fotoelektron-spektroszkópia Rakyta Péter

Size: px
Start display at page:

Download "fotoelektron-spektroszkópia Rakyta Péter"

Transcription

1 Spin-pálya kölcsönhatás grafénben, fotoelektron-spektroszkópia Rakyta Péter EÖTVÖS LORÁND TUDOMÁNYEGYETEM, KOMPLEX RENDSZEREK FIZIKÁJA TANSZÉK 1

2 Introduction to graphene Sp 2 hybridization p z orbitals Low energy excitation around K points with linear dispersion. Spin-degenerated energy bands (p z electrons): Dirac-cones: Conduction Band E k y Valance Band Fermi level 2. oldal

3 Nobel prize in 2010 Andre Geim (University of Manchester in Konstantin Novoselov the UK) The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2010 for groundbreaking experiments regarding the two-dimensional material graphene. 3. oldal

4 Spin-orbit coupling in graphene Intrinsic spin-orbit (ISO) originates fromc atoms: SO 12µeV DFT calculations: D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B 74, (2006); M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Phys. Rev. B 80, (2009)... Rashba spin-orbit coupling from external electric field to the sheet. SARPES (Spin ans Angle Resolved Photoemission Spectroscopy) on Graphene/Au/Ni(111) structure:λ R 4meV Varykhalov at al., PRL 101, (2008) For realistic systems: SO λ R model. We neglect ISO from the 4. oldal

5 Models of Rashba spin-orbit coupling (RSO) in graphene at the K point H 0 R = 3 2 λ R(ˆσ ŝ) z Kane, C. L. and Mele, E. J., PRL 95, (2005). momentum independent RSO based on symmetry considerations H R (k) from tight-binding model with longwave approximatioin: H R = ( vλˆp iλ R 0 0 3iλ R 0 0 v λˆp ) Ψ = ( ) A ˆp± = ˆp B x ±iˆp y A B v λ = 3λ Rr C C 2 v λˆp ± λ R k are missing in HamiltonianH 0 R (λ R γ,k K) Theese terms are responsible for trigonal warping (TW) effect (as in bilayer), and lead to k-dependent bandsplitting. 5. oldal

6 Mapping to Bilayer Graphene including trigonal warping (TW) Bilayer with TW ( 0 vfˆp 0 v 3ˆp + HK B = v Fˆp + 0 γ γ 1 0 v Fˆp v 3ˆp 0 v Fˆp + 0 E B (γ 1,k,ϕ) ) H K = Graphene with RSO ( 0 vfˆp 0 v λˆp + v Fˆp + 0 3λ R i 0 0 3λ R i 0 v Fˆp v λˆp 0 v Fˆp + 0 E(λ R,k,ϕ) = E B (3λ R,k,π +ϕ) ) 6. oldal

7 k-dependent bandsplitting along ΓK E(k) = E 2 (k) E 1 (k), Solid lines: theory including TW E 1,2 (k) are two valance bands Dashed line: theory without TW Errorbars: Spin and Angle Resolved Photoemission Spectroscopy Graphene/Au/Ni(111) structure quasifreestanding graphene (Varykhalov at al., PRL 101, (2008).) 7. oldal

8 Spin structure in the Brillouin zone Energy contours in lower conduction band: P. Rakyta, A. Kormányos, J. Cserti, PRB 82, (2010). The spin structure manifests rotational symmetry (TW leads to higher order correction): ϕ = α+ π 2 cos3α k r C C, 2 s ( /2)2 s = k r C C 2 λ R /γ sin3α k 2 rc C 2 2 λ R /γ 8. oldal

9 Experimental equipment 9. oldal

10 Ionization spectrum from Photoemission Spectroscopy O 2 H 2 O Finestructure: vibration modes of the ionizated molecules Photoemission Spectroscopy of solids: contributions from surface layers ideal for 2D systems. 10. oldal

