1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions

Size: px
Start display at page:

Download "1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions"

Transcription

1 Rec. ITU-R SM RECOMMENDATION ITU-R SM NECESSARY BANDWIDTH (Question ITU-R 77/1) Rec. ITU-R SM ( ) The ITU Radiocommunication Assembly, considering a) that the concept of necessary bandwidth defined in No. 146 (S1.152) of the Radio Regulations, is useful for specifying the spectral properties of a given emission, or class of emission, in the simplest possible manner; b) that with regard to the efficient use of the radio-frequency (RF) spectrum, necessary bandwidths for individual classes of emission must be known, that in some cases the formulae listed in Recommendation ITU-R SM.1138 can only be used as a guide and that the necessary bandwidth for certain classes of emissions is to be evaluated corresponding to a specified transmission standard and required quality; c) that changes in technology have resulted in additions and variations in the modulations used for radiocommunication; d) that the numerical parameters used in the necessary bandwidth formulae may change with time due to changes in signal characteristics (e.g. average talker level), recommends that the necessary bandwidth formulae (contained in Recommendation ITU-R SM.1138) be supplemented with the following formulae. 1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions To account for changes in average talker level, which may occur over time, the formula for the necessary bandwidth B n of multi-channel FDM emission is: B n = 2M + 2 X + Y log N c d 3.76 antilog K where: M : maximum modulating frequency (Hz) d : per-channel deviation N c : number of circuits in the multiplexed message load K : unity X = 2 to +2.6 for 12 N c < 60 and for Y = 2 X = 5.6 to 1.0 for 60 N c < 240 and for Y = 4 X = 19.6 to 15.0 for N c 240 and for Y = 10. The term enclosed in brackets is the peak deviation, D. The numerator (X + Y log N c ) of the fraction represents the average power of the composite signal delivered to the modulator input of the transmitter. The basis for this formula is contained in 1, Annex 1. In particular, Annex 1 shows how to determine the appropriate value for the variable X in the formula.

2 2 Rec. ITU-R SM Unmodulated pulse emissions The necessary bandwidth for unmodulated pulses with either a trapezoidal or rectangular pulse shape is given in Table 1. TABLE 1 Unmodulated pulse emissions Necessary bandwidth Description of emission Formula Sample calculation Designation of emission Unmodulated pulse emission Case 1: 4M00P0N B n = 1.79 t t r Hz t = s t r = s at points db below the peak envelope value of the spectrum of a trapezoidal pulse Bandwidth: Hz Case 2: 3M36P0N B n = t r + t 1 t f t = s t r = s t f = s at points db below the peak envelope value of the spectrum of an unsymmetrical trapezoidal pulse Bandwidth: Hz Case 3: 4M50P0N B n = 6.36 t Hz t = s B n = Hz at points db below the peak envelope value of the spectrum of a rectangular (ideal) pulse Annex 2 contains the method used for determining the necessary bandwidth of the unmodulated pulses. 3 Digital modulation The necessary bandwidth and example K values for several digital modulations are given in Table 2. Annex 3 contains the methods used for determining the necessary bandwidths for digital modulation.

3 Rec. ITU-R SM TABLE 2 Digital modulation Modulation and conditions Necessary bandwidth formula Example K value Percentage fractional power containment bandwidth (1) 2-PSK (unfiltered) B n = 2 RK log 2 S PSK (filtered, BER = ) B n = 2 RK log 2 S 1.0 (2) (3) 100 MSK (unfiltered) D = 0.25 R B n = R log 2 S + 2 DK Gaussian filtered MSK (GMSK) 3 db premodulation Gaussian filter bandwidth = 0.25 R D = 0.25 R B n = R log 2 S + 2 DK Digital FM (Continuous phase FSK) rectangular pulses D = 0.35 R B n = R log 2 S + 2 DK m-qam Microwave digital S = 2 n (n 2) Roll-off = 0 to 1 50% splitted Tx/Rx optimally filtered (computed)(4), (5) B n = 2 RK log 2 S See Fig. 1 See Fig. 1 BER: FSK: MSK: PSK: QAM: binary error ratio. frequency shifting key. minimum shifting key. phase shift keying. quadrature amplitude modulation. (1) Recommendation ITU-R F.1191 foresees that for digitally modulated systems in the fixed service the necessary bandwidth should be defined for a percentage fractional power containment equal to 99%. (2) For this case E b /N 0 = 7.5 db. (3) For this case E b /N 0 = 9.3 db. (4) Practical filtering may give slight difference in the K value versus containment computed relationship. (5) 4- and 8- QAM formats coincide with filtered 4- and 8- PSK formats.

4 4 Rec. ITU-R SM FIGURE 1 K value versus roll-off for m-qam modulation formats Parameters: power containment factor K value Roll-off Containment power (%): FIGURE SM = 10 CM ANNEX 1 FDM-FM necessary bandwidth calculations 1 Multi-channel FDM-FM emissions Recommendation ITU-R SM.1138 Determination of necessary bandwidths including examples for their calculation and associated examples for the designation of emissions includes under its Annex 1, Table III-B, the necessary factors for use in computing peak frequency deviation of multi-channel FDM-FM emissions. Peak frequency deviation is a critical factor in Carson s rule, B n = 2M + 2DK, used to calculate necessary bandwidth for frequency spectrum allocation purposes. Table III-B is reproduced as Table 3. The factors 2.6, 1 and 15 in the Table are the average power (dbm0 (see Note 1)) values that were found in a standard, commercial telephone, public switched network circuit. The values were, in fact, based upon measurements of talker volume conducted in 1960 that were previously agreed to in the ex-ccir and eventually at the World Administrative Radio Conference (Geneva, 1979) as applicable, for the purposes of necessary bandwidth calculation. NOTE 1 dbm0 refers to the power (db) relative to 1 mw referred to a point of zero relative transmission level.

