Digital Modulation Lecture 03

Size: px
Start display at page:

Download "Digital Modulation Lecture 03"

Transcription

1 Digital Modulation Lecture 03 Inter-Symbol Interference Power Spectral Density Richard Harris

2 Objectives To be able to discuss Inter-Symbol Interference (ISI), its causes and possible remedies. To be able to define spectral efficiency To define what is meant by the Power Spectral Density (PSD) function To be able to compute the PSD for different forms of digital modulation and discuss its properties. Communication Systems Digital Modulation Slide

3 Presentation Outline Inter-symbol Interference What is ISI? How can it be avoided? Power Spectral Density function Communication Systems Digital Modulation Slide 3

4 Inter-Symbol Interference ISI - 1 Baseband Pulse Transmission System Absolute bandwidth of rectangular pulses is infinite They are filtered as they pass through the communication system The pulse for each symbol is spread into adjacent timeslots This may cause Intersymbol Interference (ISI) Communication Systems Digital Modulation Slide 4

5 Inter-Symbol Interference Examples of ISI on received pulses in a binary communication system Communication Systems Digital Modulation Slide 5

6 Inter-Symbol Interference 3 The overall transfer function for the system is H e (f) = H(f). H T (f). H C (f). H R (f) Where H(f) is the Fourier Transform of the rectangular pulse Communication Systems Digital Modulation Slide 6

7 Avoiding Inter-Symbol Interference For zero ISI, Nyquist found that H e (f) must satisfy the following condition: For a single pulse, the filtered pulse is non-zero at its own sampling time, but is always zero at other sampling times. Example: r B = = = f f f f ( 1+ r) f 0 Raised cosine-rolloff Nyquist filter characteristics Communication Systems Digital Modulation Slide 7

8 Impulse Response 1 f 0 Communication Systems Digital Modulation Slide 8

9 Avoiding ISI (Contd) For a communication system with a raised cosine-rolloff filtering characteristic, the (baud) symbol rate which can be supported by the system is: B/(1+r) Where B is the absolute bandwidth of the system and r is the roll-off factor of the filter. Note that 0 r 1 is a requirement Communication Systems Digital Modulation Slide 9

10 Spectral Efficiency To compare signalling schemes we can define a quantity called Spectral Efficiency: The ratio of the bit rate (in bits/sec) of the modulating signal to the transmission bandwidth (in Hz) of the modulated signal. ie, r b /B T bits/sec/hz. For systems operating at the Nyquist rate, B T = r, so that r b /B T = log M, and for values of M=,4,8,16 etc, the ideal spectral efficiencies are 1,,3,4 etc bits/sec/hz. For practical systems, the values are somewhat less than these ideal values. Communication Systems Digital Modulation Slide 10

11 Theoretical Bandwidth Efficiency Limits Modulation method MSK BPSK QPSK 8PSK 16 QAM 3 QAM 64 QAM 56 QAM Theoretical bandwidth format efficiency limits 1 bit/second/hz 1 bit/second/hz bits/second/hz 3 bits/second/hz 4 bits/second/hz 5 bits/second/hz 6 bits/second/hz 8 bits/second/hz Note: These figures cannot actually be achieved in practical systems as they require perfect modulators, demodulators, filter and transmission paths. Communication Systems Digital Modulation Slide 11

12 Power Spectral Density Definition Definition: (See Wikipedia) The power spectral density (PSD) describes how the power of a signal or time series is distributed with frequency. The PSD is the Fourier transform of the autocorrelation function of the signal if the signal can be treated as a stationary random process. The Power Spectral Density of a signal exists if and only if the signal is a wide-sense stationary process. Note: If the signal is not stationary, then the autocorrelation function must be a function of two variables, so no PSD exists, but similar techniques may be used to estimate a time-varying spectral density. Communication Systems Digital Modulation Slide 1

13 Random Process through a Linear Time Invariant Filter - 1 Time-Invariant Filters In plain terms, a time-invariant filter (or shift-invariant filter) is one which performs the same operation at all times. Thus, if the input signal is delayed (shifted) by, say, N samples, then the output waveform is simply delayed by N samples and unchanged otherwise. Thus Y(t), the output waveform from a time-invariant filter, merely shifts forward or backward in time as the input waveform is shifted forward or backward in time. Consider a random process X(t) applied as input to a linear timeinvariant filter having impulse response h(t) that produces a new random output process Y(t). X(t) Impulse response h(t) Y(t) Transmission in this situation is governed by a convolution integral, viz: Yt () = h( τ1) Xt ( τ1) dτ1 Communication Systems Digital Modulation Slide 13