11 Spin and Angle Resolved Photoemission Spectroscopy (SARPES) F. Meier, J. H. Dill and J. Osterwalder, New Journal of Varykhalov at al., PRL 101, (2008) Physics 11, (2009) 2 detectors detect the spin-polarization in different planes. Restore 3D spin from the projections to the planes. Anisotropic distribution of photoelectrons. Graphene/Au/Ni(111) - Quasifreestanding Graphene 11. oldal

12 SARPES for graphene Calculations based on Fermi s golden rule: Bloch-electron (bandµ) k,µ in graphene+em dipole interactionh int = e m Detected photoelectron with spinσ: p,σ = (H int ) µ σ k p eipr/ σ (H int ) µ σ k p Ap ( Ψ µ Aσ (k)+eigτ Ψ µ Bσ (k) ) i A with momentum and energy conservation. G: reciprocal lattice vector, τ : A B vector Sublattice interference in physical quantities: Mucha-Kruczyński et al., PRB 77, (2008). Ô p = σ={, } p,σ Ô p,σ Measurements on energy-contour with precision E bandstructure k y E = 0 E > 0 E > 0 + A B K 12. oldal

13 Intensity of photoelectrons in the Brillouin Zone 3λ R E K Reciprocal lattice vectors: G= m b + m b [m, m ] λ 2 R = 66 mev = 0 mev 1 E = 650 mev k y [A 1 ] 1 b 2 K: [ 1,0] K: [ 1, 1] K: [0,0] K: [ 1, 1] K: [0,0] 2 3 K: [0, 1] b [A 1 ] InequivalentK andk points (likea B sublattice) 13. oldal

14 Graphene/Y/Ni(111) structures with different Y atoms Y = Au band structure of graphene is unaffected within experimental precision: ideal graphene + RSO coupling ( Quasifreestanding graphene, Rashba spin splitting 13 mev) Y = (Cu,Ag) measured gap ( 200 mev) at the Dirac-point. The ideal model is not enough for description. (Rashba spin splitting 100 mev) sublattice asymmetry: differenta B on-site energy E H AB = 2 (σ z Î 2 ) not coupled to the spin gap opens at the Dirac-points 14. oldal

15 Sublattice asymmetry in graphene with RSO ( ) s z (k 0) = ±(1 δ 0, ) 1 γ2 2λRk 2 r 2 2 C C s z (k ) = ± λ R 3γ 2 k 2 rc C 2 = 0 mev = 200 mev λ = 66 mev R 0.05 Spin structure around the K point: Out of plane spin polarization around the center (K point) λ=30mev, =20meV Dark Corridor E E = 120 mev E E = 120 mev = 0 mev = 200 mev λ R = 66 mev r C C Sublattice interference in the spin structure Dark Corridor 0 k y r C C E E 0 k y r C C E = 660 mev E = 660 mev r C C 0 = 0 case: F. Kuemmeth, E. I. Rashba, PRB 80, (R), (2009). 15. oldal

16 Spin polarization in SARPES experiment Polarization: Z Polarization: Y Intensity k [A 1 ] Polarization: X y z x K E K x E = 50meV, = 40meV,λ R = 33meV, E = 8meV 16. oldal

17 Spin polarization in SARPES experiment Polarization: Z Polarization: Y Intensity k [A 1 ] Polarization: X y x K E z K x E = 50meV, = 40meV,λ R = 33meV, E = 42meV 17. oldal

18 Summary Anisotropic bandsplitting due to corrections of first order in Rashba spin-orbit coupling. SARPES experiments are heavily affected by sublatice interference: The intesity of the photoelectrons is minimal in the region called the dark corridor. Sublattice asymmetry: Gap opens at the Dirac-point. Finite out-of-plane spin polarization can be measured in SARPES experiments over the dark corridor. 18. oldal

