Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain. April 2, 2014

Size: px
Start display at page:

Download "Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain. April 2, 2014"

Transcription

1 Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain April 2, 2014

2 ICFO The Institute of Photonic Sciences 10 minute walk 11 years old 22 Research Groups 300 people Research themes: Quantum optics Nanophotonics Nonlinear optics Bio-photonics

3 My group Theoretical Quantum Nanophotonics Group Also thanks to: Oskar Painter, Jeff Kimble (Caltech), Kanu Sinha, Jake Taylor (JQI)

4 Rauschenbeutel (Vienna) Toward an atom-nanophotonics interface Goal: building blocks for complex quantum systems/devices HJ Kimble, The quantum internet, Nature (2008) Atoms provide quantum functionality, photonics provide control and scalability Vahala, Kimble (Caltech) Lukin (Harvard), Vuletic (MIT) Kimble (Caltech)

5 Example: nanofiber interface Tapered optical nanofibers MOT Rauschenbeutel (Vienna), PRL 104, (2010), also Hakuta (Tokyo) and Kimble (Caltech) Counter-propagating beams create lattice of atoms Evanescent field profile Lacroute et al., NJP 14, (2012) Current parameters: d 200 nm from surface OD~0.1 for single atom N atom ~1000

6 The limit of optical trapping Well-known tradeoff between trap depth and scattering U trap (r) = 1 2 Re α ω laser R sc Im α(ω laser )E 2 (r) E 2 (r) α Re Im Log Intensity Fixed scattering rate (I Δ 2 ) ω atom ω laser Max intensity Fixed trap depth (I Δ) Log Detuning Δ = (ω laser ω atom )

7 The limit of optical trapping Realistic functional traps U Optical trapping: U < 100 μk Δx > 50 nm ω m < 2π 100 khz Δx 1 nk BEC energy scales

8 The limit of optical trapping Well-known tradeoff between trap depth and scattering U trap (r) = 1 2 Re α ω laser R sc Im α(ω laser )E 2 (r) E 2 (r) α Re Im Log Intensity Fixed scattering rate (I Δ 2 ) ω atom ω laser Max intensity U vac (d) 1 d 3 Fixed trap depth (I Δ) d > 200 nm d Log Detuning Δ = (ω laser ω atom )

9 Motivation Quantum vacuum forces are dominant at nanoscale Loss of stability in atom traps Nanomechanical stiction in NEMS Can we flip the sign and create a super-trap? U vac x New regimes for cold atom physics! Illustration: vacuum potential + repulsive hard wall

10 A QED description An atom interacting with an optical mode (a) ω k e g H = ħg(σ eg a + h. c. ) Jaynes-Cummings Actually H = d E = ħg k σ eg + σ ge a k + a k k Perturbative shift in ground-state energy + broken symmetry near surface δω g (r) = k g k 2 (r) ω eg + ω k Casimir-Polder potential Green s functions, Buhmann et al., PRA 70, (2004) Is it possible to engineer a trap?

11 No-go theorem Vacuum force trapping not possible* (*) Assuming: no magnetic materials, surrounded by vacuum, thermal equilibrium Can t trap an atom in electronic ground state (ω eg K) Excited-state repulsion: H. Failache et al., PRL 83, 5467 (1999) Our result: can trap dressed state ψ g + δ e δ 0 for arbitrarily good nanophotonic system

12 Excited-state shifts Excited state has unique contribution: real photon emission Interaction energy between atom and its own photon e k ω k ω eg δω e r = δω g r + ω res (r) g Well-known: engineering spontaneous emission via dielectric structures Purcell factor in cavity QED, plasmonics,

13 Simple trapping model Simple 1D system: trap an atom normal to an infinite dielectric half-space laser ε(ω) p image = p 0 ε ω L 1 ε ω L +1 e iω L t x p 0 e iω Lt Example: simple Drude model (contains plasmon resonance) Useful parameterization: quality factor, detuning Q = ω pl γ, Δ d = ω L ω pl γ

14 Near-field results ω e x ω g x + Γ 0 k 0 x 3 Q Δ d ε(ω) Γ x Γ 0 k 0 x 3 Q Δ d 2 + Γ 0 e g ω 0 ω g x 3Γ k 0 x 3 k 0 = 2π/λ atom Casimir forces changing atomic resonance frequency Large excited state shifts and negligible emission: Q Δ d 1