14 Random Process through a Linear Time Invariant Filter - We can compute the mean value of Y(t) as µ () t Y = E [ Y ()] t = E h( τ1) X( t τ1) dτ 1 Now, provided that the expectation E[X(t)] is finite for all t and the system is stable, we can interchange the order of expectation and integration to obtain: µ () t = h( τ ) E[ X( t τ )] dτ Y = h( τ ) µ ( t τ ) dτ 1 X 1 1 Communication Systems Digital Modulation Slide 14

15 Random Process through a Linear Time Invariant Filter - 3 When the input random process X(t) is stationary, the mean µ X (t) is a constant µ X, so we can further simplify our result as: µ = µ h( τ ) dτ Y X = µ H (0) X 1 1 Where H(0) is the zero frequency (DC) response of the system. This says that the mean of the random process Y(t) produced at the output of a linear time-invariant system in response to X(t) acting as the input process is equal to the mean of X(t) multiplied by the DC response of the system. Communication Systems Digital Modulation Slide 15

16 Random Process through a Linear Time Invariant Filter - 4 Now consider the auto-correlation function of the output random process Y(t). R (, tu) = EYtYu [ () ( )] Y Where t and u are two values of the time at which the output process is observed. Using the convolution integral we have: RY ( t, u) = E h( τ1) X( t τ1) dτ1 h( τ) X( u τ) dτ Communication Systems Digital Modulation Slide 16

17 Random Process through a Linear Time Invariant Filter - 5 Now, provided that the expectation E[X (t)] is finite for all t and the system is stable, we can interchange the order of expectation and integration with respect to both τ 1 and τ to obtain: [ ] R (, t u) = h( τ ) dτ h( τ ) dτ E X( t τ ) X( u τ ) Y = h( τ ) dτ h( τ ) dτ R ( t τ )( u τ ) 1 1 X 1 When the input X(t) is a stationary process, the autocorrelation function of X(t) is only a function of the difference between the observation times t- τ 1 and u- τ. Thus writing τ=t-u we can write: R ( τ ) = h( τ ) h( τ ) R ( τ τ + τ ) dτ dτ Y 1 X 1 1 Communication Systems Digital Modulation Slide 17

18 Random Process through a Linear Time Invariant Filter - 6 Combining with our earlier result we see that if X(t) is a stationary input process, then Y(t) is also a stationary process. Since R Y (0) = E[Y (t)] it follows that we can find this quantity by setting τ = 0 in order to obtain: E Y () t = h( τ1) h( τ) RX ( τ τ1) dτ1dτ Which is a constant! Communication Systems Digital Modulation Slide 18

19 Power Spectral Density - 1 Consider the characterisation of random processes in linear systems by using frequency domain ideas. We are interested in finding the frequency domain equivalent to the result on the previous slide that defines the mean square value of the filter output. Now: The impulse response of a linear time-invariant filter is equivalent to the inverse Fourier Transform of the frequency response of the system. Let H(f) be the frequency response of the system. Communication Systems Digital Modulation Slide 19

20 Power Spectral Density - h( τ1) = H( f)exp( j π fτ1) df Substituting this expression into our previous result gives: E Y ( t) H( f)exp( j π fτ1) df = h( τ) RX ( τ τ1) dτ1dτ = dfh ( f ) h( τ ) dτ R ( τ τ )exp( j π fτ ) dτ X Define a new variable τ = τ 1 τ so that E Y ( t) = dfh( f) d h( )exp( j f ) RX ( )exp( j f ) d τ τ π τ τ π τ τ Communication Systems Digital Modulation Slide 0

21 Power Spectral Density - 3 E Y ( t) = dfh( f) d h( )exp( j f ) RX ( )exp( j f ) d τ τ π τ τ π τ τ The middle integral is H*(f) the complex conjugate of the frequency response of the filter, so simplifying gives: E Y () t = df H( f) RX ( )exp( j f ) d τ π τ τ Where H(f) is the magnitude response of the filter. Finally we note that the right-most integral is actually the Fourier transform of the autocorrelation function R X (τ) of the input random process X(t). Communication Systems Digital Modulation Slide 1