19 Rashba spin-orbit coupling in tight-binding model (TB) Lattice representation: H TB R = iλ R i,j,µ,ν [ a iµ ) (ŝ µν d i,j d z ] b jν h.c. λ R E z ; i,j nearest neighbours; d i,j points from sitej toi. Momentum representation: D(q) = 3 j=1 e iqa j d j d D ± (q) = ±D x (q) id y (q) H TB R (q) = ( λ R D + (q) 0 0 λ R D (q) 0 0 λ R D (q) 0 0 λ R D+ (q) ) Ψ = ( A ) B A B 19. oldal

20 The role of intrinsic SO: continous model H = H K +H SO, H SO = SOˆσ z ŝ z = 0 Realistic parameters: SO 12µeV (theory: first principles, DFT, Gmitra, M. at al., Phys. Rev. B 80, (2009).) λ R 4meV (measurment: SARPES, Graphene/Au/Ni(111) Varykhalov at al., PRL 101, (2008). ) E L λ2 R 4γ, E L 1.6µeV The pockets are smaller than the ISO energy scale. (E L < SO ) 20. oldal

21 The role of intrinsic SO: continous model = 0 Relevant case: SO 12µeV λ R 4meV The pocket structure survives despite of finite ISO coupling. The dynamics of the electrons is affected by the TW: minimal conductivity:σ λr = 3σ λr =0 (as in bilayer: J. Cserti at al., PRL. 99, ) 21. oldal

22 Spin splitting along ΓM Solid lines: theory including TW Experimental data Dedkov at al., PRL. 100, (2008). Angle Resolved Photoemission Spectroscopy Measurements: Graphene/Ni(111) structure (λ R 80meV) Rader at al.: The origin of the splitting is not clear PRL. 102, (2009). 22. oldal

23 Minimal Conductivity (MC) MC: conductivity ate F = 0. The MC is 3 larger as the MC of the bulk without TW: σ = 3σ 0 For realistic systems the interference between pockets leads to the anisotropy of the MC: σ = κ(ϕ)σ 0 σ: Landauer formalism in Continous (W ) and tightbinding (TB: finitew ) model. Characteristic length of RSO coupling:l = π/k SO 23. oldal

24 Minimal conductivity for Zig-Zag orientation (ϕ = 30 0 ) Solid line: continous model (W ). Dashed lines: TB model for aspect ratio R 1 = W/L = 4.71 andr 2 = Destructive interference between P 3 andk σ 2(σ P1 +σ P2 ) = 7/3σ 0. Good agreement between Continous and TB results. 24. oldal

25 Minimal conductivity for Armchair orientation (ϕ = 0 0 ) Solid line: continous model (W ) Dashed lines: TB model for aspect ratio R 1 = W/L = 3.12 andr 2 = 5.80 Lower number of propagating modes in armchair nanoribbon due to boundary conditions. σ TB max = σ P1 +σ P2 +2(σ P3 +σ K ) = 2.5σ oldal

g 0 = 3 ev Linear a = 0.246nm. constant velocity g 0 ~ 3 ev 0.334nm Interlayer g 1 ~ 0.4 ev Massive Effective mass: Graphene monolayer-bilayer junction Theoretical studies Nakanishi, Koshino, Ando, PRB

More information

Graphene and the Quantum Spin Hall Effect

Graphene and the Quantum Spin Hall Effect Graphene and the Quantum Spin Hall Effect Graphene, the Quantum Spin Hall Effect and topological insulators I. Graphene II. Quantum Spin Hall Effect - Spin orbit induced energy gap in graphene A new 2D

More information

Section 5 Molecular Electronic Spectroscopy (lecture 9 ish)

Section 5 Molecular Electronic Spectroscopy (lecture 9 ish) Section 5 Molecular Electronic Spectroscopy (lecture 9 ish) Previously: Quantum theory of atoms / molecules Quantum Mechanics Vl Valence Molecular Electronic Spectroscopy Classification of electronic states

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

Physical Properties and Functionalization of Low-Dimensional Materials

Physical Properties and Functionalization of Low-Dimensional Materials Physical Properties and Functionalization of Low-Dimensional Materials Physics Department, University of Trieste Graduate School of Physics, XXVI cycle Supervisor: Co-supervisor: Prof. Alessandro BARALDI