15 Forming a trap Uniform laser intensity ε(ω) ω L e F g ω 0

16 Forming a trap Uniform laser intensity ε(ω) ω L e F g ω 0

17 Forming a trap Uniform laser intensity ε(ω) ω L e F g ω 0

18 Forming a trap ε(ω) ω L e g ω 0 Trapping of adiabatic dressed state Can create a repulsive hard wall for high material Q Barrier position is set by laser frequency (but decreased trap lifetime at small distances)

19 Comparison with optical dipole trapping What if we tried to counteract vacuum forces with an optical dipole force? U opt (r) = 1 2 Re α ω L E 2 (r) E min 1 k 0 x 3 x U vac x ħγ 0 k 0 x 3 Using our technique: E min 1 Q k 0 x 3 Key differences: Exploit strong position dependence of the polarizability α(ω L ω eg x ) Back-action: F ω e x σ ee (x) ω e x 2

20 Photon scattering rate Photon scattering rate at trap minimum x = x t R sc x t = Γ total x t σ ee x t Scattering contributes to trap heating Minimize (with respect to Δ d ): R sc Γ 0 Q k 0 x t 3/2 Infinitesimal violation of assumptions of no-go theorem Given arbitrarily high Q, ground state can be trapped!

21 Trap lifetime Four major heating mechanisms for atomic motion Recoil heating p photon = ħk Non-adiabatic motion (anti-damping) dp dt = βp

22 Trap lifetime Four major heating mechanisms for atomic motion Recoil heating p photon = ħk Non-adiabatic motion (anti-damping) Vacuum force fluctuations dp dt = βp emission Quantum tunneling over barrier

23 Trap lifetime Trap lifetime (ms) vs intensity and detuning Representative trap parameters (Cs, Q=10 7 ): Lifetime: 20 ms Distance to surface: 15 nm Δx: 1.2 nm Classical depth: 6 mk Quantum binding energy: 5 mk

24 Application to photonic crystals? Major differences between Drude materials and photonic crystal membranes ε(ω) x PhC Drude Resonances via: geometry material Achievable Q: 10 7 (Si PhC s) 10 2 (silver) Decoherence: minimal (?) huge magnetic, electric field noise

25 Going to PhC s ω e x ω g x + Γ 0 k 0 x 3 Q Δ d ε(ω) Γ x Γ 0 k 0 x 3 Q Δ d 2 + Γ 0 e g ω 0 ω g x 3Γ k 0 x 3 Only the spatial functions change Should enable engineering of trap shapes and dimensionalities

26 Photonic crystal experiments Experiments now couple atoms to 1D beams and cavities Painter, Kimble (Caltech)

27 Toward leveraging Casimir forces Learning how to tailor vacuum forces in photonic crystal structures First step: hybrid optical-casimir trap Casimir forces trap in 1D, optical in other 2D Atom-PhC coupling A. Goban et al., arxiv: (2013)

28 Outlook Atom-nanophotonics interfaces can provide fundamentally new tools for atomic physics! Surface & vacuum forces Dimensionality & dispersion Large perphoton forces Strong atom-photon interactions New paradigms Quantum information processing Many-body physics Single-photon nonlinear optics Atom trapping

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

CREOL, College of Optics & Photonics, University of Central Florida

CREOL, College of Optics & Photonics, University of Central Florida OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials

More information

Microcavity Quantum Electrodynamics:

Microcavity Quantum Electrodynamics: Microcavity Quantum Electrodynamics: From atoms to quantum dots Boris Anghelo Rodríguez Rey Grupo de Física Atómica y Molecular Instituto de Física, Universidad de Antioquia September 26, IWQCD 2012 Universidad

More information

Blackbody radiation derivation of Planck s radiation low

Blackbody radiation derivation of Planck s radiation low Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators

More information

Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide

Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide Michele Modugno LENS & Dipartimento di Fisica, Università di Firenze, Italy Workshop

More information

Surface plasmon nanophotonics: optics below the diffraction limit

Surface plasmon nanophotonics: optics below the diffraction limit Surface plasmon nanophotonics: optics below the diffraction limit Albert Polman Center for nanophotonics FOM-Institute AMOLF, Amsterdam Jeroen Kalkman Hans Mertens Joan Penninkhof Rene de Waele Teun van