22 Power Spectral Density - 4 Let us now define the quantity S X( f ) = RX( τ )exp( j π fτ) dτ The function S X (f) is called the Power Spectral Density or Power Spectrum of the stationary process X(t). E Y () t = H( f) SX ( f) df The equation marked with says that the mean square value of a stable linear time-invariant filter in response to a stationary process is equal to the integral over all frequencies of the PSD of the input process multiplied by the squared magnitude response of the filter. Communication Systems Digital Modulation Slide

23 Power Spectral Density - 5 Consider the following situation where a random process X(t) is passed through an ideal narrow band filter with magnitude response centred around the frequency f c (see figure below): H( f) 1, f ± fc < f / = 0, f ± fc > f / Hf () 1.0 f c f 0 f c f f Communication Systems Digital Modulation Slide 3

24 Power Spectral Density - 6 Note that f is the bandwidth of the filter. Substituting these details into the formula for E[Y (t)] we have (for sufficiently small filter bandwidth compared to the mid-band frequency f c with S X (f) a continuous function: EY t f S f [ ( )] ( ) X ( c ) Communication Systems Digital Modulation Slide 4

25 Power Spectral Density - 7 When a digital waveform x(t) is modelled by n= x ( t) = a w( t nt ) n where {a n } represent data, n is an integer, w(t) is the signalling pulse shape and T is the duration of one data symbol. The power spectral density function PSD of x(t) can be shown to be given by P ( f x σ a ) = T W ( f ) µ a + T k = W where k is an integer, σ a and µ a are the variance and mean of the data {a n } and W(f) is the Fourier transform of w(t). k T δ f k T Communication Systems Digital Modulation Slide 5

26 Properties of the PSD - 1 The Power Spectral Density Function S X (f) and the autocorrelation function R X (f) of a stationary process X(t) form a Fourier-transform pair with τ and f as the variables satisfying the following: S ( f ) = R ( τ )exp( jπ fτ) dτ X X R ( τ) = S ( f)exp( jπ fτ) df X X (Einstein-Wiener-Khintchine relations) Communication Systems Digital Modulation Slide 6

27 Properties of the PSD - Property 1 The zero value of the PSD of a stationary process is equal to the total area under the graph of the autocorrelation function. Property The mean square value of a stationary process is equal to the total area under the graph of the PSD Property 3 The PSD of a stationary process is always non-negative Property 4 The PSD of a real valued random process is an even function of frequency; ie S X (-f) = S X (f) Property 5 The PSD, appropriately normalised has the properties associated with a Probability Density Function Attempt these as an exercise in the Tutorial Session. Communication Systems Digital Modulation Slide 7

28 Example PSD Sine wave with random phase - 1 Consider the following random process A cos(πf c t+θ) where θ is a uniformly distributed random variable over the interval [-π, π] First we determine the autocorrelation function for this random process: RX ( τ ) = EXt [ ( + τ ) Xt ( )] = EA [ cos(π ft c + π fcτ + θ)cos( π ft c + θ)] A A = E[cos(4π fct+ π fcτ + θ)] + E[cos( π fcτ)] A π 1 A = cos(4 fct fc ) d cos( fc ) π + π τ + θ θ + π τ π A = 0+ cos( π fcτ) A = cos( π fcτ) Communication Systems Digital Modulation Slide 8

29 Example PSD Sine wave with random phase - We now take Fourier transforms of both sides of the resulting expression: A RX( τ) = cos( π fcτ) A RX( τ )exp( j π fτ) dτ = cos( π fcτ)exp( j π fτ) dτ A SX( f) = cos( fc )exp( j f ) d π τ π τ τ A = [ δ( f fc) + δ( f + fc) ] 4 (See table of Fourier transform values on next slide) Communication Systems Digital Modulation Slide 9

30 Example PSD Sine wave with random phase - 3 We see that the solution to this problem is a pair of delta functions. Communication Systems Digital Modulation Slide 30

31 Example PSD Sine wave with random phase - 4 Note that the total area under a delta function is unity. Thus, the total area under S X (f) is equal to A / as expected. S X (f) A δ ( f + fc ) 4 A δ ( f fc ) 4 f -f c 0 f c Communication Systems Digital Modulation Slide 31

32 PSD of a Random Binary Wave - 1 Consider the following random sequence of 1s and 0s: +A It can be shown that the autocorrelation function for this process X(t) is given by: R X τ A 1, τ < T ( τ ) = T 0, τ T t d T -A RX ( τ ) -T 0 A +T Communication Systems Digital Modulation Slide 3

