Textbook: Openstax College Physics, Rice University. Book will be available for download from

Size: px
Start display at page:

Download "Textbook: Openstax College Physics, Rice University. Book will be available for download from"

Transcription

1 AP Physics 2 Curriculum and Syllabus This course is conducted using inquiry-based instructional strategies that focus on experimentation to develop students conceptual understanding of physics principles. The students will begin by studying a topic and making observations and discovering patterns of natural phenomena. The next steps involve developing, testing, and applying models. Throughout the course, the students construct and use multiple representations of physical processes, solve multi-step problems, design investigations, and reflect on knowledge construction through concept maps. Lab investigations will play a critical role for constructing knowledge and will involve analytical techniques. Additional learning opportunities will include the use of simulations, graphing calculators and activities involving digital skills matrix identified for science classes at Red Lion Area High School. Students will demonstrate their ability to collaborate, communicate, solve problems and be innovative. Textbook: Openstax College Physics, Rice University. Book will be available for download from Big Ideas: The AP Physics curriculum is a two year sequence equivalent to the first and second semesters of a typical introductory, algebra-based, college based physics course. By spreading the curriculum over two years, it allows the time to foster greater depth of conceptual understanding through the use of student-centered, inquiry based instruction. This framework shifts away from traditional content coverage model to one that focuses on the big ideas and provides students with enduring, conceptual understanding of foundational physics principles. The course is based on six Big Ideas, which encompass core scientific principles, theories, and processes that cut across traditional boundaries and provide a broad way of thinking about the physical world.the following are Big Ideas: Big Idea 1 - Objects and systems have properties such as mass and charge. Systems may have internal structure. Big Idea 2 - Fields existing in space can be used to explain interactions. Big Idea 3 - The interactions of an object with other objects can be described by forces. Big Idea 4 - Interactions between systems can result in changes in those systems. Big Idea 5 - Changes that occur as a result of interactions are constrained by conservation laws. Big Idea 6 - Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and serve as a mathematical model for the description of other phenomena. Science Practices: A practice is a way to coordinate knowledge and skills in order to accomplish a goal or task. The science practices enable students to establish lines of evidence and use them to develop and refine testable explanations and predictions of natural phenomena. Because content, inquiry and reasoning are equally important in AP Physics, each learning objective described in the concept outline combines content with inquiry and reasoning skills described in the science practices. Students establish lines of evidence and use them to develop and refine testable explanations and predictions of natural phenomena. Such practices require that students:

2 Science Practice 1: The student can use representations and models to communicate scientific phenomena and solve scientific problems. Science Practice 2: The student can use mathematics appropriately. Science Practice 3: The student can engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course. Science Practice 4: The student can plan and implement data collection strategies in relation to a particular scientific question. Science Practice 5: The student can perform data analysis and evaluation of evidence. Science Practice 6: The student can work with scientific explanations and theories. Science Practice 7: The student is able to connect and relate knowledge across various scales, concepts, and representations in and across domains. Inquiry-Based Investigations More than twenty-five percent of instructional time in this course is devoted to hands-on laboratory work with an emphasis on inquiry-based investigations. Investigations will require students to ask questions, make observations and predictions, design experiments, analyze data, and construct arguments in a collaborative setting, where they direct and monitor their progress. All students will maintain an electronic logbook using Evernote. Each of the lab investigations listed below will be recorded in the logbook. Most of these labs will also require a summary component completed in some other form. Labs will take one of two forms: Guided Inquiry (GI) or Open Inquiry (OI). During guided inquiry, students will be given instruction on the operation of lab equipment and guidance in the process of the experiment. Open inquiry labs give the student the objective and materials needed to conduct the lab. Students create their own experimental design, collect data, and conduct the analysis independently. Students will work in lab groups, but each student is responsible for maintaining their own logbook. Each lab should contain an Introduction (purpose, procedure, and problem statement), Data and Observations, Analysis (calculations and graphical analysis), and Conclusion including error analysis. Some labs will also include peer review or the final product. Instruction and Digital Tools: In order to maximize class time, each of the content dots below should be considered a lecture. Lectures will be recorded and available online. Tools such as blogs and twitter will be used to get information to students and parents. Homework will be done using WebAssign allowing students to submit answers and receive immediate feedback on their progress. Class time can be used to complete any of the assigned work. Due dates will be posted through the Edline calendar. Students will also work collaboratively using Google Docs. It is recommended that students regularly check their school gmail account. Authentic Activities and Projects: Students will complete the following projects. Excel Project: Students will learn basic and advanced techniques in the use of spreadsheets. Students will complete and analysis of experimental data. Science Fair Project: Students will plan, design, and conduct an experiment of their choosing in accordance with the ISEF (International Science and Engineering Fair) rules. Students will submit a display board (physical or electronic) and logbook for their experiment. Students with