More information

Supporting Information for: Optofluidic Near-field Optical Microscopy: Near-field Mapping of a Silicon Nanocavity using. Trapped Microbeads

Supporting Information for: Optofluidic Near-field Optical Microscopy: Near-field Mapping of a Silicon Nanocavity using. Trapped Microbeads Supporting Information for: Optofluidic Near-field Optical Microscopy: Near-field Mapping of a Silicon Nanocavity using Trapped Microbeads Christophe Pin,,,, Benoît Cluzel,*, Claude Renaut,,,, Emmanuel

More information

Scanning Probe Microscopy

Scanning Probe Microscopy Ernst Meyer Hans Josef Hug Roland Bennewitz Scanning Probe Microscopy The Lab on a Tip With 117 Figures Mß Springer Contents 1 Introduction to Scanning Probe Microscopy f f.1 Overview 2 f.2 Basic Concepts

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy 5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction

More information

It has long been a goal to achieve higher spatial resolution in optical imaging and

It has long been a goal to achieve higher spatial resolution in optical imaging and Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,

More information

Quantum control of individual electron and nuclear spins in diamond lattice

Quantum control of individual electron and nuclear spins in diamond lattice Quantum control of individual electron and nuclear spins in diamond lattice Mikhail Lukin Physics Department, Harvard University Collaborators: L.Childress, M.Gurudev Dutt, J.Taylor, D.Chang, L.Jiang,A.Zibrov

More information

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope

More information

Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas

Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas Piotr Deuar Emilia Witkowska, Mariusz Gajda Institute of Physics, Polish Academy of Sciences, Warsaw Kazimierz Rzążewski

More information

Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System

Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System The 5 th Scienceweb GCOE International Symposium 1 Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System Department of Physics, Tohoku University Joji Nasu In collaboration

More information

Quantum Computing for Beginners: Building Qubits

Quantum Computing for Beginners: Building Qubits Quantum Computing for Beginners: Building Qubits Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham 28/03/2007 Overview of this presentation What is a Qubit?

More information

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1 SUPERCONDUCTIVITY property of complete disappearance of electrical resistance in solids when they are cooled below a characteristic temperature. This temperature is called transition temperature or critical

More information

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself. The Electron Oscillator/Lorentz Atom Consider a simple model of a classical atom, in which the electron is harmonically bound to the nucleus n x e F en = mω 0 2 x origin resonance frequency Note: We should

More information

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES Vol. 93 (1997) A CTA PHYSICA POLONICA A No. 2 Proceedings of the 1st International Symposium on Scanning Probe Spectroscopy and Related Methods, Poznań 1997 NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY

More information

Spatial and temporal coherence of polariton condensates

Spatial and temporal coherence of polariton condensates Spatial and temporal coherence of polariton condensates R. Spano Dpt. Fisica de Materiales, Universidad Autónoma Madrid. SPAIN XIV JORNADA DE JÓVENES CIENTÍFICOS DEL INSTITUTO DE CIENCIA DE MATERIALES

More information

1 Introduction. 1.1 Historical Perspective

1 Introduction. 1.1 Historical Perspective j1 1 Introduction 1.1 Historical Perspective The invention of scanning probe microscopy is considered one of the major advances in materials science since 1950 [1, 2]. Scanning probe microscopy includes

More information

Analysis of Electromagnetic Propulsion on a Two-Electric-Dipole System

Analysis of Electromagnetic Propulsion on a Two-Electric-Dipole System Electronics and Communications in Japan, Part 2, Vol. 83, No. 4, 2000 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J82-C-I, No. 6, June 1999, pp. 310 317 Analysis of Electromagnetic Propulsion

More information

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30 Chemical Synthesis Spontaneous organization of molecules into stable, structurally well-defined aggregates at the nanometer length scale. Overview The 1-100 nm nanoscale length is in between traditional

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

arxiv:cond-mat/0308498v1 [cond-mat.soft] 25 Aug 2003

arxiv:cond-mat/0308498v1 [cond-mat.soft] 25 Aug 2003 1 arxiv:cond-mat/38498v1 [cond-mat.soft] 2 Aug 23 Matter-wave interference, Josephson oscillation and its disruption in a Bose-Einstein condensate on an optical lattice Sadhan K. Adhikari Instituto de