More information

The Raman Fingerprint of Graphene

The Raman Fingerprint of Graphene The Raman Fingerprint of Graphene A. C. Ferrari 1, J. C. Meyer 2, V. Scardaci 1, C. Casiraghi 1, M. Lazzeri 3, F. Mauri 3, S. Piscanec 1, D. Jiang 4, K. S. Novoselov 4, S. Roth 2, A. K. Geim 4 1 Department

More information

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Problem 1 Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Ionic Bonds Two neutral atoms close to each can undergo an ionization process in order

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables τ

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Elliptic Flow Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy Anisotropy

More information

PCV Project: Excitons in Molecular Spectroscopy

PCV Project: Excitons in Molecular Spectroscopy PCV Project: Excitons in Molecular Spectroscopy Introduction The concept of excitons was first introduced by Frenkel (1) in 1931 as a general excitation delocalization mechanism to account for the ability

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 2 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables.

More information

Magnetic dynamics driven by spin current

Magnetic dynamics driven by spin current Magnetic dynamics driven by spin current Sergej O. Demokritov University of Muenster, Germany Giant magnetoresistance Spin current Group of NonLinear Magnetic Dynamics Charge current vs spin current Electron:

More information

DETERMINING THE POLARIZATION STATE OF THE RADIATION CROSSING THROUGH AN ANISOTROPIC POLY (VINYL ALCOHOL) FILM

DETERMINING THE POLARIZATION STATE OF THE RADIATION CROSSING THROUGH AN ANISOTROPIC POLY (VINYL ALCOHOL) FILM DETERMINING THE POLARIZATION STATE OF THE RADIATION CROSSING THROUGH AN ANISOTROPIC POLY (VINYL ALCOHOL) FILM ECATERINA AURICA ANGHELUTA Faculty of Physics,,,Al.I. Cuza University, 11 Carol I Bd., RO-700506,

More information

arxiv:1512.02410v1 [cond-mat.mes-hall] 8 Dec 2015

arxiv:1512.02410v1 [cond-mat.mes-hall] 8 Dec 2015 Core-level spectra from bilayer graphene Bo E. Sernelius Division of Theory and Modeling, Department of Physics, Chemistry and Biology, Linköping University, SE-58 83 Linköping, Sweden arxiv:5.4v cond-mat.mes-hall

More information

Frustrated magnetism on Hollandite lattice

Frustrated magnetism on Hollandite lattice Frustrated magnetism on Hollandite lattice Saptarshi Mandal (ICTP, Trieste, Italy) Acknowledgment: A. Andreanov(MPIKS, Dresden) Y. Crespo and N. Seriani(ICTP, Italy) Workshop on Current Trends in Frustrated

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System

Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System The 5 th Scienceweb GCOE International Symposium 1 Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System Department of Physics, Tohoku University Joji Nasu In collaboration

More information

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Analysis, post-processing and visualization tools

Analysis, post-processing and visualization tools Analysis, post-processing and visualization tools Javier Junquera Andrei Postnikov Summary of different tools for post-processing and visualization DENCHAR PLRHO DOS, PDOS DOS and PDOS total Fe, d MACROAVE

More information

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering.  scattered.  incident February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the

More information

Perfect Fluids: From Nano to Tera

Perfect Fluids: From Nano to Tera Perfect Fluids: From Nano to Tera Thomas Schaefer North Carolina State University 1 2 Perfect Fluids sqgp (T=180 MeV) Neutron Matter (T=1 MeV) Trapped Atoms (T=0.1 nev) 3 Hydrodynamics Long-wavelength,

More information

FIELD THEORY OF ISING PERCOLATING CLUSTERS

FIELD THEORY OF ISING PERCOLATING CLUSTERS UK Meeting on Integrable Models and Conformal Field heory University of Kent, Canterbury 16-17 April 21 FIELD HEORY OF ISING PERCOLAING CLUSERS Gesualdo Delfino SISSA-rieste Based on : GD, Nucl.Phys.B