3 1st or 2nd place awards can opt to continue on to the regional fair ( where they will also need a research paper. I m Just a Bill Course Outline Unit 0 - Physics Toolkit and Solids Graphical Analysis Error Analysis Statistics in Experimentation Stress Strain Equilibrium Big Idea 1 1. Measuring (GI): To determine different methods for measuring variables related to the course. Science Principles: 1.1, 1.3, 3.1, 4.2, 4.3, 4.4, 5.1, 5.3, 6.1, Stress vs Strain (OI): To determine how stress is related to strain for 2 different objects of the student s choosing. Science Principles: 1.2, 2.1, 2.2, 3.1, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4, 6.5, 7.2 Unit 1 - Fluids Pressure and Depth Pascal s Principle Buoyant Force and Archimedes Principle Flow Rate and Continuity Equation Bernoulli s Principle and Conservation of Energy Big Ideas 1, 3 and 5 Learning Objectives: 1.E.1.1, 1.E.1.2, 3.C.4.1, 3.C.4.2, 5.B.10.1, 5.B.10.2, 5.B.10.3, 5.B.10.4, 5.F Archimedes Principle (OI): To determine the densities of a liquid and two unknown objects by using the method that is attributed to Archimedes. Science Practices: 1.1, 1.4, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.4, Torricelli s Theorem (OI): To determine the exit velocity of a liquid and predict the range attained with holes at varying heights using a clear 2 L plastic bottle. Science Practices 1.1, 1.4, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.4, Water Fountain Lab (OI): The students design an investigation to determine: Exit angle and exit speed of the water, maximum height of water, radius of the fountain s exit hole, flow volume rate. Science Practices: 1.1, 1.4, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.4, 7.2

4 Unit 2 - Thermodynamics Kinetic Theory Ideal Gases Heat and Energy Transfer First Law of Thermodynamics Thermodynamic Processes: Isobaric, Isochoric, Isothermal, Adiabatic PV Diagrams Heat Engines Carnot Cycle Second Law of Thermodynamics Entropy Big Ideas 1, 4, 5 and 7 Learning Objectives: 1.E.3.1, 4.C.3.1, 5.A.2.1, 5.B.4.1, 5.B.4.2, 5.B.5.4, 5.B.5.5, 5.B.5.6, 5.B.6.1, 5.B.7.1, 5.B.7.2, 5.B.7.3, 7.A.1.1, 7.A.1.2, 7.A.2.1, 7.A.2.2, 7.A.3.1, 7.A.3.2, 7.A.3.3, 7.B.1.1, 7.B Heat Transfer (GI): To determine which type of material and color of material transfer heat energy faster. Science Practices: 1.1, 2.1, 3.3, 4.3, 4.4, 5.1, 5.2, 6.1, 6.2, Ideal Gas Law (GI): To determine the relationship among pressure, temperature, volume, and number of moles for air using a both a piston and simulation. Science Practices: 1.1, 1.2, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 6.1, 6.2, 6.4, Heat Engine (GI): To determine how the work done by an engine that raises mass during each of its cycles is related to the area enclosed by its P-V graph. Science Practices: 1.1, 1.2, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 6.1, 6.2, 6.4, 7.2 Unit 3 - Electrostatics and Circuits Electric Force Electric Field Electric Potential Electric Dipoles Electric Flux Ohm s Law Review Circuit Review Capacitance and Capacitors in Circuits RC Circuits Big Ideas 1, 2, 3, 4, and 5 Learning Objectives: 1.B.1.1, 1.B.1.2, 1.B.2.2, 1.B.2.3, 1.B.3.1, 1.E.2.1, 2.C.1.1, 2.C.1.2, 2.C.2.1, 2.C.3.1, 2.C.4.1, 2.C.4.2, 2.C.5.1, 2.C.5.2, 2.C.5.3, 2.E.2.1, 2.E.2.2, 2.E.2.3, 2.E.3.1, 2.E.3.2, 3.A.2.1, 3.A.3.2, 3.A.3.3, 3.A.3.4, 3.A.4.1, 3.A.4.2, 3.A.4.3, 3.B.1.3, 3.B.1.4, 3.B.2.1, 3.C.2.1, 3.C.2.2, 3.C.2.3, 3.G.1.2, 3.G.2.1, 3.G.3.1, 4.E.3.1, 4.E.3.2, 4.E.3.3, 4.E.3.4, 4.E.3.5,

