2.3 Basic Continuum Mechanics

Size: px
Start display at page:

Download "2.3 Basic Continuum Mechanics"

Transcription

1 Chem 554/Overney. Basic Continuum Mechanics Index.. lastic Moduli and Free nergy Relations..... Special cases of elasticity and methods..... Cantilever lasticity, Sample and Contact Stiffness lastic Moduli and Free nergy Relations The elastic concept of continuum mechanics starts with Hooke s law which linearly relates the stress ( or τ ) and the strain ( or γ ) of an ideal elastic body. In the case of an uniaxial elongation/compression in x-direction or simple shear in y-direction of an isotropic material, Hooke s law has the following simple form: xx xx. ( a) τ Gγ. ( b) xy with the modulus of elasticity (Young s modulus) and the shear modulus G. The left and right indices of the stress and the shear denote the normal vector of the shear plane and the direction of the force, respectively. The dimensions of the stress is a force per unit area (i.e., a pressure) while the strain is dimensionless - a relative measure of the local displacement u. The strain is defined for symmetry reason as u u i j + i x j x ;,,. () i If is independent of the location r, the deformation can be expressed as u*r. The index i represents the normal vector of the plane in respect to which the deformation occurs. The index j determines the direction of the deformation. In the case of a hydrostatic compression, the non-zero-components of the stress tensor correspond to a constant pressure p, i.e. -pδ. The specific work (i.e., the work per volume element) resulting from internal strain is δw δ () where δ represents the changes in the strain tensor. Internal strain in a body that results from external forces ceases to exist if the external forces are removed and the body behaves fully elastic. If the body is plastically deformed, a partial strain remains. Deformations which are slow enough, i.e., the body is in thermal equilibrium at all xy A vector is denoted in bold face and a tensor is doubled underlined. δ is the Kronecker symbol.

2 Chem 554/Overney times, are reversible. In the case of a reversible deformation, the differential of the internal energy per volume element is de Tds + d (4) with T as the absolute temperature, ds as the entropy per volume element, and Tds the heat involved during the deformation. Hence, the free energy F-TS can expressed as df sdt + d (5) where f is the free energy per volume element. Defining the enthalpy as h e Ts f u (6) the following thermodynamic relationships are found: e f ; (7a) s const. T const. h T const.. (7b) The free energy has to be expressed as a function of the shear tensor in order to apply the thermodynamic relationships. For very small deformation the general expression for the free energy of a deformed isotropic body is λ f f o + ii + µ (8) with the Lamé coefficient λ and µ. Any deformation can be written as the sum of pure shear and homogeneous dilatation by δ kk + δ kk. (9) The free energy can then be written as follows: K f fo + µ δkk + kk (0) where µ is the modulus of rigidity (also called shear modulus) and Kλ+/µ is the modulus of compression. Both moduli should be larger than zero. Hence, the stress tensor for a small deformation of an isotropic solid body can be expressed as the sum of a dilatation and pure shear component as f Kkkδ µ δkk +. (a) T const. The reversed expression is δ µ δ kk kk K +. (b) 9 Tensor algebra (instein relation): ii + + and ik,.

3 Chem 554/Overney In the case of a uniaxial deformation in x direction (i.e., 0 and ii 0 for i,), equation (b) reduces to µ +. () K which leads with the equation (a) to the fundamental definition of the Young s modulus Kµ + µ λ µ 9. () K + µ λ + µ The shear modulus µ (to avoid any conflict with the coefficient of friction also called G modulus) can be expressed as µ G ( + ν). (4) where ν is the ratio between the deformation parallel to the applied force and the deformation perpendicular to the applied load - also known as Poisson s ratio. 4 The modulus of compression K is K ( υ ). (5) Finally the specific free energy can be written as f fo + + kk ( + ν) υ υ (6).. Special cases of elasticity and methods Thermodynamically ν is only restricted to [-,½] which would allow the body to extend its cross-sectional area during longitudinal extension. To avoid that crosssectional area extension it suggests restricting the regime of ν further to [0,½]. The stress and the shear tensors are expressed by the Young s modulus and the Poisson s ratio for a small longitudinal deformation as υ + υ ν δ, (7a) + kk and (( + ν) νkkδ), (7b) respectively. The volume change of bulk polymers during compression or tension is in most cases very small in comparison to the deformation. Hence, ν ½ for polymers which simplifies the Young s modulus - shear modulus relation to G. In the case of a plane stress assumption (used, for example, in thin plates), where the stress components perpendicular to the plane of the film, and 4 ν K µ λ. K + µ ( λ + µ )