More information

x o R n a π(a, x o ) A R n π(a, x o ) π(a, x o ) A R n a a x o x o x n X R n δ(x n, x o ) d(a, x n ) d(, ) δ(, ) R n x n X d(a, x n ) δ(x n, x o ) a = a A π(a, xo ) a a A = X = R π(a, x o ) = (x o + ρ)

More information

Electronic transport properties of nano-scale Si films: an ab initio study

Electronic transport properties of nano-scale Si films: an ab initio study Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill University, Montreal, Canada Motivation (of

More information

CRYSTALLINE SOLIDS IN 3D

CRYSTALLINE SOLIDS IN 3D CRYSTALLINE SOLIDS IN 3D Andrew Baczewski PHY 491, October 7th, 2011 OVERVIEW First - are there any questions from the previous lecture? Today, we will answer the following questions: Why should we care

More information

Exciton dissociation in solar cells:

Exciton dissociation in solar cells: Exciton dissociation in solar cells: Xiaoyang Zhu Department of Chemistry University of Minnesota, Minneapolis t (fs) 3h! E, k h! Pc Bi e - 1 Acknowledgement Organic semiconductors: Mutthias Muntwiler,

More information

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films https://cuvillier.de/de/shop/publications/1306 Copyright: Cuvillier Verlag,

More information

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen i Emne TFY4220 Faste Stoffers Fysikk

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen i Emne TFY4220 Faste Stoffers Fysikk Page of 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Fagleg kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Steinar Raaen, 4896758 Eksamen i Emne TFY40 Faste

More information

Sub-gap conductance fluctuations in superconductor-graphene hybrid nanostructures

Sub-gap conductance fluctuations in superconductor-graphene hybrid nanostructures Sub-gap conductance fluctuations in superconductor-graphene hybrid nanostructures G.Albert, B.Kaviraj, F.Gustavo, F.Lefloch, L.Jansen Laboratoire de Transport Electronique Quantique et Supraconductivité

More information

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular

More information

Matter Waves. Home Work Solutions

Matter Waves. Home Work Solutions Chapter 5 Matter Waves. Home Work s 5.1 Problem 5.10 (In the text book) An electron has a de Broglie wavelength equal to the diameter of the hydrogen atom. What is the kinetic energy of the electron? How

More information

Electric Dipole moments as probes of physics beyond the Standard Model

Electric Dipole moments as probes of physics beyond the Standard Model Electric Dipole moments as probes of physics beyond the Standard Model K. V. P. Latha Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Plan of the Talk Parity (P) and Time-reversal

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

NMR - Basic principles

NMR - Basic principles NMR - Basic principles Subatomic particles like electrons, protons and neutrons are associated with spin - a fundamental property like charge or mass. In the case of nuclei with even number of protons

More information

Introduction to Green s functions

Introduction to Green s functions Introduction to Green s functions Matteo Gatti ETSF Users Meeting and Training Day Ecole Polytechnique - 22 October 2010 Outline 1 Motivation 2 Green s functions 3 The GW Approximation 4 The Bethe-Salpeter

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

Crystal Optics of Visible Light

Crystal Optics of Visible Light Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means

More information

Spin Hall Magnetoresistive Noise

Spin Hall Magnetoresistive Noise Spin Hall Magnetoresistive Noise Contents 1 Introduction 1 2 Theory 5 3 Experimental Setup 17 4 Angle-Dependent Resistive Noise of YIG Pt Heterostructures 27 5 Summary and Outlook 53 A Data Post-Processing

More information

Proper Definition of Spin Current in Spin-Orbit Coupled Systems

Proper Definition of Spin Current in Spin-Orbit Coupled Systems Proper Definition of Spin Current in Spin-Orbit Coupled Systems Junren Shi ddd Institute of Physics Chinese Academy of Sciences March 25, 2006, Sanya Collaborators: Ping Zhang (dd) Di Xiao, Qian Niu(UT-Austin