5 4.E.4.1, 4.E.4.2, 4.E.4.3, 4.E.5.1, 4.E.5.2, 4.E.5.3, 5.A.2.1, 5.B.9.4, 5.B.9.5, 5.B.9.6, 5.B.9.7, 5.B.9.8, 5.C.3.4, 5.C.3.5, 5.C.3.6, 5.C Electrostatic Investigation (OI): To investigate the behavior of electric charges, charging processes, and the distribution of charge on a conducting object while reading Ben Franklin s letters and constructing materials. Science Practices: 1.1, 3.1, 4.1, 4.2, 5.1, 5.3, 6.1, 6.2, 6.4, Coulomb s Law (GI): To estimate the net charge on identical spherical pith balls by measuring the deflection (angle and separation) between two equally charged pith balls. Science Practices 1.1, 1.2, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.4, Electroscopes (GI): To make qualitative observations of the behavior of an electroscope when it is charged by conduction and by induction. Science Practices: 1.1, 3.1, 4.1, 4.2, 5.1, 5.3, 6.1, 6.2, 6.4, Electric Field Mapping (GI): To map equipotential isolines around charged conducting electrodes painted with conductive ink and construction of isolines of electric fields. Science Practices: 1.1, 1.2, 1.4, 3.1, 4.1, 4.2, 4.3, 5.1, 6.1, 6.2, 6.4, RC Circuits (GI): To verify the resistance value in an RC circuit by measuring the voltage versus time for a charging and discharging circuit. Science Practices: 1.1, 1.2, 1.4, 2.2, 2.3, 3.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.2, 6.3, 7.2 Unit 4 - Magnetism and Electromagnetism Magnetic Field Permanent Magnets Magnetic Force on Charged Particles Magnetic Force on Current Carrying Wires Motors Magnetic Flux Motional EMF Electromagnetic Induction Lenz Law Generators Transformers Inductors RLC Circuits AC Circuits Maxwell s Equations Electromagnetic Spectrum Big Ideas 1, 2, 3, and 4 Learning Objectives: 2.C.4.1, 2.D.1.1, 2.D.2.1, 2.D.3.1, 2.D.4.1, 3.A.2.1, 3.A.3.2, 3.A.3.3, 3.A.4.1, 3.A.4.2, 3.A.4.3, 3.C.3.1, 3.C.3.2, 4.E.1.1, 4.E.2.1