More information

Apertureless Near-Field Optical Microscopy

Apertureless Near-Field Optical Microscopy VI Apertureless Near-Field Optical Microscopy In recent years, several types of apertureless near-field optical microscopes have been developed 1,2,3,4,5,6,7. In such instruments, light scattered from

More information

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy Concept 2 A. Description of light-matter interaction B. Quantitatities in spectroscopy Dipole approximation Rabi oscillations Einstein kinetics in two-level system B. Absorption: quantitative description

More information

Damping Wigglers in PETRA III

Damping Wigglers in PETRA III Damping Wigglers in PETRA III WIGGLE2005, Frascati 21-22.2.2005 Winni Decking, DESY-MPY Introduction Damping Wiggler Parameters Nonlinear Dynamics with DW Operational Aspects Summary DESY and its Accelerators

More information

Silvia Vignolini Curriculum Vitæ

Silvia Vignolini Curriculum Vitæ Silvia Vignolini Curriculum Vitæ Personal Data Name: Silvia Vignolini Date of birth: January 14, 1981 Place of birth: Contacts: Firenze, ITALY Home address: Via G. Braga 212, 59021 Vaiano, Prato (IT) Working

More information

Near-field scanning optical microscopy (SNOM)

Near-field scanning optical microscopy (SNOM) Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques

More information

E F G. Overview of the activities. SAPIE ZA Università di Roma - Laboratorio di Fotonica Molecolare

E F G. Overview of the activities. SAPIE ZA Università di Roma - Laboratorio di Fotonica Molecolare SAPIE ZA Università di Roma Dipartimento di Energetica Laboratorio di Fotonica Molecolare Francesco Michelotti E-Mail: francesco.michelotti@uniroma1.it Tel: +39 06-49.91.65.62 Workshop Future Trends in

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Laser Based Micro and Nanoscale Manufacturing and Materials Processing

Laser Based Micro and Nanoscale Manufacturing and Materials Processing Laser Based Micro and Nanoscale Manufacturing and Materials Processing Faculty: Prof. Xianfan Xu Email: xxu@ecn.purdue.edu Phone: (765) 494-5639 http://widget.ecn.purdue.edu/~xxu Research Areas: Development

More information

Realization and characterization of a phase locked laser system for coherent spectroscopy of fiber-coupled cesium atoms

Realization and characterization of a phase locked laser system for coherent spectroscopy of fiber-coupled cesium atoms Johannes Gutenberg-Universität Mainz - Institut für Physik Realization and characterization of a phase locked laser system for coherent spectroscopy of fiber-coupled cesium atoms Diplomarbeit von Melanie

More information

Ultrahigh-efficiency solar cells based on nanophotonic design

Ultrahigh-efficiency solar cells based on nanophotonic design Ultrahigh-efficiency solar cells based on nanophotonic design Albert Polman Piero Spinelli Jorik van de Groep Claire van Lare Bonna Newman Erik Garnett Marc Verschuuren Ruud Schropp Wim Sinke Center for

More information

Single atoms on demand for cavity QED experiments

Single atoms on demand for cavity QED experiments Single atoms on demand for cavity QED experiments Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität

More information

A. Ricci, E. Giuri. Materials and Microsystems Laboratory

A. Ricci, E. Giuri. Materials and Microsystems Laboratory Presented at the COMSOL Conference 2009 Milan FSI Analysis of Microcantilevers Vibrating in Fluid Environment Materials and Microsystems Laboratory Politecnico di Torino Outline Brief Presentation of Materials

More information

bulk 5. Surface Analysis Why surface Analysis? Introduction Methods: XPS, AES, RBS

bulk 5. Surface Analysis Why surface Analysis? Introduction Methods: XPS, AES, RBS 5. Surface Analysis Introduction Methods: XPS, AES, RBS Autumn 2011 Experimental Methods in Physics Marco Cantoni Why surface Analysis? Bulk: structural function Electrical/thermal conduction Volume increases