33 PSD of a Random Binary Wave - Taking Fourier transforms to obtain the PSD once again we find: T τ SX ( f) = A 1 exp( j π fτ) dτ T T Conversion back from tables of Fourier transforms we find the sinc (ft) function: SX ( f) = A Tsinc ( ft) Where 1 if x = 0 sinc x = sin x otherwise x Communication Systems Digital Modulation Slide 33

34 PSD of a Random Binary Wave - 3 Plotting the Power Spectral Density function in this case gives: sinc (x) sinc(x) Communication Systems Digital Modulation Slide 34

Appendix D Digital Modulation and GMSK

Appendix D Digital Modulation and GMSK D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information

5 Signal Design for Bandlimited Channels

5 Signal Design for Bandlimited Channels 225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g

More information

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source

More information

EE 179 April 21, 2014 Digital and Analog Communication Systems Handout #16 Homework #2 Solutions

EE 179 April 21, 2014 Digital and Analog Communication Systems Handout #16 Homework #2 Solutions EE 79 April, 04 Digital and Analog Communication Systems Handout #6 Homework # Solutions. Operations on signals (Lathi& Ding.3-3). For the signal g(t) shown below, sketch: a. g(t 4); b. g(t/.5); c. g(t

More information

Digital Transmission (Line Coding)

Digital Transmission (Line Coding) Digital Transmission (Line Coding) Pulse Transmission Source Multiplexer Line Coder Line Coding: Output of the multiplexer (TDM) is coded into electrical pulses or waveforms for the purpose of transmission

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

Chapter 8 - Power Density Spectrum

Chapter 8 - Power Density Spectrum EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is

More information

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1 WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

More information

Digital Baseband Modulation

Digital Baseband Modulation Digital Baseband Modulation Later Outline Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation A Communication System Dig. Baseband Modulators (Line Coders) Sequence of bits are modulated

More information

Lecture 8 ELE 301: Signals and Systems

Lecture 8 ELE 301: Signals and Systems Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels

Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels Qi Lu, Qingchong Liu Electrical and Systems Engineering Department Oakland University Rochester, MI 48309 USA E-mail:

More information

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

Lezione 6 Communications Blockset

Lezione 6 Communications Blockset Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive

More information

The continuous and discrete Fourier transforms

The continuous and discrete Fourier transforms FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

More information

Analog and Digital Signals, Time and Frequency Representation of Signals

Analog and Digital Signals, Time and Frequency Representation of Signals 1 Analog and Digital Signals, Time and Frequency Representation of Signals Required reading: Garcia 3.1, 3.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Data vs. Signal Analog vs. Digital Analog Signals

More information

Lecture 18: The Time-Bandwidth Product

Lecture 18: The Time-Bandwidth Product WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The Time-Bandwih Product Prof.Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture, our aim is to define the time Bandwih Product,

More information

Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005

Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005 Convolution, Correlation, & Fourier Transforms James R. Graham 10/25/2005 Introduction A large class of signal processing techniques fall under the category of Fourier transform methods These methods fall

More information

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

More information

NRZ Bandwidth - HF Cutoff vs. SNR

NRZ Bandwidth - HF Cutoff vs. SNR Application Note: HFAN-09.0. Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP

More information

1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions

1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions Rec. ITU-R SM.853-1 1 RECOMMENDATION ITU-R SM.853-1 NECESSARY BANDWIDTH (Question ITU-R 77/1) Rec. ITU-R SM.853-1 (1992-1997) The ITU Radiocommunication Assembly, considering a) that the concept of necessary

More information

Contents. A Error probability for PAM Signals in AWGN 17. B Error probability for PSK Signals in AWGN 18

Contents. A Error probability for PAM Signals in AWGN 17. B Error probability for PSK Signals in AWGN 18 Contents 5 Signal Constellations 3 5.1 Pulse-amplitude Modulation (PAM).................. 3 5.1.1 Performance of PAM in Additive White Gaussian Noise... 4 5.2 Phase-shift Keying............................

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

Spectrum Level and Band Level

Spectrum Level and Band Level Spectrum Level and Band Level ntensity, ntensity Level, and ntensity Spectrum Level As a review, earlier we talked about the intensity of a sound wave. We related the intensity of a sound wave to the acoustic

More information

Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:

Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

Experiment 3: Double Sideband Modulation (DSB)

Experiment 3: Double Sideband Modulation (DSB) Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the double-sideband (DSB) linear modulation process. The demodulation is performed coherently and its strict

More information

1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate?