6 14. Magnetic Field Mapping and Permanent Magnets (OI): To map the magnetic field of permanent magnets using iron filings, compasses and magnetic field sensors. Science Practices: 1.4, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.4, Build a Motor (GI): To build a dc motor from a battery, wire, paper clips and wire and provide a description of how it works. Science Practices: 1.4, 4.2, 4.3, 6.1, 6.2, Solenoids, Coils and Tangent Galvonometer (GI): To determine the magnetic field strength from a current carrying wire in the form of coils using compasses and magnetic field sensors. Science Practices: 1.4, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.4, Transformers(OI): To determine the effects of number of coils, core and input voltage on the output of the secondary coil in a transformer. Science Practices: 1.1, 1.2, 1.3, 2.1, 2.2, 3.1, 4.2, 4.3, 18. Electromagnetic Induction (OI): To determine the effect of magnet strength, speed and number of coils on the induced emf in a coil as measured with a voltage sensor. Science Practices: 1.1, 1.2, 1.4, 3.1, 3.2, 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.2, 6.4, RLC Circuits (GI): To determine the effect of resistors, capacitors, inductors and frequency on an AC Circuit. Science Practices: 1.1, 1.4, 1.5, 2.2, 2.3, 3.1, 4.2, 4.3, 5.1, 5.2, 5.3, 6.1, 6.2, 7.2 Unit 5 - Optics Nature of Light Reflection Image Formation Plane and Curved Mirrors Refraction and Snell s Law Thin Lenses Interference Polarization Diffraction and Slits Thin Film Interference Big Idea 6 Learning Objectives: 6.A.1.2, 6.A.1.3, 6.A.2.2, 6.B.3.1, 6.C.1.1, 6.C.1.2, 6.C.2.1, 6.C.3.1, 6.C.4.1, 6.E.1.1, 6.E.2.1, 6.E.3.1, 6.E.3.2, 6.E.3.3, 6.E.4.1, 6.E.4.2, 6.E.5.1, 6.E.5.2, 6.F.1.1, 6.F Reflection (GI): To identify the properties of reflection through direct aim and parallax methods for a variety of activities. Science Practices: 21. Refraction (GI): To identify the properties of refraction and verify Snell s Law through direct aim method. 22. Curved Mirrors (OI): To verify Gauss form of the curved mirror equation. 23. Lenses (OI): To verify application of Gauss form of the lens equation. Diffraction (GI): To determine the properties of a diffraction pattern from a slit. Interference (GI): To verify the equation for interference and identify the pattern from the

7 number of slits. 24. Polarization (OI): To identify the mathematical relationship between polarizing transmission axes and the intensity of light transmitted. 25. Spectra (GI): To use a spectrophotomter to identify elements based on their atomic spectra. Unit 6 - Modern Physics Special Relativity Mass - Energy Equivalence General Relativity Atomic Values and Periodic Table Atomic Energy Levels Absorption and Emission Spectra Light as a Wave and Particle / Duality Photoelectric Effect DeBroglie Wavelength Compton Effect Wave Function Graphs Radioactive Decay Half Life Nuclear Reactions Fission and Fusion Elementary Particles Big Ideas 1, 3, 4, 5, 6, and 7 Learning Objectives: 1.A.2.1, 1.A.4.1, 1.C.4.1, 1.D.1.1, 1.D.3.1, 4.C.4.1, 5.B.8.1, 5.B.11.1, 5.C.1.1, 5.D.1.6, 5.D.1.7, 5.D.2.5, 5.D.2.6, 5.D.3.2, 5.D.3.3, 5.G.1.1, 6.F.3.1, 6.F.4.1, 6.G.1.1, 6.G.2.1, 6.G.2.2, 7.C.1.1, 7.C.2.1, 7.C.3.1, 7.C Relativity (OI): To use a simulated environment to verify relativistic effects on particles. 27. Photoelectric Effect (OI): To use a simulation to identify the variables and their relationship for the photoelectric effect on different metals. 28. Radioactive Decay (GI): To measure the half life of materials. Unit 7 (After AP Exam) - Connections to Government

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement

More information

Online Courses for High School Students 1-888-972-6237

Online Courses for High School Students 1-888-972-6237 Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,

More information

GACE Physics Assessment Test at a Glance

GACE Physics Assessment Test at a Glance GACE Physics Assessment Test at a Glance Updated January 2016 See the GACE Physics Assessment Study Companion for practice questions and preparation resources. Assessment Name Physics Grade Level 6 12

More information

Boardworks AS Physics

Boardworks AS Physics Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to

More information

Curriculum Overview IB Physics SL YEAR 1 JUNIOR TERM I (2011)