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

STM and AFM Tutorial. Katie Mitchell January 20, 2010

STM and AFM Tutorial. Katie Mitchell January 20, 2010 STM and AFM Tutorial Katie Mitchell January 20, 2010 Overview Scanning Probe Microscopes Scanning Tunneling Microscopy (STM) Atomic Force Microscopy (AFM) Contact AFM Non-contact AFM RHK UHV350 AFM/STM

More information

The Role of Electric Polarization in Nonlinear optics

The Role of Electric Polarization in Nonlinear optics The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

Fiber Optics: Fiber Basics

Fiber Optics: Fiber Basics Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded

More information

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based

More information

Scalable Frequency Generation from Single Optical Wave

Scalable Frequency Generation from Single Optical Wave Scalable Frequency Generation from Single Optical Wave S. Radic Jacobs School Of Engineering Qualcomm Institute University of California San Diego - Motivation - Bandwidth Engineering - Noise Inhibition

More information

6.772/SMA5111 - Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline

6.772/SMA5111 - Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline 6.772/SMA5111 - Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline Recombination Processes (continued from Lecture 17) Radiative vs. non-radiative Relative carrier lifetimes Light emitting

More information

Experimental study of atomic Bose-Einstein condensates with internal degrees of freedom

Experimental study of atomic Bose-Einstein condensates with internal degrees of freedom The 10th US-Japan Joint Seminar Fundamental Issues and Applications of Ultracold Atoms and Molecules Experimental study of atomic Bose-Einstein condensates with internal degrees of freedom Department of

More information

Short overview of TEUFEL-project

Short overview of TEUFEL-project Short overview of TEUFEL-project ELAN-meeting may 2004 Frascati (I) Contents Overview of TEUFEL project at Twente Photo cathode research Recent experience Outlook Overview FEL Drive laser Photo cathode

More information

Quantum- dot based nonlinear source of THz radia5on

Quantum- dot based nonlinear source of THz radia5on Quantum- dot based nonlinear source of THz radia5on A. Andronico a, J. Claudon b, M. Munsch b, I. Favero a, S. Ducci a, J. M. Gérard b, and G. Leo a a Univ Paris Diderot, MPQ Lab, CNRS- UMR 7162, Paris,

More information

AMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde

AMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde AMPLIFIATION OF ATOMI WAVES BY STIMULATED EMISSION OF ATOMS hristian J. Borde Laboratoire de Physique des Lasers, NRS/URA 8, Universite Paris-Nord, Villetaneuse, France. INTRODUTION: The recent development

More information

Simple and scalable fabrication approaches of Nanophotonic structures for PV

Simple and scalable fabrication approaches of Nanophotonic structures for PV Simple and scalable fabrication approaches of Nanophotonic structures for PV Fabien Sorin Surface du Verre et Interfaces (SVI), UMR 125 CNRS/Saint-Gobain, 39, Quai Lucien Lefranc, 93303 Aubervilliers,

More information

Electronic transport properties of nano-scale Si films: an ab initio study

Electronic transport properties of nano-scale Si films: an ab initio study Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill University, Montreal, Canada Motivation (of

More information

Outline: Yb optical frequency standard The fiber link Applications and fundamental physics

Outline: Yb optical frequency standard The fiber link Applications and fundamental physics Orologi ottici e link in fibra: metrologia primaria di frequenza e fisica fondamentale. Davide Calonico Physical Metrology Division ISTITUTO NAZIONALE DI RICERCA METROLOGICA d.calonico@inrim.it 1 Outline:

More information

Optics and Spectroscopy at Surfaces and Interfaces

Optics and Spectroscopy at Surfaces and Interfaces Vladimir G. Bordo and Horst-Gunter Rubahn Optics and Spectroscopy at Surfaces and Interfaces WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface IX 1 Introduction 1 2 Surfaces and Interfaces 5

More information

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A.