1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate? Homework 2 Solution Guidelines CSC 401, Fall, 2011 1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate? 1. In this problem, the channel being sampled gives us the

More information

Advanced Signal Processing and Digital Noise Reduction

Advanced Signal Processing and Digital Noise Reduction Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New

More information

CDMA TECHNOLOGY. Brief Working of CDMA

CDMA TECHNOLOGY. Brief Working of CDMA CDMA TECHNOLOGY History of CDMA The Cellular Challenge The world's first cellular networks were introduced in the early 1980s, using analog radio transmission technologies such as AMPS (Advanced Mobile

More information

PCM Encoding and Decoding:

PCM Encoding and Decoding: PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth

More information

University of Manchester School of Computer Science CS3282: Digital Communications '06 Section 9: Multi-level digital modulation & demodulation.

University of Manchester School of Computer Science CS3282: Digital Communications '06 Section 9: Multi-level digital modulation & demodulation. CS3282 Digital Comms 9.1 2 May 06 / BMGC University of Manchester School of Computer Science CS3282: Digital Communications '06 Section 9: Multi-level digital modulation & demodulation. 9.1. ntroduction:

More information

From Fundamentals of Digital Communication Copyright by Upamanyu Madhow, 2003-2006

From Fundamentals of Digital Communication Copyright by Upamanyu Madhow, 2003-2006 Chapter Introduction to Modulation From Fundamentals of Digital Communication Copyright by Upamanyu Madhow, 003-006 Modulation refers to the representation of digital information in terms of analog waveforms

More information

ELE745 Assignment and Lab Manual

ELE745 Assignment and Lab Manual ELE745 Assignment and Lab Manual August 22, 2010 CONTENTS 1. Assignment 1........................................ 1 1.1 Assignment 1 Problems................................ 1 1.2 Assignment 1 Solutions................................

More information

SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

More information

Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

More information

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically. Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

More information

How To Understand The Nyquist Sampling Theorem

How To Understand The Nyquist Sampling Theorem Nyquist Sampling Theorem By: Arnold Evia Table of Contents What is the Nyquist Sampling Theorem? Bandwidth Sampling Impulse Response Train Fourier Transform of Impulse Response Train Sampling in the Fourier

More information

Agilent Digital Modulation in Communications Systems An Introduction. Application Note 1298

Agilent Digital Modulation in Communications Systems An Introduction. Application Note 1298 Agilent Digital Modulation in Communications Systems An Introduction Application Note 1298 Introduction This application note introduces the concepts of digital modulation used in many communications systems

More information

Review of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties

Review of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties ECE 3640 Lecture 5 Fourier Transforms and their properties Objective: To learn about Fourier transforms, which are a representation of nonperiodic functions in terms of trigonometric functions. Also, to

More information

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information

Time and Frequency Domain Equalization

Time and Frequency Domain Equalization Time and Frequency Domain Equalization Presented By: Khaled Shawky Hassan Under Supervision of: Prof. Werner Henkel Introduction to Equalization Non-ideal analog-media such as telephone cables and radio

More information

Lecture 1-6: Noise and Filters

Lecture 1-6: Noise and Filters Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat

More information

Public Switched Telephone System

Public Switched Telephone System Public Switched Telephone System Structure of the Telephone System The Local Loop: Modems, ADSL Structure of the Telephone System (a) Fully-interconnected network. (b) Centralized switch. (c) Two-level

More information

2 The wireless channel

2 The wireless channel CHAPTER The wireless channel A good understanding of the wireless channel, its key physical parameters and the modeling issues, lays the foundation for the rest of the book. This is the goal of this chapter.