4 Chem 554/Overney are neglected, the two-dimensional stress-strain relation can be obtained from equations (7) as υ 0 υ 0, + ν 0 0 (8a) ν ( ) ν +, (8b). (8c) 0 An anisotropic material has independent elastic constants. Once the orthotropic axes of symmetry are known, the number of elastic constants needed to fully characterize the material reduces to 9. Orthotropic materials are unidirectional composites, woods, and laminated metallic products. With the principal axes of orthotropy as the reference axes, the strain-stress relation can be written as: υ υ υ υ υ υ υ G G Five coefficients characterize the material,,, G, ν and ν. There are various techniques that are used to determine elastic constants of material. The techniques can be grouped in roughly three groups: (i) static tensioncompression or bending tests, (ii) vibration tests, and (iii) wave propagation tests. Static measurements are technically easy to conduct and provide information about the extensional moduli, the shear moduli and the Poisson s ratios. An example of the static method is the cantilever beam method, Figure 4.. The cantilever beam, the substrate, is coated with a film, the sample. The thickness of the film t f is assumed to be much smaller than substrate thickness t s. Further, it is assumed that the distortion at the end of the beam δ is smaller than the sample film thickness. Based on this assumption the following relation is used to determine the stress f in the film which acts along the cantilever beam: sδ ts ftf, (0) ( νs) L where s and ν s are the Young s modulus and Poisson s ratio of the substrate. (9) 4

5 Chem 554/Overney Figure 4.: Cantilever beam method used to measure in-plane stresses of ultrathin films. X-ray and electron diffraction methods are applied to determine in-plane stresses of ultrathin films supported by solid substrates using the plane stress assumption from above and assuming in-plane isotropic deformation, i.e., and. These methods work for crystalline material and are sensitive to variations in the lattice parameters. For a crystal, stress and strain are related by kl c (a) kl s (b) with the elastic constants and coefficients (compliances) c kl and s kl, respectively. For films of isotropic elastic behavior, it follows from equation (8) that (ν-)/(ν). The Poisson s ratios, ν and ν, of an orthotropic ultrathin polymeric material can be determined using vibrational holographic interferometry (). The tested polymer film resembles a vibrating membrane and its residual stresses are measured and analytically analyzed by the wave equation for a vibrating membrane. Principle stresses are measured for D constrained and D constrained films. Poisson s ratios are determined from D D ν D. (a) ν kl D kl D D (b) Other methods that are used to establish elastic constants of materials are, for instance, tensile testing, high pressure gas dilatometer, pressure-volume-temperature apparatus, torsion pendulum and scanning force microscopy. Before we, however, further discuss techniques another material property, besides elasticity, has to be introduced - viscosity. Source: Landau Lifshitz, Mechanics 5

6 Chem 554/Overney.. Cantilever lasticity, Sample and Contact Stiffness First of all, one has to differentiate between two scales of stiffness: (i) the elastic modulus of the material (expression for the material stiffness, and (ii) the device stiffness, which is typically expressed as a spring constant, k. The Young's modulus,, and the shear modulus, G are the most common examples for elastic moduli. Considering the fully elastic deformation caused by a spherical indenter tip on the surface of a half space, the deformation defines the contact stiffness, k c, which, based on Hertz Theory, is related to the combined Young's modulus of the tip and half space, as * v v kc a with * + where i and ν i (I,) the material Young's moduli and Poisson Ratios. The contact stiffness is sometimes also referred to as sample stiffness. The force or "normal load applied", F N, measured in the process of an indentation can be expressed as FN keff z kc zs kl zl with z z s + zl, where z is the combined compression, measured in z-direction, of the indenter (cantilever) spring, z L, and the surface of the half space, z s. Consequently, the effective spring constant, k eff, can be expressed as k eff + kc k. L For a bar-shaped cantilever with length L, width W and thickness t, and an integrated tip of length r, the normal and torsional spring constants, k N and k t, are related to the material stiffnesses, as Wt 4L GWt k t. Lr k N and The thickness of the cantilever, typically poorly defined by the manufacturers, can be determined from the first resonance frequency of the "free" cantilever using the following empirical equation: t πf ρ L ( ) The Young's modulus and density of silicon cantilevers are around.69 0 N/m and ρ. 0 kg/m. Nanoscience Friction and Rheology on the Nanometer Scale,. Meyer, R.M. Overney et al., World Scientific, NJ (998). 6

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

Analysis of Stresses and Strains

Analysis of Stresses and Strains Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

3 Concepts of Stress Analysis

3 Concepts of Stress Analysis 3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.

More information

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y, S40 Solid Mechanics Fall 007 Stress field and momentum balance. Imagine the three-dimensional bod again. At time t, the material particle,, ) is under a state of stress ij,,, force per unit volume b b,,,.