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A. FEMTOSECOND MEASUREMENTS COMBINED WITH NEAR FIELD OPTICAL MICROSCOPY Artyom A. Astafiev, Semyonov Institute of Chemical Physics, Moscow, Russian Federation. Keywords: diffraction limit nearfield scanning

More information

QUANTUM COMPUTATION AND MULTI-PARTICLE ENTANGLEMENT WITH TRAPPED ATOMS AND IONS. Ph.D. Thesis Anders Søndberg Sørensen

QUANTUM COMPUTATION AND MULTI-PARTICLE ENTANGLEMENT WITH TRAPPED ATOMS AND IONS. Ph.D. Thesis Anders Søndberg Sørensen QUANTUM COMPUTATION AND MULTI-PARTICLE ENTANGLEMENT WITH TRAPPED ATOMS AND IONS Ph.D. Thesis Anders Søndberg Sørensen Institute of Physics and Astronomy University of Aarhus July 2001 ii Preface This thesis

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist

More information

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM. Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General

More information

Université Lille 1 Sciences et Technologies, Lille, France Lille Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

Université Lille 1 Sciences et Technologies, Lille, France Lille Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique Université Lille 1 Sciences et Technologies, Lille, France Lille Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique FRISNO 11 Aussois 1/4/011 Quantum simulators: The Anderson

More information

CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

More information

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK Nano Optics: Overview of Research Activities SENSE, University of Southern Denmark, Odense, DENMARK Optical characterization techniques: Leakage Radiation Microscopy Scanning Near-Field Optical Microscopy

More information

Recent developments in high bandwidth optical interconnects. Brian Corbett. www.tyndall.ie

Recent developments in high bandwidth optical interconnects. Brian Corbett. www.tyndall.ie Recent developments in high bandwidth optical interconnects Brian Corbett Outline Introduction to photonics for interconnections Polymeric waveguides and the Firefly project Silicon on insulator (SOI)

More information

Chapter 9 Summary and outlook

Chapter 9 Summary and outlook Chapter 9 Summary and outlook This thesis aimed to address two problems of plasma astrophysics: how are cosmic plasmas isotropized (A 1), and why does the equipartition of the magnetic field energy density

More information

DYNAMICS OF MOMENTUM DISTRIBUTIONS OF VACUUM EXCITATION IN FOCAL SPOT OF MODERN SUPER-POWER LASERS COUNTER BEAMS

DYNAMICS OF MOMENTUM DISTRIBUTIONS OF VACUUM EXCITATION IN FOCAL SPOT OF MODERN SUPER-POWER LASERS COUNTER BEAMS DYNAMICS OF MOMENTUM DISTRIBUTIONS OF VACUUM EXCITATION IN FOCAL SPOT OF MODERN SUPER-POWER LASERS COUNTER BEAMS A.S. Dubinin Saratov State University, Russia S.A. Smolyansky, A.V. Prozorkevich, (Saratov

More information

Development of MEMS micromirrors for intracavity laser control

Development of MEMS micromirrors for intracavity laser control Development of MEMS micromirrors for intracavity laser control Walter Lubeigt Centre for Microsystems and Photonics, EEE Department, University of Strathclyde,204 George Street, Glasgow G1 1XW,UK Motivation

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Optical Properties of Solids. Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria

Optical Properties of Solids. Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria Optical Properties of Solids Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria Outline Basics Program Examples Outlook light scattering dielectric tensor

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Single Defect Center Scanning Near-Field Optical Microscopy on Graphene J. Tisler, T. Oeckinghaus, R. Stöhr, R. Kolesov, F. Reinhard and J. Wrachtrup 3. Institute

More information

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering.  scattered.  incident February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the

More information

Magnetic dynamics driven by spin current

Magnetic dynamics driven by spin current Magnetic dynamics driven by spin current Sergej O. Demokritov University of Muenster, Germany Giant magnetoresistance Spin current Group of NonLinear Magnetic Dynamics Charge current vs spin current Electron:

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer Robert G. Hunsperger Integrated Optics Theory and Technology Fourth Edition With 195 Figures and 17 Tables Springer Contents 1. Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of

More information

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Outline Background Research Design Detection of Near-Field Signal Submonolayer Chemical Sensitivity Conclusions

More information

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Lorenzo Matteini University of Florence, Italy In collaboration with Petr Hellinger, Simone Landi, and Marco Velli

More information

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique 16 years of experiments on the atomic kicked rotor! Chaos, disorder

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the

More information

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff December 2012 Specifying Advanced Plasma Deposited Hard Coated Optical Bandpass and Dichroic Filters. Introduction

More information

Department of Commerce National Institute of Standards and Technology (NIST)