5 Rec. ITU-R SM TABLE 3 Multi-channel FDM-FM emissions MULTIPLYING FACTORS FOR USE IN COMPUTING D, PEAK FREQUENCY DEVIATION, IN FDM-FM MULTI-CHANNEL EMISSIONS For FDM-FM systems the necessary bandwidth is: B n = 2 M + 2 DK The value of D, or peak frequency deviation, in these formulae for B n is calculated by multiplying the r.m.s. value of per-channel deviation by the appropriate Multiplying factor shown below. In the case where a continuity pilot of frequency f p exists above the maximum modulation frequency M, the general formula becomes: B n = 2 f p + 2 DK In the case where the modulation index of the main carrier produced by the pilot is less than 0.25, and the r.m.s. frequency deviation of the main carrier produced by the pilot is less than or equal to 70% of the r.m.s. value of per-channel deviation, the general formula becomes either whichever is greater. B n = 2 f p or B n = 2 M + 2 DK Multiplying factor (1) Number of telephone channels, N c (Peak factor) antilog Value in db above modulation reference level Value in db specified by the equipment manufacturer or station licensee, subject 3 < N c < antilog to administration approval 12 N c < antilog log N c 60 N c < antilog log N c N c antilog log N c (1) In the above chart, the multipliers 3.76 and 4.47 correspond to peak factors of 11.5 db and 13.0 db, respectively. In 1975 and 1976, further measurements of speech signal power were made in the same circuits and networks, using similar methodology, so as to allow direct comparison of results to the earlier work. The later measurements have been under study, both in industry and government, since that time, finally leading to modifications to typical domestic applications in the public switched telephone networks.

6 6 Rec. ITU-R SM To summarize the study, which included the reasons why differences from the earlier study occurred, it was found that substantial changes have aggregated over time to produce an average decrease in actual average talker power level of approximately 4.6 db. The changes have tended to increase the uniformity of service in the switched public networks from the viewpoint of speech volumes. These include a decrease in the proportion of toll grade battery systems, loss plan improvements, upgraded telephone sets, and an increase in direct trunking. Direct distance dialling has become normal practice with new loop and trunk design techniques. Furthermore, advanced digital data acquisition technology facilitated the measurement in of speech signal power with greater precision than was possible in 1960 when volume unit meters were used for that survey. Standard deviation of all measurement between the 1960 and surveys, was reduced by an average of about one third, from 7 to 4.6 volume units. A multi-stage statistical sampling scheme (near-end and far-end) of talker power measurements on more than calls, originating from approximately loops, was used. Average conversational signal power (averaged over the entire observation interval), and a new measure of speech level known as equivalent peak level (EPL) were the measures used to characterize talker signals. Loop d.c. current, class of service, switch type, and call destination were recorded as part of the study. NOTE 2 Volume unit is one way of measuring speech level with a power-level indicator calibrated in terms of db for a steady sine-wave voltage, with 1 mw in 600 Ω taken as a reference. The response of the indicator is not frequency weighted. Volume unit readings are averages achieved by a particular set of meter ballistic (mechanical) characteristics. The later study indicated that with (1975 and 1976) public switched network systems, there was little dependence of speech signal power on call destination or originating class of service (residence, business, local, toll, and combined). Small differences are explained for the most part by loop characteristics. There is little, if any, variation in speech signal power attributed by study conclusions to psychological factors such as call distance or perception of received volume. The average values measured indicate that the switched telecommunication network in was essentially transparent to customers in the sense that talker signal power was not found sensitive to call distance, local or toll call classification, or other factors that are outside local loop circumstances. In summary, it is believed that the later measurements of telephone talker level indicate the same, normal speech levels of the population when not using the telephone. It is concluded that little or no further change in representative talker level is expected in the future on the switched public telephone network where the measurements were taken. Consequently, this fact should be taken into account in an examination of the necessary bandwidth formulae for FDM-FM systems when telephone speech comprises a significant part of the total FDM-FM circuit. In the B n formula as shown in Table 3, the three factors 2.6, 1 and 15 are components of the multiplying factor used to determine D, or peak frequency deviation. Practical consequences of a reduction in talker power on the telephone circuit feeding an FDM-FM radio circuit is less peak deviation. There are three independent parameters that determine the peak deviation of the FM signal, all of which are constrained by the design of the system so as to limit the maximum value of each so that D does not exceed a predetermined value (in FDM-FM systems). Those variables are: r.m.s. value of per-channel deviation, average power in a message channel, number of total channels in the multiplexed message load. If the average power of speech signals can be reduced, as indicated in the study, a trade-off would be possible with the two other parameters. This could be achieved by: increasing the number of channels in the same frequency bandwidth, increasing spectrum efficiency by reducing the bandwidth for the same number of channels, a combination of the two methods. For example, in systems using 4 khz voice grade message channels, it would be possible to vary the ratio of data to voice traffic. A user could choose to remain within a specified RF bandwidth and then select an average message channel power level which could be used to make a trade-off between an increase in the number of message channels against their individual frequency deviation. For a given ratio of data traffic to voice traffic, a user might consider that a too large increase in the number of 4 khz message channels would reduce the per channel deviation to the point where signal quality would become degraded. However, an average message channel power level could be chosen which keeps