More information

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry VSEPR Model The structure around a given atom is determined principally by minimizing electron pair repulsions. The Valence-Shell Electron Pair Repulsion Model The valence-shell electron pair repulsion

More information

: : Solutions to Additional Bonding Problems

: : Solutions to Additional Bonding Problems Solutions to Additional Bonding Problems 1 1. For the following examples, the valence electron count is placed in parentheses after the empirical formula and only the resonance structures that satisfy

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

1 Variational calculation of a 1D bound state

1 Variational calculation of a 1D bound state TEORETISK FYSIK, KTH TENTAMEN I KVANTMEKANIK FÖRDJUPNINGSKURS EXAMINATION IN ADVANCED QUANTUM MECHAN- ICS Kvantmekanik fördjupningskurs SI38 för F4 Thursday December, 7, 8. 13. Write on each page: Name,

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

GRAPHENE: A NEW STAR IN MATERIAL SCIENCE

GRAPHENE: A NEW STAR IN MATERIAL SCIENCE GRAPHENE: A NEW STAR IN MATERIAL SCIENCE S. Sahoo 1 & A. K. Dutta 2 Department of Physics, National Institute of Technology Durgapur-713209, West Bengal, India. 1 E-mail: sukadevsahoo@yahoo.com 2 E-mail:

More information

Section 6 Raman Scattering (lecture 10)

Section 6 Raman Scattering (lecture 10) Section 6 Scattering (lecture 10) Previously: Quantum theory of atoms / molecules Quantum Mechanics Valence Atomic and Molecular Spectroscopy Scattering The scattering process Elastic (Rayleigh) and inelastic

More information

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations 1. Growth and structure 2. Magnetism and MAE 3. Induced magnetism at oxygen Klaus Baberschke Institut

More information

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to

More information

Spatially separated excitons in 2D and 1D

Spatially separated excitons in 2D and 1D Spatially separated excitons in 2D and 1D David Abergel March 10th, 2015 D.S.L. Abergel 3/10/15 1 / 24 Outline 1 Introduction 2 Spatially separated excitons in 2D The role of disorder 3 Spatially separated

More information

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

Molecular Symmetry 1

Molecular Symmetry 1 Molecular Symmetry 1 I. WHAT IS SYMMETRY AND WHY IT IS IMPORTANT? Some object are more symmetrical than others. A sphere is more symmetrical than a cube because it looks the same after rotation through

More information

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-rays have come a long way 1895 1993 10 cm 10 µm 100 nm Collaborators: SSRL Stanford:

More information

Taking control of the surface electronic structure of 3D topological insulators

Taking control of the surface electronic structure of 3D topological insulators Taking control of the surface electronic structure of 3D topological insulators Berend Zwartsenberg Supervisors: Dr. E. Frantzeskakis and Prof. Dr. M.S. Golden Second supervisor: Prof. Dr. T. Gregorkiewicz

More information

Chem 106 Thursday Feb. 3, 2011

Chem 106 Thursday Feb. 3, 2011 Chem 106 Thursday Feb. 3, 2011 Chapter 13: -The Chemistry of Solids -Phase Diagrams - (no Born-Haber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Most spinning nuclei behave like magnets. Nuclear Magnetic Resonance Spectroscopy asics owever, as opposed to the behavior of a classical magnet the nuclear spin magnetic moment does not always align with

More information

6 J - vector electric current density (A/m2 )

6 J - vector electric current density (A/m2 ) Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

More information

2m dx 2 = Eψ(x) (1) Total derivatives can be used since there is but one independent variable. The equation simplifies to. ψ (x) + k 2 ψ(x) = 0 (2)

2m dx 2 = Eψ(x) (1) Total derivatives can be used since there is but one independent variable. The equation simplifies to. ψ (x) + k 2 ψ(x) = 0 (2) CHAPTER 3 QUANTUM MECHANICS OF SOME SIMPLE SYSTEMS The Free Particle The simplest system in quantum mechanics has the potential energy V equal to zero everywhere. This is called a free particle since it