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

More information

Unit 6 Plane Stress and Plane Strain

Unit 6 Plane Stress and Plane Strain Unit 6 Plane Stress and Plane Strain Readings: T & G 8, 9, 10, 11, 12, 14, 15, 16 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems There are many structural configurations

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Lap Fillet Weld Calculations and FEA Techniques

Lap Fillet Weld Calculations and FEA Techniques Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

TIE-31: Mechanical and thermal properties of optical glass

TIE-31: Mechanical and thermal properties of optical glass PAGE 1/10 1 Density The density of optical glass varies from 239 for N-BK10 to 603 for SF66 In most cases glasses with higher densities also have higher refractive indices (eg SF type glasses) The density

More information

Technology of EHIS (stamping) applied to the automotive parts production

Technology of EHIS (stamping) applied to the automotive parts production Laboratory of Applied Mathematics and Mechanics Technology of EHIS (stamping) applied to the automotive parts production Churilova Maria, Saint-Petersburg State Polytechnical University Department of Applied

More information

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yun-gang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Three dimensional thermoset composite curing simulations involving heat conduction, cure kinetics, and viscoelastic stress strain response

Three dimensional thermoset composite curing simulations involving heat conduction, cure kinetics, and viscoelastic stress strain response Three dimensional thermoset composite curing simulations involving heat conduction, cure kinetics, and viscoelastic stress strain response Harrison Poon, Seid Koric, M. Fouad Ahmad National Center for

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

BUCKLING OF BARS, PLATES, AND SHELLS. Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219

BUCKLING OF BARS, PLATES, AND SHELLS. Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219 BUCKLING OF BARS, PLATES, AND SHELLS ROBERT M. JONES Science and Mechanics Professor Emeritus of Engineering Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219 Bull Ridge

More information

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES O STRESS AND STRAIN This tutorial is essential for anyone studying the group of tutorials on beams. Essential pre-requisite knowledge

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

Vibrations of a Free-Free Beam

Vibrations of a Free-Free Beam Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING COUNCIL CERTIICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL - BASIC STUDIES O STRESS AND STRAIN You should judge your progress by completing the self assessment exercises. These may be sent

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

Strip Flatness Prediction in a 4 High Tandem Mill Using a Dynamic Model.

Strip Flatness Prediction in a 4 High Tandem Mill Using a Dynamic Model. Strip Flatness Prediction in a 4 High Tandem Mill Using a Dynamic Model. M. A. Bello-Gomez 1, M. P. Guerrero-Mata 1, L. A. Leduc Lezama 1, T. P. Berber- Solano 1, L. Nieves 2, F. Gonzalez 2, H. R. Siller

More information

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution. Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling

More information

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Lecture 12: Fundamental Concepts in Structural Plasticity

Lecture 12: Fundamental Concepts in Structural Plasticity Lecture 12: Fundamental Concepts in Structural Plasticity Plastic properties of the material were already introduced briefly earlier in the present notes. The critical slenderness ratio of column is controlled

More information

Thermal Analysis Excellence

Thermal Analysis Excellence Thermal Analysis Excellence DMA/SDTA861 e STAR e System Innovative Technology Versatile Modularity Swiss Quality Dynamic Mechanical Analysis Sets New Standards DMA/SDTA861 e Precise Measurement Technology

More information

Stress Relaxation Study of Paper and Plastic Film based Packaging Material

Stress Relaxation Study of Paper and Plastic Film based Packaging Material Master's Degree Thesis ISRN: BTH-AMT-EX--2009/D-02--SE Stress Relaxation Study of Paper and Plastic Film based Packaging Material Rajdip Roy Lu Qi Department of Mechanical Engineering Blekinge Institute