7 Rec. ITU-R SM within the specified RF bandwidth and which can permit some increase in the number of message channels while still allowing a proportional increase in the individual channel frequency deviations. By this method, instead of using all the available spectrum to maximize the number of message channels, it would be possible to obtain an increase in the value of the per-channel deviation which would provide an improvement of the signal-to-noise ratio and a probable reduction of BER of the data traffic. A microwave system can therefore be designed for which the parameter for the average message power level is chosen between the level used in the current equations and one 4.6 db lower. There are valid reasons for changing (i.e. increasing) the other available parameters in the system when the average message power level (talker power) is decreased. However, a decision to carry out the change is appropriate for the carriers (or governments) concerned to make, taking account of the advantages and disadvantages of the possible trade-offs. The important point here is recognition of the changed average talker power level. To take account of the decrease in average talker power by 4.6 db in speech telephone circuits, typically the 2.6, 1 and 15 values are replaced by the variable X which can then range between limits comprised of the present values, and corresponding values that are 4.6 db lower, depending upon the total number of circuits in the FDM-FM system, and the composition of the system itself. Thus, the necessary bandwidth, B n is: B n = 2M + 2 X + Y log N c d 3.76 antilog K where: M : maximum modulating frequency (Hz) d : per-channel deviation N c : number of circuits in the multiplexed message load K : unity X = 2 to +2.6 for 12 N c < 60 and for Y = 2 X = 5.6 to 1.0 for 60 N c < 240 and for Y = 4 X = 19.6 to 15.0 for N c 240 and for Y = 10. The term enclosed in brackets is the peak deviation, D. The numerator (X + Y log N c ) of the fraction represents the average power of the composite signal delivered to the modulator input of the transmitter. The value of 3.76, as noted in Table 3, corresponds to a peak factor of 11.5 db. To correctly select a value for X in the formula for B n, it is helpful to summarize applicable conditions under which it is used in an FDM-FM system. Final choice within the 4.6 db range may be empirical. It is clear from the study details compiled that average talker power levels of 2, 5.6 and 19.6 dbm0 should replace the corresponding numbers for N c 12 in the B n formulation with an FDM-FM system that is used to provide trunk connections for modern commercial public telephone circuits where most of the FDM-FM channels are used for speech. In smaller, private, or older FDM-FM systems, particularly those with N c < 12 or those containing data (non voice) in most of the channels, the original values, as shown in Table 3, nominally apply. Typical multi-channel data circuits operate at power levels from 13 to 15 dbm0. Therefore, the composite loading limit will be determined by using the value X = 13 to 15 for systems with a large percentage of data circuits for N 240. Individual channel signalling, as opposed to common channel signalling, is an indication that the 15 dbm0 level is applicable (systems with N c 240). The choice over the range 4.6 db of signal power level is, as stated above, largely one of experience. The RF band itself is unrelated to choice of talker power parameters. It has been noted that, as an example of practical application of the newer parameters, as many as telephone channels could be operated in the same terrestrial fixed point-to-point microwave radio-frequency bandwidth now designated for only circuits, a significant development in improved spectrum efficiency.

8 8 Rec. ITU-R SM ANNEX 2 Unmodulated pulse necessary bandwidth calculations The necessary bandwidth for the common cases of unmodulated pulses with either a trapezoidal or rectangular pulse shape is specified. A value of db below the peak of the theoretical envelope of the pulse spectrum is the criteria used to establish the necessary bandwidth for unmodulated pulses. The values for the envelope of the pulse spectrum of the unmodulated pulses were determined using simple calculation techniques. Table 1 lists the calculated necessary bandwidths for unmodulated pulses. In Case 1 (trapezoidal pulse) the pulse width, t, is the time between 50% amplitude points and t r (rise time) is the time between 10% and 90% amplitude points. The fall time, t f, is equal to the rise time t r. In Case 2 the rise time t r does not necessarily equal the fall time t f. The fall time is the time between the 90% and 10% amplitude points. In Case 3 (rectangular pulse), t is the pulse width. ANNEX 3 Digital modulation necessary bandwidth calculations The formulae for the necessary bandwidths of digital data modulations (Recommendation ITU-R SM.1138) include a factor K which accounts for trade-offs which are made in designing a system. Trade-off decisions usually involve system power, bandwidth, and performance (BER). For example, by utilizing higher levels of modulation, digital line-of-sight systems trade power for bandwidth. The higher level digital modulations, such as 16-QAM, 64-QAM and 256-QAM, for a given amount of spectra can transfer more bits/s than the lower levels of modulation but require more power (i.e. higher carrier-to-noise). Conversely, in satellite systems where on-board power is limited, spectrum is often traded for power and the lower level modulations are utilized. Digital signals often require significant filtering to achieve adjacent channel protection requirements. The filtering of the digital signals may take place as premodulation filtering of the baseband transmitter signal or at one or more other points within the transmitter or receiver. The compensation for the addition of this filtering is to increase the system C/N. The numerical values of the K factor depend upon the amount and shape of the filter selectivity characteristic. Filter characteristics are designed on a case-by-case basis. Thus, it is not practical or advantageous to include in the necessary bandwidth formulae single numerical values for K. Table 2 shows some example values of K for several digital modulations. The K values are either for computed or measured spectra. Table 2 includes the necessary bandwidth formulae used, the K value for other parameters such as power, E b /N 0, and BER. The formula for the necessary bandwidth (B n ) of digital FM is from Recommendation ITU-R SM R is the bit rate, S is the number of signalling states, and D is the frequency deviation. The formula for the necessary bandwidth of PSK modulation is based on the principle that this bandwidth should be some multiple of the symbol rate. The MSK, GMSK and digital FM modulations are examples of a class of modulations which are of constant amplitude and continuous phase. These continuous phase signals can be viewed as using simultaneously phase and frequency modulation. Either of the necessary bandwidth formulae (frequency or phase) might be used for this class of modulation. Since the signals are typified by a modulation index (2D/R), the FSK formula for necessary bandwidth was used for these signals in Table 2. Also, for QAM modulation, the PSK necessary bandwidth formula is used. The rationale is that the m-qam signals are made up of a statistical sum of m/2 2-PSK signals with different signal amplitudes, bit-rate of (R/log 2 m) and with the same filtering.

Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)

Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques

More information

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods

More information

Interference to radio astronomy from unwanted (spurious and out-of-band) emissions

Interference to radio astronomy from unwanted (spurious and out-of-band) emissions Rec. ITU-R RA.1237 1 RECOMMENDATION ITU-R RA.1237 PROTECTION OF THE RADIO ASTRONOMY SERVICE FROM UNWANTED EMISSIONS RESULTING FROM APPLICATIONS OF WIDEBAND DIGITAL MODULATION (Question ITU-R 145/7) Rec.

More information

RECOMMENDATION ITU-R S.524-5. (Questions ITU-R 48/4 and ITU-R 70/4)

RECOMMENDATION ITU-R S.524-5. (Questions ITU-R 48/4 and ITU-R 70/4) Rec. ITU-R S.524-5 1 RECOMMENDATION ITU-R S.524-5 MAXIMUM PERMISSIBLE LEVELS OF OFF-AXIS e.i.r.p. DENSITY FROM EARTH STATIONS IN THE FIXED-SATELLITE SERVICE TRANSMITTING IN THE 6 AND 14 GHz FREQUENCY BANDS

More information

Principles of Digital Modulation. Dr Mike Fitton, Telecommunications Research Lab Toshiba Research Europe Limited

Principles of Digital Modulation. Dr Mike Fitton, Telecommunications Research Lab Toshiba Research Europe Limited Principles of Digital Modulation Dr Mike Fitton, mike.fitton@toshiba-trel.com Telecommunications Research Lab Toshiba Research Europe Limited 1 Principles of Digital Modulation: Outline of Lectures Introduction

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

More information

INTERNATIONAL TELECOMMUNICATION UNION ).4%2.!4)/.!,!.!,/'5% #!22)%2 3934%-3 '%.%2!, #(!2!#4%2)34)#3 #/--/. 4/!,,!.!,/'5% #!22)%242!.3-)33)/.

INTERNATIONAL TELECOMMUNICATION UNION ).4%2.!4)/.!,!.!,/'5% #!22)%2 3934%-3 '%.%2!, #(!2!#4%2)34)#3 #/--/. 4/!,,!.!,/'5% #!22)%242!.3-)33)/. INTERNATIONAL TELECOMMUNICATION UNION )454 ' TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU ).4%2.!4)/.!,!.!,/'5% #!22)%2 3934%-3 '%.%2!, #(!2!#4%2)34)#3 #/--/. 4/!,,!.!,/'5% #!22)%242!.3-)33)/. 3934%-3!335-04)/.3

More information

RECOMMENDATION ITU-R SM.1792. Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes

RECOMMENDATION ITU-R SM.1792. Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes Rec. ITU-R SM.1792 1 RECOMMENDATION ITU-R SM.1792 Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes (2007) Scope This Recommendation provides guidance to measurement

More information

Radio-frequency channel arrangements for fixed wireless system operating in the 10.0-10.68 GHz band

Radio-frequency channel arrangements for fixed wireless system operating in the 10.0-10.68 GHz band Recommendation ITU-R F.747-1 (03/2012) Radio-frequency channel arrangements for fixed wireless system operating in the 10.0-10.68 GHz band F Series Fixed service ii Rec. ITU-R F.747-1 Foreword The role

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 2: RF Basics and Signal Encoding September 22, 2005 2005 Matt Welsh Harvard University 1 Today's Lecture Basics of wireless communications

More information

INTERNATIONAL TELECOMMUNICATION UNION. SERIES O: SPECIFICATIONS FOR MEASURING EQUIPMENT Equipment for the measurement of analogue parameters

INTERNATIONAL TELECOMMUNICATION UNION. SERIES O: SPECIFICATIONS FOR MEASURING EQUIPMENT Equipment for the measurement of analogue parameters INTERNATIONAL TELECOMMUNICATION UNION CCITT O.41 THE INTERNATIONAL TELEGRAPH AND TELEPHONE CONSULTATIVE COMMITTEE (11/1988) SERIES O: SPECIFICATIONS FOR MEASURING EQUIPMENT Equipment for the measurement

More information

What s The Difference Between Bit Rate And Baud Rate?

What s The Difference Between Bit Rate And Baud Rate? What s The Difference Between Bit Rate And Baud Rate? Apr. 27, 2012 Lou Frenzel Electronic Design Serial-data speed is usually stated in terms of bit rate. However, another oftquoted measure of speed is

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Modulation methods. S-72. 333 Physical layer methods in wireless communication systems. Sylvain Ranvier / Radio Laboratory / TKK 16 November 2004

Modulation methods. S-72. 333 Physical layer methods in wireless communication systems. Sylvain Ranvier / Radio Laboratory / TKK 16 November 2004 Modulation methods S-72. 333 Physical layer methods in wireless communication systems Sylvain Ranvier / Radio Laboratory / TKK 16 November 2004 sylvain.ranvier@hut.fi SMARAD / Radio Laboratory 1 Line out

More information

Analog vs. Digital Transmission

Analog vs. Digital Transmission Analog vs. Digital Transmission Compare at two levels: 1. Data continuous (audio) vs. discrete (text) 2. Signaling continuously varying electromagnetic wave vs. sequence of voltage pulses. Also Transmission

More information

PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES RECOMMENDATION ITU-R M.1188

PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES RECOMMENDATION ITU-R M.1188 Rec. ITU-R M.1188 1 PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES Rec. ITU-R M.1188 RECOMMENDATION ITU-R M.1188 IMPACT OF PROPAGATION ON THE DESIGN OF NON-GSO MOBILE-SATELLITE

More information

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source

More information

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency

More information

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,

More information

HD Radio FM Transmission System Specifications

HD Radio FM Transmission System Specifications HD Radio FM Transmission System Specifications Rev. E January 30, 2008 Doc. No. SY_SSS_1026s TRADEMARKS The ibiquity Digital logo and ibiquity Digital are registered trademarks of ibiquity Digital Corporation.

