Bruneval et al., PRL 94 (2005) - Si nanowires S. Botti et al., PRB 79 (2009) - SiGe nanodots
112 MBPT & TDDFT MBPT helps improving DFT & TDDFT DFT & TDDFT help improving MBPT
113 Conclusion (TD)DFT & MBPT... try to learn both!
114 Many thanks!
115 Acknowledgements Silvana Botti Fabien Bruneval Valerio Olevano Lucia Reining Francesco Sottile Valérie Véniard
Introduction to Green s functions
Introduction to Green s functions Matteo Gatti ETSF Users Meeting and Training Day Ecole Polytechnique - 22 October 2010 Outline 1 Motivation 2 Green s functions 3 The GW Approximation 4 The Bethe-Salpeter
Università degli Studi Roma TRE. Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia
Università degli Studi Roma TRE e Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia Dottorato di Ricerca in Scienze Fisiche della Materia XXIII ciclo Challenges for first principles
Optical Properties of Solids. Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria
Optical Properties of Solids Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria Outline Basics Program Examples Outlook light scattering dielectric tensor
Lecture 3: Optical Properties of Bulk and Nano. 5 nm
Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus
The Application of Density Functional Theory in Materials Science
The Application of Density Functional Theory in Materials Science Slide 1 Outline Atomistic Modelling Group at MUL Density Functional Theory Numerical Details HPC Cluster at the MU Leoben Applications
PCV Project: Excitons in Molecular Spectroscopy
PCV Project: Excitons in Molecular Spectroscopy Introduction The concept of excitons was first introduced by Frenkel (1) in 1931 as a general excitation delocalization mechanism to account for the ability
Lecture 3: Optical Properties of Bulk and Nano. 5 nm
Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)
= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0
Chapter 1 Thomas-Fermi Theory The Thomas-Fermi theory provides a functional form for the kinetic energy of a non-interacting electron gas in some known external potential V (r) (usually due to impurities)
Exciton dissociation in solar cells:
Exciton dissociation in solar cells: Xiaoyang Zhu Department of Chemistry University of Minnesota, Minneapolis t (fs) 3h! E, k h! Pc Bi e - 1 Acknowledgement Organic semiconductors: Mutthias Muntwiler,
What is molecular dynamics (MD) simulation and how does it work?
What is molecular dynamics (MD) simulation and how does it work? A lecture for CHM425/525 Fall 2011 The underlying physical laws necessary for the mathematical theory of a large part of physics and the
PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004
PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall
Electric Dipole moments as probes of physics beyond the Standard Model
Electric Dipole moments as probes of physics beyond the Standard Model K. V. P. Latha Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Plan of the Talk Parity (P) and Time-reversal
Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain. April 2, 2014
Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain April 2, 2014 ICFO The Institute of Photonic Sciences 10 minute walk 11 years old 22 Research Groups 300 people Research themes: Quantum
Structure Factors 59-553 78
78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal
Hard Condensed Matter WZI
Hard Condensed Matter WZI Tom Gregorkiewicz University of Amsterdam VU-LaserLab Dec 10, 2015 Hard Condensed Matter Cluster Quantum Matter Optoelectronic Materials Quantum Matter Amsterdam Mark Golden Anne
DFT in practice : Part I. Ersen Mete
plane wave expansion & the Brillouin zone integration Department of Physics Balıkesir University, Balıkesir - Turkey August 13, 2009 - NanoDFT 09, İzmir Institute of Technology, İzmir Outline Plane wave
Computer lab: Density functional perturbation theory. theory for lattice dynamics
Computer lab: density functional perturbation theory for lattice dynamics SISSA and DEMOCRITOS Trieste (Italy) Outline 1 The dynamical matrix 2 3 4 5 Dynamical matrix We want to write a small computer
Theoretical approaches to the ab-initio study of complex systems
Theoretical approaches to the ab-initio study of complex systems Olivia Pulci European Theoretical Spectroscopy Facilty (ETSF), and CNR-INFM, Dipartimento di Fisica Università di Roma Tor Vergata NAST-ISM
The quantum mechanics of particles in a periodic potential: Bloch s theorem
Handout 2 The quantum mechanics of particles in a periodic potential: Bloch s theorem 2.1 Introduction and health warning We are going to set up the formalism for dealing with a periodic potential; this
Spatially separated excitons in 2D and 1D
Spatially separated excitons in 2D and 1D David Abergel March 10th, 2015 D.S.L. Abergel 3/10/15 1 / 24 Outline 1 Introduction 2 Spatially separated excitons in 2D The role of disorder 3 Spatially separated
Group Theory and Chemistry
Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation
CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules
CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Chapter 7: Polarization
Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces
Electrostatic Fields: Coulomb s Law & the Electric Field Intensity
Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University
Chemistry 102 Summary June 24 th. Properties of Light
Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible
Simulation of infrared and Raman spectra
Simulation of infrared and Raman spectra, 1 Bernard Kirtman, 2 Michel Rérat, 3 Simone Salustro, 1 Marco De La Pierre, 1 Roberto Orlando, 1 Roberto Dovesi 1 1) Dipartimento di Chimica, Università di Torino
Solid State Detectors = Semi-Conductor based Detectors
Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection
Broadband THz Generation from Photoconductive Antenna
Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 331 Broadband THz Generation from Photoconductive Antenna Qing Chang 1, Dongxiao Yang 1,2, and Liang Wang 1 1 Zhejiang
The plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures
The plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures Matthew T. Sheldon and Harry A. Atwater Thomas J. Watson Laboratories of Applied Physics, California
Chapter 9 Unitary Groups and SU(N)
Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three
2. Molecular stucture/basic
2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Spectral regions
F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.