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus

More information

Material Deformations. Academic Resource Center

Material Deformations. Academic Resource Center Material Deformations Academic Resource Center Agenda Origin of deformations Deformations & dislocations Dislocation motion Slip systems Stresses involved with deformation Deformation by twinning Origin

More information

(Seattle is home of Boeing Jets)

(Seattle is home of Boeing Jets) Dr. Faeq M. Shaikh Seattle, Washington, USA (Seattle is home of Boeing Jets) 1 Pre Requisites for Today s Seminar Basic understanding of Finite Element Analysis Working Knowledge of Laminate Plate Theory

More information

Weight Measurement Technology

Weight Measurement Technology Kistler-Morse (KM) introduced bolt-on weight measuring systems three decades ago. These devices featured Walter Kistler s invention, the Microcell. Over the years, many improvements were made to the Microcell

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

7.2.4 Seismic velocity, attenuation and rock properties

7.2.4 Seismic velocity, attenuation and rock properties 7.2.4 Seismic velocity, attenuation and rock properties Rock properties that affect seismic velocity Porosity Lithification Pressure Fluid saturation Velocity in unconsolidated near surface soils (the

More information

du u U 0 U dy y b 0 b

du u U 0 U dy y b 0 b BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

Feature Commercial codes In-house codes

Feature Commercial codes In-house codes A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a

More information

Measurement of Residual Stress in Plastics

Measurement of Residual Stress in Plastics Measurement of Residual Stress in Plastics An evaluation has been made of the effectiveness of the chemical probe and hole drilling techniques to measure the residual stresses present in thermoplastic

More information

SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY

SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY SYLLABUS Copyright 2006 SANIRE CONTENTS PREAMBLE... 3 TOPICS

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

More information

Free vibration of CLT plates

Free vibration of CLT plates Rakenteiden Mekaniikka (Journal of Structural Mechanics) Vol. 47, No 1, 2014, pp. 17-33 Free vibration of CLT plates Jussi-Pekka Matilainen 1 and Jari Puttonen Summary. This article discusses the ability

More information

Rheological Properties of Topical Formulations

Rheological Properties of Topical Formulations Rheological Properties of Topical Formulations Hemi Nae, PhD Hydan Technologies, Inc. Key Words Complex Modulus, Creep/Recovery, Dilatant Flow, Dynamic Viscosity, Flow, Flow Curve, Flow Models, Frequency

More information

Dynamic wave dispersion and loss properties of conventional and negative Poisson's ratio polymeric cellular materials 1 INTRODUCTION

Dynamic wave dispersion and loss properties of conventional and negative Poisson's ratio polymeric cellular materials 1 INTRODUCTION Chen and Lakes 1 Dynamic wave dispersion and loss properties of conventional and negative Poisson's ratio polymeric cellular materials by C. P. Chen and R. S. Lakes Adapted from Cellular Polymers, 8, 343-369,

More information

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 ème Congrès Français d'acoustique Lyon, -6 Avril Finite element simulation of the critically refracted longitudinal wave in a solid medium Weina Ke, Salim Chaki Ecole des Mines de Douai, 94 rue Charles

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Microscopy and Nanoindentation. Combining Orientation Imaging. to investigate localized. deformation behaviour. Felix Reinauer

Microscopy and Nanoindentation. Combining Orientation Imaging. to investigate localized. deformation behaviour. Felix Reinauer Combining Orientation Imaging Microscopy and Nanoindentation to investigate localized deformation behaviour Felix Reinauer René de Kloe Matt Nowell Introduction Anisotropy in crystalline materials Presentation

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

Long term performance of polymers

Long term performance of polymers 1.0 Introduction Long term performance of polymers Polymer materials exhibit time dependent behavior. The stress and strain induced when a load is applied are a function of time. In the most general form

More information

Mechanical Properties and Fracture Analysis of Glass. David Dutt Chromaglass, Inc.

Mechanical Properties and Fracture Analysis of Glass. David Dutt Chromaglass, Inc. Mechanical Properties and Fracture Analysis of Glass David Dutt Chromaglass, Inc. IES ALC Williamsburg 2006 2 IES ALC Williamsburg 2006 3 Outline The Ideal The Practical The Reality IES ALC Williamsburg

More information

Course in. Nonlinear FEM

Course in. Nonlinear FEM Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

More information

Numerical modelling of shear connection between concrete slab and sheeting deck

Numerical modelling of shear connection between concrete slab and sheeting deck 7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres

More information

Liquid Hydrogen Pressure Vessel Analysis

Liquid Hydrogen Pressure Vessel Analysis OAK RIDGE NATIONAL LABORATORY Liquid Hydrogen Pressure Vessel Analysis Claire R. Luttrell 9/18/2007 1.0 INTRODUCTION An SNS experiment is being designed that includes a 20 liter liquid hydrogen (LH2) target.