More information

RECOMMENDATION ITU-R F.1113. (Question ITU-R 157/9) b) that systems using this mode of propagation are already in service for burst data transmission,

RECOMMENDATION ITU-R F.1113. (Question ITU-R 157/9) b) that systems using this mode of propagation are already in service for burst data transmission, Rec. ITU-R F.1113 1 RECOMMENDATION ITU-R F.1113 RADIO SYSTEMS EMPLOYING METEOR-BURST PROPAGATION (Question ITU-R 157/9) (1994) Rec. ITU-R F.1113 The ITU Radiocommunication Assembly, considering a) that

More information

RECOMMENDATION ITU-R M.1082-1*, **

RECOMMENDATION ITU-R M.1082-1*, ** Rec. ITU-R M.1082-1 1 RECOMMENDATION ITU-R M.1082-1*, ** INTERNATIONAL MARITIME MF/HF RADIOTELEPHONE SYSTEM WITH AUTOMATIC FACILITIES BASED ON DIGITAL SELECTIVE CALLING SIGNALLING FORMAT Rec. ITU-R M.1082-1

More information

RECOMMENDATION ITU-R M.1453-1 * Transport information and control systems Dedicated short range communications at 5.8 GHz

RECOMMENDATION ITU-R M.1453-1 * Transport information and control systems Dedicated short range communications at 5.8 GHz Rec. ITU-R M.1453-1 1 RECOMMENDATION ITU-R M.1453-1 * Transport and control systems Dedicated short range communications at 5.8 GHz (Question ITU-R 205/8) (2000-2002) The ITU Radiocommunication Assembly,

More information

Frequency tolerance of transmitters

Frequency tolerance of transmitters Recommendation ITU-R SM.1045-1 (07/1997) of transmitters SM Series Spectrum management ii Rec. ITU-R SM.1045-1 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient

More information

Conditioning and Correction of Arbitrary Waveforms Part 2: Other Impairments

Conditioning and Correction of Arbitrary Waveforms Part 2: Other Impairments From September 2005 High Frequency Electronics Copyright 2005 Summit Technical Media Conditioning and Correction of Arbitrary Waveforms Part 2: Other Impairments By Mike Griffin and John Hansen Agilent

More information

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically. Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

More information

Multiplexing on Wireline Telephone Systems

Multiplexing on Wireline Telephone Systems Multiplexing on Wireline Telephone Systems Isha Batra, Divya Raheja Information Technology, Dronacharya College of Engineering Farrukh Nagar, Gurgaon, India ABSTRACT- This Paper Outlines a research multiplexing

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

Public Switched Telephone System

Public Switched Telephone System Public Switched Telephone System Structure of the Telephone System The Local Loop: Modems, ADSL Structure of the Telephone System (a) Fully-interconnected network. (b) Centralized switch. (c) Two-level

More information

The Phase Modulator In NBFM Voice Communication Systems

The Phase Modulator In NBFM Voice Communication Systems The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called

More information

Agilent Digital Modulation in Communications Systems An Introduction. Application Note 1298

Agilent Digital Modulation in Communications Systems An Introduction. Application Note 1298 Agilent Digital Modulation in Communications Systems An Introduction Application Note 1298 Introduction This application note introduces the concepts of digital modulation used in many communications systems

More information

COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES IN BANDS IV AND V

COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES IN BANDS IV AND V European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES

More information

TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION

TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION (Please read appropriate parts of Section 2.5.2 in book) 1. VOICE DIGITIZATION IN THE PSTN The frequencies contained in telephone-quality

More information

Mobile communications: IS-95 and GSM

Mobile communications: IS-95 and GSM 1 Mobile communications: IS-95 and GSM 1. Introduction Two second generation cellular systems are currently being deployed - the Global System for Mobile Communications (GSM) and the Code Division Multiple

More information

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

More information

HD Radio FM Transmission System Specifications Rev. F August 24, 2011

HD Radio FM Transmission System Specifications Rev. F August 24, 2011 HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

More information

ANALOG VS DIGITAL. Copyright 1998, Professor John T.Gorgone

ANALOG VS DIGITAL. Copyright 1998, Professor John T.Gorgone ANALOG VS DIGITAL 1 BASICS OF DATA COMMUNICATIONS Data Transport System Analog Data Digital Data The transport of data through a telecommunications network can be classified into two overall transport

More information

Radio-frequency channel arrangements for fixed wireless systems operating in the GHz frequency band

Radio-frequency channel arrangements for fixed wireless systems operating in the GHz frequency band Recommendation ITU-R F.595-10 (03/2012) Radio-frequency channel arrangements for fixed wireless systems operating in the 17.7-19.7 Gz frequency band F Series Fixed service ii Rec. ITU-R F.595-10 Foreword

More information

Application Note Noise Frequently Asked Questions

Application Note Noise Frequently Asked Questions : What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

More information

COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND OB (OUTSIDE BROADCAST) AUDIO LINKS IN BANDS IV AND V

COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND OB (OUTSIDE BROADCAST) AUDIO LINKS IN BANDS IV AND V European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND OB (OUTSIDE BROADCAST)

More information

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes

More information

Chapter 2 Mobile Communication

Chapter 2 Mobile Communication Page 77 Chapter 2 Mobile Communication 2.1 Characteristics of Mobile Computing 2.2 Wireless Communication Basics 2.3 Wireless Communication Technologies PANs (Bluetooth, ZigBee) Wireless LAN (IEEE 802.11)

More information

AN437. Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS. 1. Introduction. 2. Relevant Measurements to comply with FCC

AN437. Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS. 1. Introduction. 2. Relevant Measurements to comply with FCC Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS 1. Introduction This document provides measurement results and FCC compliance results for the Si4432B when operated from 902 928 MHz. The measurement

More information

Chap#5 (Data communication)