Curriculum Overview IB Physics SL YEAR 1 JUNIOR TERM I (2011) Curriculum Overview IB Physics SL YEAR 1 JUNIOR TERM I (2011) Resources: Gregg Kerr, Nancy Kerr, (2004) Physics International Baccalaureate, IBID Press, Victoria, Australia. Tim Kirk and Neil Hodgson Physics

More information

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards. Literacy Advantage Physical Science Physical Science Literacy Advantage offers a tightly focused curriculum designed to address fundamental concepts such as the nature and structure of matter, the characteristics

More information

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry. North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS - Grades 9-12 Strands: The strands are: Nature of Science, Science as Inquiry, Science and

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

PHYS 1624 University Physics I. PHYS 2644 University Physics II

PHYS 1624 University Physics I. PHYS 2644 University Physics II PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus

More information

How To Understand The Physics Of A Single Particle

How To Understand The Physics Of A Single Particle Learning Objectives for AP Physics These course objectives are intended to elaborate on the content outline for Physics B and Physics C found in the AP Physics Course Description. In addition to the five

More information

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate. Series ONS SET-1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2

More information

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path. A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

More information

One Stop Shop For Teachers

One Stop Shop For Teachers Physical Science Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy

More information

Indiana Content Standards for Educators

Indiana Content Standards for Educators Indiana Content for Educators SCIENCE PHYSICAL SCIENCE teachers are expected to have a broad understanding of the knowledge and skills needed for this educator license, and to use that knowledge to help

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

Chapter 112. Texas Essential Knowledge and Skills for Science. Subchapter D. Other Science Courses

Chapter 112. Texas Essential Knowledge and Skills for Science. Subchapter D. Other Science Courses Chapter 112. Texas Essential Knowledge and Skills for Science Subchapter D. Other Science Courses Statutory Authority: The provisions of this Subchapter D issued under the Texas Education Code, 7.102(c)(4),

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

AQA Level 1/2 Certificate in Physics PAPER 1 SPECIMEN MARK SCHEME. AQA Level 1/2 Certificate in Physics Paper 1 MS

AQA Level 1/2 Certificate in Physics PAPER 1 SPECIMEN MARK SCHEME. AQA Level 1/2 Certificate in Physics Paper 1 MS AQA Level /2 Certificate in Physics PAPER SPECIMEN MARK SCHEME AQA Level /2 Certificate in Physics Paper MS MARK SCHEME Information to Examiners. General The mark scheme for each question shows: the marks

More information

PHYSICS CONCEPTS NEWTONIAN MECHANICS KINEMATICS

PHYSICS CONCEPTS NEWTONIAN MECHANICS KINEMATICS NEWTONIAN MECHANICS KINEMATICS PHYSICS CONCEPTS 1. Distance is the total length that an object in motion covers. Displacement is a vector quantity that indicates the change in position that an object moves

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Appendix A: Science Practices for AP Physics 1 and 2

Appendix A: Science Practices for AP Physics 1 and 2 Appendix A: Science Practices for AP Physics 1 and 2 Science Practice 1: The student can use representations and models to communicate scientific phenomena and solve scientific problems. The real world

More information

Master of Arts in Science Education for Physics Teachers Grade 5 12

Master of Arts in Science Education for Physics Teachers Grade 5 12 Master of Arts in Science Education for Physics Teachers Grade 5 12 The Master of Arts in Science Education (5 12, Physics) is a competency-based degree program that prepares already licensed teachers

More information

Assessment Plan for Learning Outcomes for BA/BS in Physics

Assessment Plan for Learning Outcomes for BA/BS in Physics Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate

More information

2015-2016 North Dakota Advanced Placement (AP) Course Codes. Computer Science Education Course Code 23580 Advanced Placement Computer Science A

2015-2016 North Dakota Advanced Placement (AP) Course Codes. Computer Science Education Course Code 23580 Advanced Placement Computer Science A 2015-2016 North Dakota Advanced Placement (AP) Course Codes Computer Science Education Course Course Name Code 23580 Advanced Placement Computer Science A 23581 Advanced Placement Computer Science AB English/Language