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

Graduate Courses in Mechanical Engineering

Graduate Courses in Mechanical Engineering Graduate Courses in Mechanical Engineering MEEG 501 ADVANCED MECHANICAL ENGINEERING ANALYSIS An advanced, unified approach to the solution of mechanical engineering problems, with emphasis on the formulation

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

More information

NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT

NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT E. Curto. p.i. Ennio Curto Via E. di Velo,84 36100 Vicenza Tel. 0444-511819 E-mail enniocurto@fastwebnet.it Key words: NDE Residual stress. New technique

More information

Understanding Plastics Engineering Calculations

Understanding Plastics Engineering Calculations Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,

More information

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

Solid shape molding is not desired in injection molding due to following reasons.

Solid shape molding is not desired in injection molding due to following reasons. PLASTICS PART DESIGN and MOULDABILITY Injection molding is popular manufacturing method because of its high-speed production capability. Performance of plastics part is limited by its properties which

More information

4 Microscopic dynamics

4 Microscopic dynamics 4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will

More information

Bending, Forming and Flexing Printed Circuits

Bending, Forming and Flexing Printed Circuits Bending, Forming and Flexing Printed Circuits John Coonrod Rogers Corporation Introduction: In the printed circuit board industry there are generally two main types of circuit boards; there are rigid printed

More information

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

More information

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow. 9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

More information

Hooke s law. 8.1 Young s modulus and Poisson s ratio

Hooke s law. 8.1 Young s modulus and Poisson s ratio 8 Hooke s law When you bend a wooden stick the reaction grows notably stronger the further you go until it perhaps breaks with a snap If you release the bending force before it breaks, the stick straightens

More information

The Fundamental Principles of Composite Material Stiffness Predictions. David Richardson

The Fundamental Principles of Composite Material Stiffness Predictions. David Richardson The Fundamental Principles of Composite Material Stiffness Predictions David Richardson Contents Description of example material for analysis Prediction of Stiffness using Rule of Mixtures (ROM) ROM with

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS

AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS David A. Grewell Branson Ultrasonics Corporation ABSTRACT This paper reviews effects of amplitude and force control during

More information

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng Uniaxial Tension and Compression Testing of Materials Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng 3.032 Lab Report September 25, 2013 I. Introduction Understanding material mechanics

More information

Stress-Strain Material Laws

Stress-Strain Material Laws 5 Stress-Strain Material Laws 5 Lecture 5: STRSS-STRAIN MATRIAL LAWS TABL OF CONTNTS Page 5. Introduction..................... 5 3 5.2 Constitutive quations................. 5 3 5.2. Material Behavior

More information

Nonlinear Analysis Using Femap with NX Nastran

Nonlinear Analysis Using Femap with NX Nastran Nonlinear Analysis Using Femap with NX Nastran Chip Fricke, Principal Applications Engineer, Agenda Nonlinear Analysis Using Femap with NX Nastran Who am I? Overview of Nonlinear Analysis Comparison of

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

Scalars, Vectors and Tensors

Scalars, Vectors and Tensors Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

More information

ADHESIVE BONDING PERFORMANCE OF GA COATED 590 MPa TENSILE STRENGTH STEELS

ADHESIVE BONDING PERFORMANCE OF GA COATED 590 MPa TENSILE STRENGTH STEELS ADHESIVE BONDING PERFORMANCE OF GA COATED 590 MPa TENSILE STRENGTH STEELS Susan Wolf ArcelorMittal Global R&D East Chicago Acknowledgements Chann Cheng, Benda Yan, Jayanth Chintamani, ArcelorMittal Global

More information

different levels, also called repeated, alternating, or fluctuating stresses.

different levels, also called repeated, alternating, or fluctuating stresses. Fatigue and Dynamic Loading 1 Fti Fatigue fil failure: 2 Static ti conditions : loads are applied gradually, to give sufficient i time for the strain to fully develop. Variable conditions : stresses vary

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information