Chap#5 (Data communication) Chap#5 (Data communication) Q#1: Define analog transmission. Normally, analog transmission refers to the transmission of analog signals using a band-pass channel. Baseband digital or analog signals are

More information

Outlines. LECTURE 3: Wireless Transmission Technologies. Wireless Transmission on Unguided Media

Outlines. LECTURE 3: Wireless Transmission Technologies. Wireless Transmission on Unguided Media LECTURE 3: Wireless Transmission Technologies CIS 472 Wireless Communications and Networks Winter 2016 Instructor: Dr. Song Xing Outlines Wireless Data Transmission Modulation Spread Spectrum Department

More information

TCOM 370 NOTES 99-5B MODEMS FOR THE PSTN AND INTERFACE STANDARDS

TCOM 370 NOTES 99-5B MODEMS FOR THE PSTN AND INTERFACE STANDARDS TCOM 370 NOTES 99-5B MODEMS FOR THE PSTN AND INTERFACE STANDARDS Some Terminology: DTE: Data Terminal Equipment Ultimate source or destination of data over a path through a network, e.g. PC connected through

More information

Whitepaper 4 Level FSK/FDMA 6.25 khz Technology

Whitepaper 4 Level FSK/FDMA 6.25 khz Technology Whitepaper 4 Level FSK/FDMA 6.25 khz Technology DISCLAIMER This document has been prepared by the dpmr MoU Association as a reference document about dpmr. The information in this document has been carefully

More information

Planning standards for terrestrial FM sound broadcasting at VHF

Planning standards for terrestrial FM sound broadcasting at VHF Recommendation ITU-R BS.412-9 (12/1998) Planning standards for terrestrial FM sound broadcasting at VHF BS Series Broadcasting service (sound) ii Rec. ITU-R BS.412-9 Foreword The role of the Radiocommunication

More information

CRP718 RF and Microwave Measurements Laboratory

CRP718 RF and Microwave Measurements Laboratory CRP718 RF and Microwave Measurements Laboratory Experiment- MW2 Handout. Updated Jan 13, 2011 SPECTRUM ANALYZER BASED MEASUREMENTS (groups of 2 may omit part 2.1, but are advised to study the procedures

More information

MATRIX TECHNICAL NOTES

MATRIX TECHNICAL NOTES 200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR

More information

Nigerian Communications Commission

Nigerian Communications Commission Nigerian Communications Commission REGULATORY GUIDELINES FOR THE USE OF 2.4 GHz ISM BAND FOR COMMERCIAL TELECOM SERVICES Introduction The use of broadband for last mile access or for final distribution

More information

RECOMMENDATION ITU-R BO.786 *

RECOMMENDATION ITU-R BO.786 * Rec. ITU-R BO.786 RECOMMENDATION ITU-R BO.786 * MUSE ** system for HDTV broadcasting-satellite services (Question ITU-R /) (992) The ITU Radiocommunication Assembly, considering a) that the MUSE system

More information

ETSI EN 302 245-1 V1.1.1 (2005-01)

ETSI EN 302 245-1 V1.1.1 (2005-01) EN 302 245-1 V1.1.1 (2005-01) European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Transmitting equipment for the Digital Radio Mondiale (DRM) broadcasting

More information

QAM and QPSK: Aim: Introduction:

QAM and QPSK: Aim: Introduction: QAM and QPSK: Aim: Review of Quadrature Amplitude Modulator (QAM) in digital communication system, generation of Quadrature Phase Shift Keyed (QPSK or 4-PSK) signal and demodulation. Introduction: The

More information

for the Operation of Digital Cable Television Systems

for the Operation of Digital Cable Television Systems Technical Conditions Technical Conditions for the Operation of Digital Cable Television Systems Document No: ComReg 98/66R Date: December, 2002 An Coimisiún um Rialáil Cumarsáide Commission for Communications

More information

Radio and Television (E522)

Radio and Television (E522) Benha Faculty of Engineering Electrical Engineering Department 5 th Year Telecommunication Final Exam: 26 May 2012 Examiner: Dr. Hatem ZAKARIA Time allowed: 3 Hours Radio and Television (E522) Answer All

More information

Lezione 6 Communications Blockset

Lezione 6 Communications Blockset Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive

More information

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error

More information

Signal-to-Noise, Carrier-to-Noise, EbNo on Signal Quality Ratios. by Wolfgang Damm, WTG

Signal-to-Noise, Carrier-to-Noise, EbNo on Signal Quality Ratios. by Wolfgang Damm, WTG Signal-to-Noise, Carrier-to-Noise, EbNo on Signal Quality Ratios by Wolfgang Damm, WTG Agenda Signal Measurement Environment Ratios: S/N, C/N, C/No, C/I, EbNo Shannon Limit Error Correction BER & Coding

More information

INTERNATIONAL TELECOMMUNICATION UNION $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+

INTERNATIONAL TELECOMMUNICATION UNION $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+ INTERNATIONAL TELECOMMUNICATION UNION )454 6 TER TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU $!4! #/--5.)#!4)/. /6%2 4(% 4%,%(/.%.%47/2+ ")43 %2 3%#/.$ -/$%- 34!.$!2$):%$ &/2 53% ). 4(% '%.%2!, 37)4#(%$

More information

S Transmission Methods in Telecommunication Systems (4 cr)

S Transmission Methods in Telecommunication Systems (4 cr) S-72.245 Transmission Methods in Telecommunication Systems (4 cr) Sampling and Pulse Coded Modulation Sampling and Pulse Coded Modulation Pulse amplitude modulation Sampling Ideal sampling by impulses

More information

AM/FM/ϕM Measurement Demodulator FS-K7

AM/FM/ϕM Measurement Demodulator FS-K7 Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FS-K7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters

More information

Radio-frequency channel arrangements for high-capacity fixed wireless systems operating in the lower 6 GHz (5 925 to 6 425 MHz) band

Radio-frequency channel arrangements for high-capacity fixed wireless systems operating in the lower 6 GHz (5 925 to 6 425 MHz) band Recommendation ITU-R F.383-9 (02/2013) Radio-frequency channel arrangements for high-capacity fixed wireless systems operating in the lower 6 GHz (5 925 to 6 425 MHz) band F Series Fixed service ii Rec.