More information

COMPREHENSIVE INSTRUCTIONAL PROGRAM REVIEW. Physics and Astronomy Moreno Valley College. Submitted by: Dipen Bhattacharya, PhD Associate Professor

COMPREHENSIVE INSTRUCTIONAL PROGRAM REVIEW. Physics and Astronomy Moreno Valley College. Submitted by: Dipen Bhattacharya, PhD Associate Professor COMPREHENSIVE INSTRUCTIONAL PROGRAM REVIEW Physics and Astronomy Moreno Valley College Submitted by: Dipen Bhattacharya, PhD Associate Professor Round Three 2012-2016 Office of Educational Services 1 Comprehensive

More information

جامعة البلقاء التطبيقية

جامعة البلقاء التطبيقية AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

More information

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1 TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph

More information

Curriculum for Excellence. Higher Physics. Success Guide

Curriculum for Excellence. Higher Physics. Success Guide Curriculum for Excellence Higher Physics Success Guide Electricity Our Dynamic Universe Particles and Waves Electricity Key Area Monitoring and Measuring A.C. Monitoring alternating current signals with

More information

DISTANCE DEGREE PROGRAM CURRICULUM NOTE:

DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall

More information

Thursday 13 June 2013 Morning

Thursday 13 June 2013 Morning THIS IS A NEW SPECIFICATION H Thursday 13 June 2013 Morning GCSE TWENTY FIRST CENTURY SCIENCE PHYSICS A A182/02 Modules P4 P5 P6 (Higher Tier) *A137290613* Candidates answer on the Question Paper. A calculator

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time. H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law

More information

The Physics Degree. Graduate Skills Base and the Core of Physics

The Physics Degree. Graduate Skills Base and the Core of Physics The Physics Degree Graduate Skills Base and the Core of Physics Version date: September 2011 THE PHYSICS DEGREE This document details the skills and achievements that graduates of accredited degree programmes

More information

European Benchmark for Physics Bachelor Degree

European Benchmark for Physics Bachelor Degree European Benchmark for Physics Bachelor Degree 1. Summary This is a proposal to produce a common European Benchmark framework for Bachelor degrees in Physics. The purpose is to help implement the common

More information

HOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE

HOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE HOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE COURSE SYLLABUS FOR UNIVERSITY PHYSICS II Course Title: University Physics II Course Number : PHYS 2326-7 Class Number : 48053 Semester : Time and Location:

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* PHYSICS 0625/04 Paper 4 Theory (Extended) For Examination from 2016 SPECIMEN PAPER 1

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual

More information

GCSE Additional Science Physics Contents Guide

GCSE Additional Science Physics Contents Guide GCSE Additional Science Contents Guide Copyright Boardworks Ltd 2007 Boardworks Ltd The Gallery 54 Marston Street Oxford OX4 1LF 08703 50 55 60 enquiries@boardworks.co.uk www.boardworks.co.uk 04-07 contains

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

CIVIL/CONSTRUCTION ENGINEERING TECHNOLOGY (CCET) TRANSFER ASSURANCE GUIDE (TAG) January 2, 2008

CIVIL/CONSTRUCTION ENGINEERING TECHNOLOGY (CCET) TRANSFER ASSURANCE GUIDE (TAG) January 2, 2008 CIVIL/CONSTRUCTION ENGINEERING TECHNOLOGY (CCET) TRANSFER ASSURANCE GUIDE (TAG) January 2, 2008 Ohio Transfer Module: Ohio Transfer Module (OTM) Requirements: 36-40 semester hours / 54-60 quarter hours.

More information

Bergen Community College School of Mathematics, Science and Technology Department of Physical Sciences. Course Syllabus PHY 291 Physics III

Bergen Community College School of Mathematics, Science and Technology Department of Physical Sciences. Course Syllabus PHY 291 Physics III Semester and year: Course Number: Meeting Times and Locations: Instructor: Office Location: Phone: Office Hours: Email Address: Bergen Community College School of Mathematics, Science and Technology Department

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

COURSE CATALOG. BS Networking and System Administration

COURSE CATALOG. BS Networking and System Administration COURSE CATALOG BS Networking and System Administration Program Overview Networking, the technology of interconnecting computing devices so information can flow between them, includes the design, deployment,

More information

This Performance Standards include four major components. They are

This Performance Standards include four major components. They are Eighth Grade Science Curriculum Approved July 12, 2004 The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science at the eighth grade level.