More information

Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth

Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth Product Note The Agilent Technologies 89400 series vector signal analyzers provide unmatched signal analysis

More information

DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services

DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services Application Note DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services Overview As cable operators move to digital simulcast and all digital networks, the majority

More information

TTT4110 Information and Signal Theory Solution to exam

TTT4110 Information and Signal Theory Solution to exam Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT4 Information and Signal Theory Solution to exam Problem I (a The frequency response is found by taking

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum Modulation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

Duobinary Modulation For Optical Systems

Duobinary Modulation For Optical Systems Introduction Duobinary Modulation For Optical Systems Hari Shanar Inphi Corporation Optical systems by and large use NRZ modulation. While NRZ modulation is suitable for long haul systems in which the

More information

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise Apéndice A. Lista de s ACI AM AMC AMPS ARQ AWGN BB BER BPSK BPF BW CCK CD CDMA CDPD COFDM CRL CSI CWTS Adjacent Channel Interference Amplitude Modulation Adaptive Modulation and Coding Advanced Mobile

More information

1995 Mixed-Signal Products SLAA013

1995 Mixed-Signal Products SLAA013 Application Report 995 Mixed-Signal Products SLAA03 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service

More information

The Fourier Analysis Tool in Microsoft Excel

The Fourier Analysis Tool in Microsoft Excel The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier

More information

Using the Equalizer Filter in the VSA Application Firmware for R&S Signal and Spectrum Analyzer Application Note

Using the Equalizer Filter in the VSA Application Firmware for R&S Signal and Spectrum Analyzer Application Note Using the Equalizer Filter in the VSA Application Firmware for R&S Signal and Spectrum Analyzer Application Note Products: R&S FSQ R&S FSG R&S FMU R&S FSU R&S FSUP R&S FSMR The R&S spectrum analyzers and

More information

Frequency Response of FIR Filters

Frequency Response of FIR Filters Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input

More information

USB 3.0 CDR Model White Paper Revision 0.5

USB 3.0 CDR Model White Paper Revision 0.5 USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

More information

Symbol interval T=1/(2B); symbol rate = 1/T=2B transmissions/sec (The transmitted baseband signal is assumed to be real here) Noise power = (N_0/2)(2B)=N_0B \Gamma is no smaller than 1 The encoded PAM

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

VCO Phase noise. Characterizing Phase Noise

VCO Phase noise. Characterizing Phase Noise VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which

More information

Aliasing, Image Sampling and Reconstruction

Aliasing, Image Sampling and Reconstruction Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is

More information

Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)

Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) The Fourier Sine Transform pair are F. T. : U = 2/ u x sin x dx, denoted as U

More information

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

More information

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008

TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008 Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT40 Digital Signal Processing Suggested Solution to Exam Fall 008 Problem (a) The input and the input-output

More information

CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC

CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC 1. INTRODUCTION The CBS Records CD-1 Test Disc is a highly accurate signal source specifically designed for those interested in making

More information

HYBRID FIR-IIR FILTERS By John F. Ehlers

HYBRID FIR-IIR FILTERS By John F. Ehlers HYBRID FIR-IIR FILTERS By John F. Ehlers Many traders have come to me, asking me to make their indicators act just one day sooner. They are convinced that this is just the edge they need to make a zillion

More information

L9: Cepstral analysis

L9: Cepstral analysis L9: Cepstral analysis The cepstrum Homomorphic filtering The cepstrum and voicing/pitch detection Linear prediction cepstral coefficients Mel frequency cepstral coefficients This lecture is based on [Taylor,

More information

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency

More information

9 Fourier Transform Properties

9 Fourier Transform Properties 9 Fourier Transform Properties The Fourier transform is a major cornerstone in the analysis and representation of signals and linear, time-invariant systems, and its elegance and importance cannot be overemphasized.

More information

OFDM, Mobile Software Development Framework

OFDM, Mobile Software Development Framework OFDM, Mobile Software Development Framework 9/27/2012 Y. Richard Yang 1 Admin. Homework 2 to be posted by Friday Start to think about project 2 Recap Inter-Symbol Interference (ISI) Handle band limit ISI

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29. Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

More information

Adaptive Equalization of binary encoded signals Using LMS Algorithm

Adaptive Equalization of binary encoded signals Using LMS Algorithm SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) volume issue7 Sep Adaptive Equalization of binary encoded signals Using LMS Algorithm Dr.K.Nagi Reddy Professor of ECE,NBKR

More information

HD Radio FM Transmission System Specifications Rev. F August 24, 2011

HD Radio FM Transmission System Specifications Rev. F August 24, 2011 HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

More information

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

More information

Vector Signal Analyzer FSQ-K70

Vector Signal Analyzer FSQ-K70 Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM

More information

EECC694 - Shaaban. Transmission Channel

EECC694 - Shaaban. Transmission Channel The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,

More information

Time Series Analysis: Introduction to Signal Processing Concepts. Liam Kilmartin Discipline of Electrical & Electronic Engineering, NUI, Galway