More information

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement

More information

A Primer on Digital Modulation

A Primer on Digital Modulation A Primer on Digital Modulation By Bertrand Zauhar, VE2ZAZ http://ve2zaz.net August 2013 In this Presentation Modulation Fundamentals Real Life Communications Design Constraints Digital Modulation (DM)

More information

3GPP Wireless Standard

3GPP Wireless Standard 3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation

More information

ACRS 2.0 User Manual 1

ACRS 2.0 User Manual 1 ACRS 2.0 User Manual 1 FCC Regulatory Information This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference,

More information

Communication Systems

Communication Systems AM/FM Receiver Communication Systems We have studied the basic blocks o any communication system Modulator Demodulator Modulation Schemes: Linear Modulation (DSB, AM, SSB, VSB) Angle Modulation (FM, PM)

More information

Errata Introduction to Wireless Systems P. Mohana Shankar. Page numbers are shown in blue Corrections are shown in red.

Errata Introduction to Wireless Systems P. Mohana Shankar. Page numbers are shown in blue Corrections are shown in red. Errata Introduction to Wireless Systems P. Mohana Shankar Page numbers are shown in blue Corrections are shown in red February 25 Page 11 below Figure 2.4 The power detected by a typical receiver is shown

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range

More information

INTERNATIONAL TELECOMMUNICATION UNION

INTERNATIONAL TELECOMMUNICATION UNION INTERNATIONAL TELECOMMUNICATION UNION )454 6 TER TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+ ")43 0%2 3%#/.$ $50,%8 -/$%- 53).' 4(% %#(/ #!.#%,,!4)/. 4%#(.)15%

More information

Solution. (Chapters 5-6-7-8) Dr. Hasan Qunoo. The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department

Solution. (Chapters 5-6-7-8) Dr. Hasan Qunoo. The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department The Islamic University of Gaza Faculty of Engineering Computer Engineering Department Data Communications ECOM 4314 Solution (Chapters 5-6-7-8) Dr. Hasan Qunoo Eng. Wafaa Audah Eng. Waleed Mousa 1. A cable

More information

9 Measurements on Transmission Lines

9 Measurements on Transmission Lines Measurements on Transmission Lines Power and Attenuation Measurements Although a variety of instruments measure power, the most accurate instrument is a power meter and a power sensor. The sensor is an

More information

)454 6 ")43 0%2 3%#/.$ $50,%8 -/$%- 34!.$!2$):%$ &/2 53% ). 4(% '%.%2!, 37)4#(%$ 4%,%0(/.%.%47/2+ $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.

)454 6 )43 0%2 3%#/.$ $50,%8 -/$%- 34!.$!2$):%$ &/2 53% ). 4(% '%.%2!, 37)4#(%$ 4%,%0(/.%.%47/2+ $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%. INTERNATIONAL TELECOMMUNICATION UNION )454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU $!4! #/5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+ ")43 0%2 3%#/.$ $50,%8 /$% 34!.$!2$):%$ &/2 53% ). 4(% '%.%2!, 37)4#(%$

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

DVB-T. The echo performance of. receivers. Theory of echo tolerance. Ranulph Poole BBC Research and Development

DVB-T. The echo performance of. receivers. Theory of echo tolerance. Ranulph Poole BBC Research and Development The echo performance of DVB-T Ranulph Poole BBC Research and Development receivers This article introduces a model to describe the way in which a single echo gives rise to an equivalent noise floor (ENF)

More information

RECOMMENDATION ITU-R RA (Question ITU-R 145/7)

RECOMMENDATION ITU-R RA (Question ITU-R 145/7) Rec. ITU-R RA.769-1 1 RECOMMENDATION ITU-R RA.769-1 PROTECTION CRITERIA USED FOR RADIOASTRONOMICAL MEASUREMENTS (Question ITU-R 145/7) (1992-1995) Rec. ITU-R RA.769-1 The ITU Radiocommunication Assembly,

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

What Does Communication (or Telecommunication) Mean?

What Does Communication (or Telecommunication) Mean? What Does Communication (or Telecommunication) Mean? The term communication (or telecommunication) means the transfer of some form of information from one place (known as the source of information) to

More information

ADJACENT AND CO-CHANNEL INTERFERENCE DISTURBANCES FROM A DIGITAL TERRESTRIAL TELEVISION SIGNAL(COFDM-8K System) ON ANALOGUE PAL SYSTEMS

ADJACENT AND CO-CHANNEL INTERFERENCE DISTURBANCES FROM A DIGITAL TERRESTRIAL TELEVISION SIGNAL(COFDM-8K System) ON ANALOGUE PAL SYSTEMS ADJACENT AND CO-CHANNEL INTERFERENCE DISTURBANCES FROM A DIGITAL TERRESTRIAL TELEVISION SIGNAL(COFDM-8K System) ON ANALOGUE PAL SYSTEMS A. Arrinda (jtparsaa@bi.ehu.es), M. Mª Vélez, P. Angueira, D. de

More information

3GPP TS V8.3.0 ( )

3GPP TS V8.3.0 ( ) TS 51.026 V8.3.0 (2010-03) Technical Specification 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Base Station System (BSS) equipment specification; Part

More information

System Design in Wireless Communication. Ali Khawaja

System Design in Wireless Communication. Ali Khawaja System Design in Wireless Communication Ali Khawaja University of Texas at Dallas December 6, 1999 1 Abstract This paper deals with the micro and macro aspects of a wireless system design. With the growing