The Electron Oscillator/Lorentz Atom Consider a simple model of a classical atom, in which the electron is harmonically bound to the nucleus n x e F en = mω 0 2 x origin resonance frequency Note: We should
An Introduction to Hartree-Fock Molecular Orbital Theory
An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental
Numerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor
Numerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor M. Gabalis *1, D. Urbonas 1, and R. Petruškevičius 1 1 Institute of Physics of Center for Physical Sciences and Technology,
Atomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.
NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester
Specific Intensity. I ν =
Specific Intensity Initial question: A number of active galactic nuclei display jets, that is, long, nearly linear, structures that can extend for hundreds of kiloparsecs. Many have two oppositely-directed
Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)
MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced
ENERGY TRANSFER IN THE WEAK AND STRONG COUPLING REGIME
ERC Starting Grant 2011 Dipar)mento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1, 35131 Padova Italy ENERGY TRANSFER IN THE WEAK AND STRONG COUPLING REGIME [1] Vekshin, N. L. Energy
- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier
Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated
- thus, the total number of atoms per second that absorb a photon is
Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons
Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30
Chemical Synthesis Spontaneous organization of molecules into stable, structurally well-defined aggregates at the nanometer length scale. Overview The 1-100 nm nanoscale length is in between traditional
Photoinduced volume change in chalcogenide glasses
Photoinduced volume change in chalcogenide glasses (Ph.D. thesis points) Rozália Lukács Budapest University of Technology and Economics Department of Theoretical Physics Supervisor: Dr. Sándor Kugler 2010
Energy. Mechanical Energy
Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance
Introduction to Quantum Dot Nanocrystals and Nanocrystal Solids. Nuri Yazdani, 10.03.15
Introduction to Quantum Dot Nanocrystals and Nanocrystal Solids Nuri Yazdani, 10.03.15 What is a QD Nanocrystal Time: ~15m What is a QD nanocrystal? Bulk Crystal Periodic lattice of atoms which extends
The Role of Electric Polarization in Nonlinear optics
The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research
The Physics of Energy sources Renewable sources of energy. Solar Energy
The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei [email protected] Renewable sources 1 Solar power! There are basically two ways of using directly the radiative
Applications of Quantum Chemistry HΨ = EΨ
Applications of Quantum Chemistry HΨ = EΨ Areas of Application Explaining observed phenomena (e.g., spectroscopy) Simulation and modeling: make predictions New techniques/devices use special quantum properties
Applied Physics of solar energy conversion
Applied Physics of solar energy conversion Conventional solar cells, and how lazy thinking can slow you down Some new ideas *************************************************************** Our work on semiconductor
Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential
Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential I. Avgin Department of Electrical and Electronics Engineering,
Sucesses and limitations of dynamical mean field theory. A.-M. Tremblay G. Sordi, D. Sénéchal, K. Haule, S. Okamoto, B. Kyung, M.