More information

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

More information

Undergraduate Physics at. Hampton, Virginia 23668 http://www.hamptonu.edu/

Undergraduate Physics at. Hampton, Virginia 23668 http://www.hamptonu.edu/ Undergraduate SPIN-UP Physics September at Hampton 12, 2009 University Undergraduate Physics at Hampton University Doyle emple Chair, Department of Physics and Jan angana Director for Education and Outreach

More information

9 th Grade Physical Science Springfield Local Schools Common Course Syllabi. Course Description

9 th Grade Physical Science Springfield Local Schools Common Course Syllabi. Course Description 9 th Grade Physical Science Springfield Local Schools Common Course Syllabi Course Description The purpose of the Physical Science course is to satisfy the Ohio Core science graduation requirement. The

More information

Physics 142 Course Information

Physics 142 Course Information Physics 142 Course Information General Physics II Electricity and Magnetism (4 credit hours) Fall 2013 Instructors: Nikos Varelas 2134 SES (312) 996-3415 varelas@uic.edu Randall Espinoza 2272 SES (312)

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Student Learning Outcomes. Candidates should be able to: 1.1.1 describe the importance of physics in science, technology and society; *

Student Learning Outcomes. Candidates should be able to: 1.1.1 describe the importance of physics in science, technology and society; * Topics and Student Learning Outcomes of the Examination Syllabus Part I (Class XI) 1. Measurement Topics Student Learning Outcomes Cognitive level 2 1.1 Scope of physics 1.1.1 describe the importance of

More information

ELECTRICAL ENGINEERING TECHNOLOGY (EET) TRANSFER ASSURANCE GUIDE (TAG) April 22, 2008

ELECTRICAL ENGINEERING TECHNOLOGY (EET) TRANSFER ASSURANCE GUIDE (TAG) April 22, 2008 ELECTRICAL ENGINEERING TECHNOLOGY (EET) TRANSFER ASSURANCE GUIDE (TAG) April 22, 2008 Ohio Transfer Module: Ohio Transfer Module (OTM) Requirements: 36-40 semester hours / 54-60 quarter hours. Students

More information

Answer the following questions by marking the BEST answer choice on the answer sheet

Answer the following questions by marking the BEST answer choice on the answer sheet Answer the following questions by marking the BEST answer choice on the answer sheet 1. What is the average speed of a car that travels a total distance of 320 meters in 2.6 minutes? a. 2.1 m/s b. 120

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr.

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr. SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr. Neil Basescu NAME OF COURSE: College Physics 1 with Lab 3. CURRENT DATE: 4/24/13

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Magnetic Fields and Their Effects

Magnetic Fields and Their Effects Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

More information

Prerequisites: CHEM 1311 and CHEM 1111, or CHEM 1411 General Chemistry I (Lecture and Laboratory)

Prerequisites: CHEM 1311 and CHEM 1111, or CHEM 1411 General Chemistry I (Lecture and Laboratory) Course Syllabus CHEM 1412 General Chemistry II Revision Date: 8/21/2014 Catalog Description: Chemical equilibrium; phase diagrams and spectrometry; acid-base concepts; thermodynamics; kinetics; electrochemistry;

More information

UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES. Science 9

UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES. Science 9 UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES Science 9 LEARNING GOALS Investigate and interpret devices that convert various forms of energy Describe technologies for the transfer and control of electrical

More information

Alternating Current Circuits and Electromagnetic Waves

Alternating Current Circuits and Electromagnetic Waves Arecibo, a large radio telescope in Puerto Rico, gathers electromagnetic radiation in the form of radio waves. These long wavelengths pass through obscuring dust clouds, allowing astronomers to create

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Introduction. IGCSE Physics. The Course. Physics IGCSE

Introduction. IGCSE Physics. The Course. Physics IGCSE Physics IGCSE IGCSE Physics Welcome to your IGCSE Physics course. This introduction will serve as a guide to what you can expect from the course, and it will show you how to plan your study effectively.