More information

Section 3: Crystal Binding

Section 3: Crystal Binding Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride

More information

Examples of Uniform EM Plane Waves

Examples of Uniform EM Plane Waves Examples of Uniform EM Plane Waves Outline Reminder of Wave Equation Reminder of Relation Between E & H Energy Transported by EM Waves (Poynting Vector) Examples of Energy Transport by EM Waves 1 Coupling

More information

3.091 Fall Term 2002 Homework #4 Solutions

3.091 Fall Term 2002 Homework #4 Solutions 3.091 all Term 2002 omework #4 olutions 5-5. We imply that sodium is a better electron donor than lithium. Evidence for this can be found in the lower value of AVEE which for these two elements is equivalent

More information

Symmetry and group theory

Symmetry and group theory Symmetry and group theory or How to Describe the Shape of a Molecule with two or three letters Natural symmetry in plants Symmetry in animals 1 Symmetry in the human body The platonic solids Symmetry in

More information

Signal Manipulation. time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency

Signal Manipulation. time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency NMR Spectroscopy: 3 Signal Manipulation time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency Ref in (MHz) mixer Signal in (MHz) Signal

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

More information

The coherence length of black-body radiation

The coherence length of black-body radiation Eur. J. Phys. 19 (1998) 245 249. Printed in the UK PII: S143-87(98)86653-1 The coherence length of black-body radiation Axel Donges Fachhochschule und Berufskollegs NTA Prof. Dr Grübler, Seidenstrasse

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the

More information

Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

More information

The influence of graphene curvature on hydrogen adsorption. Sarah Goler

The influence of graphene curvature on hydrogen adsorption. Sarah Goler The influence of graphene curvature on hydrogen adsorption Sarah Goler Laboratorio NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy Center for Nanotechnology

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Spontaneous symmetry breaking in particle physics: a case of cross fertilization Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960

More information

Optical Properties of Solids. Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria

Optical Properties of Solids. Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria Optical Properties of Solids Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria Outline Basics Program Examples Outlook light scattering dielectric tensor

More information

DFT in practice : Part I. Ersen Mete

DFT in practice : Part I. Ersen Mete plane wave expansion & the Brillouin zone integration Department of Physics Balıkesir University, Balıkesir - Turkey August 13, 2009 - NanoDFT 09, İzmir Institute of Technology, İzmir Outline Plane wave

More information

arxiv:hep-ph/9812492v1 24 Dec 1998

arxiv:hep-ph/9812492v1 24 Dec 1998 MPI-PhT/96-14(extended version) July 1996 A Note on QCD Corrections to A b FB using Thrust to arxiv:hep-ph/9812492v1 24 Dec 1998 determine the b-quark Direction Bodo Lampe Max Planck Institut für Physik

More information

Electrical properties of Carbon Nanotubes

Electrical properties of Carbon Nanotubes Electrical properties of Carbon Nanotubes Kasper Grove-Rasmussen Thomas Jørgensen August 28, 2000 1 Contents 1 Preface 3 2 Introduction to Carbon Nanotubes 4 3 Single wall Carbon Nanotubes 5 4 Reciprocal

More information

Electron-Muon Ranger (EMR)

Electron-Muon Ranger (EMR) Electron-Muon Ranger (EMR) Ruslan Asfandiyarov MICE Video Conference April 11, 2013 Construction Construction quarter of the detector completed (12 planes) every plane tested (LED / Camera / image analysis)

More information

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

Visualization and post-processing tools for Siesta

Visualization and post-processing tools for Siesta Visualization and post-processing tools for Siesta Andrei Postnikov Université Paul Verlaine, Metz CECAM tutorial, Lyon, June 22, 2007 Outline 1 What to visualize? 2 XCrySDen by Tone Kokalj 3 Sies2xsf

More information

Chapters 21-29. Magnetic Force. for a moving charge. F=BQvsinΘ. F=BIlsinΘ. for a current