Sucesses and limitations of dynamical mean field theory A.-M. Tremblay G. Sordi, D. Sénéchal, K. Haule, S. Okamoto, B. Kyung, M. Civelli MIT, 20 October, 2011 How to make a metal Courtesy, S. Julian r
The Quantum Harmonic Oscillator Stephen Webb
The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems
5.6 Binary rare earth alloys
5.6 BINARY RARE EARTH ALLOYS 247 5.6 Binary rare earth alloys The great similarity in the chemical properties of the different rare earth metals allows almost complete mutual solubility. It is therefore
Magnetic domain walls in ultrathin films: Contribution of the Dzyaloshinsky-Moriya interaction
Magnetic domain walls in ultrathin films: Contribution of the Dzyaloshinsky-Moriya interaction Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen
Blackbody radiation derivation of Planck s radiation low
Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators
DETECTION OF COATINGS ON PAPER USING INFRA RED SPECTROSCOPY
DETECTION OF COATINGS ON PAPER USING INFRA RED SPECTROSCOPY Eduard Gilli 1,2 and Robert Schennach 1, 2 1 Graz University of Technology, 8010 Graz, Austria 2 CD-Laboratory for Surface Chemical and Physical
Analysis of Electromagnetic Propulsion on a Two-Electric-Dipole System
Electronics and Communications in Japan, Part 2, Vol. 83, No. 4, 2000 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J82-C-I, No. 6, June 1999, pp. 310 317 Analysis of Electromagnetic Propulsion
Symmetric Stretch: allows molecule to move through space
BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed
Spectroscopic Ellipsometry:
Spectroscopic : What it is, what it will do, and what it won t do by Harland G. Tompkins Introduction Fundamentals Anatomy of an ellipsometric spectrum Analysis of an ellipsometric spectrum What you can
Orbits of the Lennard-Jones Potential
Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials
Electric Field Mapping Lab 3. Precautions
HB 09-25-07 Electric Field Mapping Lab 3 1 Electric Field Mapping Lab 3 Equipment mapping board, U-probe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading
The Radiation Theories of Tomonaga, Schwinger, and Feynman
F. J. Dyson, Phys. Rev. 75, 486 1949 The Radiation Theories of Tomonaga, Schwinger, and Feynman F.J. Dyson Institute for Advanced Study, Princeton, New Jersey (Received October 6, 1948) Reprinted in Quantum
fotoelektron-spektroszkópia Rakyta Péter
Spin-pálya kölcsönhatás grafénben, fotoelektron-spektroszkópia Rakyta Péter EÖTVÖS LORÁND TUDOMÁNYEGYETEM, KOMPLEX RENDSZEREK FIZIKÁJA TANSZÉK 1 Introduction to graphene Sp 2 hybridization p z orbitals
Quantum Effects and Dynamics in Hydrogen-Bonded Systems: A First-Principles Approach to Spectroscopic Experiments
Quantum Effects and Dynamics in Hydrogen-Bonded Systems: A First-Principles Approach to Spectroscopic Experiments Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften am Fachbereich Physik
PHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
The CVD diamond booklet
available at: www.diamond-materials.com/download Content 1. General properties of diamond... 2 2. Optical Properties... 4 Optical transparency...4 Absorption coefficient at 10.6 µm...5 Refractive index:
Electron spectroscopy Lecture 1-21. Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy
Electron spectroscopy Lecture 1-21 Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy 653: Electron Spectroscopy urse structure cture 1. Introduction to electron spectroscopies
Experiment #5: Qualitative Absorption Spectroscopy
Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions
Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid
and driven dynamics of a mobile impurity in a quantum fluid Oleg Lychkovskiy Russian Quantum Center Seminaire du LPTMS, 01.12.2015 Seminaire du LPTMS, 01.12.2015 1 / Plan of the talk 1 Perpetual motion
University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory
University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based
Hydrogen Bonds in Water-Methanol Mixture
Bulg. J. Phys. 34 (2007) 103 107 Hydrogen Bonds in Water-Methanol Mixture G.M. Georgiev, K. Vasilev, K. Gyamchev Faculty of Physics, University of Sofia 5J.Bourchier Blvd., 1164 Sofia, Bulgaria Received
Tobias Märkl. November 16, 2009
,, Tobias Märkl to 1/f November 16, 2009 1 / 33 Content 1 duction to of Statistical Comparison to Other Types of Noise of of 2 Random duction to Random General of, to 1/f 3 4 2 / 33 , to 1/f 3 / 33 What
Electronic transport properties of nano-scale Si films: an ab initio study
Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill University, Montreal, Canada Motivation (of
Electromagnetic Radiation (EMR) and Remote Sensing
Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through
Spatial and temporal coherence of polariton condensates
Spatial and temporal coherence of polariton condensates R. Spano Dpt. Fisica de Materiales, Universidad Autónoma Madrid. SPAIN XIV JORNADA DE JÓVENES CIENTÍFICOS DEL INSTITUTO DE CIENCIA DE MATERIALES
Molecular Spectroscopy
Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended
Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident
February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the
Calculating particle properties of a wave
Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can
Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution
Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized
Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
Time Ordered Perturbation Theory
Michael Dine Department of Physics University of California, Santa Cruz October 2013 Quantization of the Free Electromagnetic Field We have so far quantized the free scalar field and the free Dirac field.
Microcavity Quantum Electrodynamics:
Microcavity Quantum Electrodynamics: From atoms to quantum dots Boris Anghelo Rodríguez Rey Grupo de Física Atómica y Molecular Instituto de Física, Universidad de Antioquia September 26, IWQCD 2012 Universidad
3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas.
Tentamen i Statistisk Fysik I den tjugosjunde februari 2009, under tiden 9.00-15.00. Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6
arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
Ab initio calculations for photodissociation of diatomic molecules
Ab initio calculations for photodissociation of diatomic molecules Gerrit C. Groenenboom Theoretical Chemistry Institute for Molecules and Materials Radboud University Nijmegen The Netherlands Leiden 215
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope
The Electric Field. Electric Charge, Electric Field and a Goofy Analogy
. The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it
Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1
Common Equations Used in Chemistry Equation for density: d= m v Converting F to C: C = ( F - 32) x 5 9 Converting C to F: F = C x 9 5 + 32 Converting C to K: K = ( C + 273.15) n x molar mass of element
Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide
Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide Michele Modugno LENS & Dipartimento di Fisica, Università di Firenze, Italy Workshop