More information

Physical Quantities, Symbols and Units

Physical Quantities, Symbols and Units Table 1 below indicates the physical quantities required for numerical calculations that are included in the Access 3 Physics units and the Intermediate 1 Physics units and course together with the SI

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS

ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS Many mechanical energy systems are devoted to transfer of energy between two points: the source or prime mover (input) and the load (output). For chemical

More information

H.S. Solar Energy: Solar Powered Cars

H.S. Solar Energy: Solar Powered Cars D R I G r e e n P o w e r P r o g r a m G r e e n B o x H.S. Solar Energy: Solar Powered Cars Created by: Learning Cycle 5E Lesson Based upon and modified from Roger Bybee* (1990) *Bybee, R & Landes, N.

More information

Introduction to Chemistry. Course Description

Introduction to Chemistry. Course Description CHM 1025 & CHM 1025L Introduction to Chemistry Course Description CHM 1025 Introduction to Chemistry (3) P CHM 1025L Introduction to Chemistry Laboratory (1) P This introductory course is intended to introduce

More information

PHYSICS TEST PRACTICE BOOK. Graduate Record Examinations. This practice book contains. Become familiar with. Visit GRE Online at www.gre.

PHYSICS TEST PRACTICE BOOK. Graduate Record Examinations. This practice book contains. Become familiar with. Visit GRE Online at www.gre. This book is provided FREE with test registration by the Graduate Record Examinations Board. Graduate Record Examinations This practice book contains one actual full-length GRE Physics Test test-taking

More information

ARIZONA Science Standards High School Chemistry: Matter and Change 2005

ARIZONA Science Standards High School Chemistry: Matter and Change 2005 ARIZONA Science Standards High School Chemistry: Matter and Change 2005 OBJECTIVES Strand 1: Inquiry Process Concept 1: Observations, Questions, and Hypotheses Formulate predictions, questions, or hypotheses

More information

Monday 11 June 2012 Afternoon

Monday 11 June 2012 Afternoon Monday 11 June 2012 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G495 Field and Particle Pictures *G412090612* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships

More information

THE BOHR QUANTUM MODEL

THE BOHR QUANTUM MODEL THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with

More information

Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

More information

Thursday 23 May 2013 Morning

Thursday 23 May 2013 Morning THIS IS A NEW SPECIFICATION H Thursday 23 May 2013 Morning GCSE TWENTY FIRST CENTURY SCIENCE PHYSICS A A181/02 Modules P1 P2 P3 (Higher Tier) *A137270613* Candidates answer on the Question Paper. A calculator

More information

An equivalent circuit of a loop antenna.

An equivalent circuit of a loop antenna. 3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally

More information

Energy comes in many flavors!

Energy comes in many flavors! Forms of Energy Energy is Fun! Energy comes in many flavors! Kinetic Energy Potential Energy Thermal/heat Energy Chemical Energy Electrical Energy Electrochemical Energy Electromagnetic Radiation Energy

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2012

Candidate Number. General Certificate of Education Advanced Level Examination June 2012 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

More information

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

More information

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

More information

Experiment 8: Undriven & Driven RLC Circuits

Experiment 8: Undriven & Driven RLC Circuits Experiment 8: Undriven & Driven RLC Circuits Answer these questions on a separate sheet of paper and turn them in before the lab 1. RLC Circuits Consider the circuit at left, consisting of an AC function

More information

UNL71 Physics Neil Lister; BSc, Dip, Ed.

UNL71 Physics Neil Lister; BSc, Dip, Ed. UNL71 Physics Your Teacher for Unilearn Physics is Neil Lister; BSc, Dip, Ed. Neil has taught at least 1 physics course at Sunnybank S.H.S. every year from 1971 until he retired from full time teaching

More information