Chapters 21-29. Magnetic Force. for a moving charge. F=BQvsinΘ. F=BIlsinΘ. for a current Chapters 21-29 Chapter 21:45,63 Chapter 22:25,49 Chapter 23:35,38,53,55,58,59 Chapter 24:17,18,20,42,43,44,50,52,53.59,63 Chapter 26:27,33,34,39,54 Chapter 27:17,18,34,43,50,51,53,56 Chapter 28: 10,11,28,47,52

More information

Syllabus for Chem 359: Atomic and Molecular Spectroscopy

Syllabus for Chem 359: Atomic and Molecular Spectroscopy Syllabus for Chem 359: Atomic and Molecular Spectroscopy Instructors: Dr. Reinhard Schweitzer- Stenner and Ms. Siobhan E. Toal Of#ice: Disque 605/Disque 306 Tel: (215) 895-2268 Email: rschweitzer- stenner@drexel.edu

More information

X-ray diffraction techniques for thin films

X-ray diffraction techniques for thin films X-ray diffraction techniques for thin films Rigaku Corporation Application Laboratory Takayuki Konya 1 Today s contents (PM) Introduction X-ray diffraction method Out-of-Plane In-Plane Pole figure Reciprocal

More information

Applications of Quantum Chemistry HΨ = EΨ

Applications of Quantum Chemistry HΨ = EΨ Applications of Quantum Chemistry HΨ = EΨ Areas of Application Explaining observed phenomena (e.g., spectroscopy) Simulation and modeling: make predictions New techniques/devices use special quantum properties

More information

The Application of Density Functional Theory in Materials Science

The Application of Density Functional Theory in Materials Science The Application of Density Functional Theory in Materials Science Slide 1 Outline Atomistic Modelling Group at MUL Density Functional Theory Numerical Details HPC Cluster at the MU Leoben Applications

More information

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Outline Background Research Design Detection of Near-Field Signal Submonolayer Chemical Sensitivity Conclusions

More information

What is Nanophysics: Survey of Course Topics. Branislav K. Nikolić

What is Nanophysics: Survey of Course Topics. Branislav K. Nikolić What is Nanophysics: Survey of Course Topics Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824 Definition of

More information

Optics and Spectroscopy at Surfaces and Interfaces

Optics and Spectroscopy at Surfaces and Interfaces Vladimir G. Bordo and Horst-Gunter Rubahn Optics and Spectroscopy at Surfaces and Interfaces WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface IX 1 Introduction 1 2 Surfaces and Interfaces 5

More information

Spectroscopic Ellipsometry:

Spectroscopic Ellipsometry: Spectroscopic : What it is, what it will do, and what it won t do by Harland G. Tompkins Introduction Fundamentals Anatomy of an ellipsometric spectrum Analysis of an ellipsometric spectrum What you can

More information

Vortices at the A-B phase boundary in superfluid 3 He

Vortices at the A-B phase boundary in superfluid 3 He R. Hänninen Low Temperature Laboratory Helsinki University of Technology Finland Theory: E.V. Thuneberg G.E. Volovik Experiments: R. Blaauwgeers V.B. Eltsov A.P. Finne M. Krusius Outline:. Introduction

More information

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively. Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of

More information

Chemistry 105, Chapter 7 Exercises

Chemistry 105, Chapter 7 Exercises hemistry 15, hapter 7 Exercises Types of Bonds 1. Using the periodic table classify the bonds in the following compounds as ionic or covalent. If covalent, classify the bond as polar or not. Mg2 4 i2 a(3)2

More information

The AGATA campaign at GSI. Zsolt Podolyák University of Surrey

The AGATA campaign at GSI. Zsolt Podolyák University of Surrey The AGATA campaign at GSI Zsolt Podolyák University of Surrey γ-ray spectroscopy at GSI AGATA 2012-2014 In-beam Spectroscopy production selection identification reaction spectroscopy identification γ detectors

More information