Time Series Analysis: Introduction to Signal Processing Concepts. Liam Kilmartin Discipline of Electrical & Electronic Engineering, NUI, Galway Time Series Analysis: Introduction to Signal Processing Concepts Liam Kilmartin Discipline of Electrical & Electronic Engineering, NUI, Galway Aims of Course To introduce some of the basic concepts of

More information

Today. next two weeks

Today. next two weeks Today Temporal and spatial coherence Spatially incoherent imaging The incoherent PSF The Optical Transfer Function (OTF) and Modulation Transfer Function (MTF) MTF and contrast comparison of spatially

More information

(Refer Slide Time: 01:11-01:27)

(Refer Slide Time: 01:11-01:27) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,

More information

Simulation of Wireless Fading Channels

Simulation of Wireless Fading Channels Blekinge Institute of Technology Research Report No 2003:02 Simulation of Wireless Fading Channels Ronnie Gustafsson Abbas Mohammed Department of Telecommunications and Signal Processing Blekinge Institute

More information

3.5.1 CORRELATION MODELS FOR FREQUENCY SELECTIVE FADING

3.5.1 CORRELATION MODELS FOR FREQUENCY SELECTIVE FADING Environment Spread Flat Rural.5 µs Urban 5 µs Hilly 2 µs Mall.3 µs Indoors.1 µs able 3.1: ypical delay spreads for various environments. If W > 1 τ ds, then the fading is said to be frequency selective,

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Design of FIR Filters

Design of FIR Filters Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 68 FIR as

More information

RADIO FREQUENCY INTERFERENCE AND CAPACITY REDUCTION IN DSL

RADIO FREQUENCY INTERFERENCE AND CAPACITY REDUCTION IN DSL RADIO FREQUENCY INTERFERENCE AND CAPACITY REDUCTION IN DSL Padmabala Venugopal, Michael J. Carter*, Scott A. Valcourt, InterOperability Laboratory, Technology Drive Suite, University of New Hampshire,

More information

Laboratory Manual and Supplementary Notes. CoE 494: Communication Laboratory. Version 1.2

Laboratory Manual and Supplementary Notes. CoE 494: Communication Laboratory. Version 1.2 Laboratory Manual and Supplementary Notes CoE 494: Communication Laboratory Version 1.2 Dr. Joseph Frank Dr. Sol Rosenstark Department of Electrical and Computer Engineering New Jersey Institute of Technology

More information

A WEB BASED TRAINING MODULE FOR TEACHING DIGITAL COMMUNICATIONS

A WEB BASED TRAINING MODULE FOR TEACHING DIGITAL COMMUNICATIONS A WEB BASED TRAINING MODULE FOR TEACHING DIGITAL COMMUNICATIONS Ali Kara 1, Cihangir Erdem 1, Mehmet Efe Ozbek 1, Nergiz Cagiltay 2, Elif Aydin 1 (1) Department of Electrical and Electronics Engineering,

More information

How To Encode Data From A Signal To A Signal (Wired) To A Bitcode (Wired Or Coaxial)

How To Encode Data From A Signal To A Signal (Wired) To A Bitcode (Wired Or Coaxial) Physical Layer Part 2 Data Encoding Techniques Networks: Data Encoding 1 Analog and Digital Transmissions Figure 2-23.The use of both analog and digital transmissions for a computer to computer call. Conversion

More information

CDMA Technology : Principles of CDMA/DS Decoding

CDMA Technology : Principles of CDMA/DS Decoding CDMA Technology : Principles of CDMA/DS Decoding Pr. Dr. W.Skupin www.htwg-konstanz.de Pr. S.Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : Introduction to Spread Spectrum

More information

How To Understand The Theory Of Time Division Duplexing

How To Understand The Theory Of Time Division Duplexing Multiple Access Techniques Dr. Francis LAU Dr. Francis CM Lau, Associate Professor, EIE, PolyU Content Introduction Frequency Division Multiple Access Time Division Multiple Access Code Division Multiple

More information

Adding Sinusoids of the Same Frequency. Additive Synthesis. Spectrum. Music 270a: Modulation

Adding Sinusoids of the Same Frequency. Additive Synthesis. Spectrum. Music 270a: Modulation Adding Sinusoids of the Same Frequency Music 7a: Modulation Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) February 9, 5 Recall, that adding sinusoids of

More information