Department of Commerce National Institute of Standards and Technology (NIST) Department of Commerce National Institute of Standards and Technology (NIST) Response to Request for Information on Quantum Information Science and the Needs of U.S. Industry Posted Date: April 8, 2015

More information

Outline. Self-assembled monolayer (SAM) formation and growth. Metal nanoparticles (NP) anchoring on SAM

Outline. Self-assembled monolayer (SAM) formation and growth. Metal nanoparticles (NP) anchoring on SAM From functional nanostructured surfaces to innovative optical biosensors Giacomo Dacarro Dipartimento di Fisica A.Volta Dipartimento di Chimica Generale Università degli Studi di Pavia Dalla scienza dei

More information

Raman Spectroscopy Basics

Raman Spectroscopy Basics Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

More information

Fluid transport at the nano- and meso- scales

Fluid transport at the nano- and meso- scales NanoSOFT Fluid transport at the nano- and meso- scales from fundamentals to applications in energy harvesting and desalination process Alessandro Siria Starting Grant 2014 Panel: PE 3, Condensed Matter

More information

Chapter 7: Polarization

Chapter 7: Polarization Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces

More information

Aetimium Coupling and Disintegration of a Single Unit

Aetimium Coupling and Disintegration of a Single Unit A controlled one and two atom-cavity system Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität

More information

Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money

Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money Lasers became the first choice of energy source for a steadily increasing number of applications in science, medicine

More information

Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability

Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability Technical Note Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability This whitepaper reviews how design choices, manufacturing steps and testing protocols substantially

More information

Topic 2: Energy in Biological Systems

Topic 2: Energy in Biological Systems Topic 2: Energy in Biological Systems Outline: Types of energy inside cells Heat & Free Energy Energy and Equilibrium An Introduction to Entropy Types of energy in cells and the cost to build the parts

More information

1. Basics of LASER Physics

1. Basics of LASER Physics 1. Basics of LASER Physics Dr. Sebastian Domsch (Dipl.-Phys.) Computer Assisted Clinical Medicine Medical Faculty Mannheim Heidelberg University Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany sebastian.domsch@medma.uni-heidelberg.de

More information

An equivalent circuit of a loop antenna.

An equivalent circuit of a loop antenna. 3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally

More information

Theory of EIT in an Ideal Three-Level System

Theory of EIT in an Ideal Three-Level System Chapter 3 Theory of EIT in an Ideal Three-Level System 3.1 Three-Level Systems So far the interaction of a two-level system (or series of two-level systems) with a near resonant, monochromatic field has

More information

NDSU Department of Physics. Graduate Student Handbook

NDSU Department of Physics. Graduate Student Handbook NDSU Department of Physics Graduate Student Handbook Department of Physics North Dakota State University Fargo, ND 58108-6050 History Draft: August 24, 2014 Table of Contents 1. Contact 2 2. Graduate Program

More information

Coupling Impedance of SIS18 and SIS100 beampipe CERN-GSI-Webmeeting

Coupling Impedance of SIS18 and SIS100 beampipe CERN-GSI-Webmeeting Coupling Impedance of SIS18 and SIS100 beampipe CERN-GSI-Webmeeting 23 October 2011 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Uwe Niedermayer 1 Contents Motivation / Overview

More information

From apertureless near-field optical microscopy to infrared near-field night vision

From apertureless near-field optical microscopy to infrared near-field night vision From apertureless near-field optical microscopy to infrared near-field night vision Yannick DE WILDE ESPCI Laboratoire d Optique Physique UPR A0005-CNRS, PARIS dewilde@optique.espci.fr From apertureless

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Strona 1z 70. dr Tomasz Kawalec

Strona 1z 70. dr Tomasz Kawalec Strona 1z 70 dr Tomasz Kawalec Opracowanie utworu pod tytułem: Współczesne doświadczenia z zimnymi atomami w ramach kursu zaawansowanego, organizowanego dniach 31.08 25.09.09 będącego kontynuacjąszkoleńz

More information

Ultrafast Optical Control of Semiconductor Spin

Ultrafast Optical Control of Semiconductor Spin Ultrafast Optical Control of Semiconductor Spin Qubits toward Surface Code Quantum Computing Yoshihisa Yamamoto Stanford University & National Institute of Informatics FIRST 最 先 端 研 究 開 発 支 援 プログラム 量 子

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information