More information

Telecommunication systems. Telecommunication system

Telecommunication systems. Telecommunication system Telecommunication systems Telecommunication system The public-switched telephone network (PSTN) was originally analogue, but during the last 30 years it has been transformed into an almost fully digital

More information

Evolution from Voiceband to Broadband Internet Access

Evolution from Voiceband to Broadband Internet Access Evolution from Voiceband to Broadband Internet Access Murtaza Ali DSPS R&D Center Texas Instruments Abstract With the growth of Internet, demand for high bit rate Internet access is growing. Even though

More information

AN INTRODUCTION TO DIGITAL MODULATION

AN INTRODUCTION TO DIGITAL MODULATION AN INTRODUCTION TO DIGITAL MODULATION This article provides readers a simple overview of the various popular methods used in modulating a digital signal. The relative merits of each of these modulation

More information

EECC694 - Shaaban. Transmission Channel

EECC694 - Shaaban. Transmission Channel The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,

More information

Appendix D Digital Modulation and GMSK

Appendix D Digital Modulation and GMSK D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used

More information

Interpreting the Information Element C/I

Interpreting the Information Element C/I Prepared Date Rev Document no pproved File/reference 1(17) 2000-04-11 Interpreting the Information Element C/I This document primarily addresses users of TEMS Investigation. 2(17) 1 Introduction Why is

More information

DVB-T BER MEASUREMENTS IN THE PRESENCE OF ADJACENT CHANNEL AND CO-CHANNEL ANALOGUE TELEVISION INTERFERENCE

DVB-T BER MEASUREMENTS IN THE PRESENCE OF ADJACENT CHANNEL AND CO-CHANNEL ANALOGUE TELEVISION INTERFERENCE DVB-T MEASUREMENTS IN THE PRESENCE OF ADJACENT CHANNEL AND CO-CHANNEL ANALOGUE TELEVISION INTERFERENCE M. Mª Vélez (jtpveelm@bi.ehu.es), P. Angueira, D. de la Vega, A. Arrinda, J. L. Ordiales UNIVERSITY

More information

RECOMMENDATION ITU-R BS.644-1 *,** Audio quality parameters for the performance of a high-quality sound-programme transmission chain

RECOMMENDATION ITU-R BS.644-1 *,** Audio quality parameters for the performance of a high-quality sound-programme transmission chain Rec. ITU-R BS.644-1 1 RECOMMENDATION ITU-R BS.644-1 *,** Audio quality parameters for the performance of a high-quality sound-programme transmission chain (1986-1990) The ITU Radiocommunication Assembly,

More information

NXU RoIP Link to Eliminate Voice-Grade Leased Line

NXU RoIP Link to Eliminate Voice-Grade Leased Line NXU RoIP Link to Eliminate Voice-Grade Leased Line Purpose This Application Note will describe a method at which Network Extension Units (NXUs) can be utilized on an existing digital network to eliminate

More information

SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO ASTRONOMY IN THE 1.6 GHz BAND. Paris, May 1992

SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO ASTRONOMY IN THE 1.6 GHz BAND. Paris, May 1992 European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO

More information

&"#' ( "#' )*! #+ #,# 1" 1! 2"# ' 6! #* #!"#" +" )$# # # "#$#$ '2 2 ## #1##9 # # ##2 #( # 8##! #9# 9@8!( " " "32#$#$2#9 # "#!#1#$#$#9 '29# # #9$

&#' ( #' )*! #+ #,# 1 1! 2# ' 6! #* #!# + )$# # # #$#$ '2 2 ## #1##9 # # ##2 #( # 8##! #9# 9@8!(   32#$#$2#9 # #!#1#$#$#9 '29# # #9$ !"## $#!%!"# &"#' ( "#' )*! #+ #,# "##!$ -+./0 1" 1! 2"# # -&1!"#" (2345-&1 #$6.7 -&89$## ' 6! #* #!"#" +" 1##6$ "#+# #-& :1# # $ #$#;1)+#1#+

More information

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise Apéndice A. Lista de s ACI AM AMC AMPS ARQ AWGN BB BER BPSK BPF BW CCK CD CDMA CDPD COFDM CRL CSI CWTS Adjacent Channel Interference Amplitude Modulation Adaptive Modulation and Coding Advanced Mobile

More information

Signal Hound VSG25A User Manual. 2015, Signal Hound, Inc. 35707 NE 86th Ave La Center, WA 98629 USA Phone 360.263.5006 Fax 360.263.

Signal Hound VSG25A User Manual. 2015, Signal Hound, Inc. 35707 NE 86th Ave La Center, WA 98629 USA Phone 360.263.5006 Fax 360.263. VSG25A User Manual Signal Hound VSG25A User Manual 2015, Signal Hound, Inc. 35707 NE 86th Ave La Center, WA 98629 USA Phone 360.263.5006 Fax 360.263.5007 This information is being released into the public

More information

Multichannel stereophonic sound system with and without accompanying picture

Multichannel stereophonic sound system with and without accompanying picture Recommendation ITU-R BS.775-2 (07/2006) Multichannel stereophonic sound system with and without accompanying picture BS Series Broadcasting service (sound) ii Rec. ITU-R BS.775-2 Foreword The role of the

More information

Unwanted emissions in the spurious domain

Unwanted emissions in the spurious domain Recommendation ITU-R SM.329-10 (02/2003) Unwanted emissions in the spurious domain SM Series Spectrum management ii Rec. ITU-R SM.329-10 Foreword The role of the Radiocommunication Sector is to ensure

More information

TECHNICAL SPECIFICATION FOR CORDLESS TELEPHONE SYSTEMS

TECHNICAL SPECIFICATION FOR CORDLESS TELEPHONE SYSTEMS TECHNICAL SPECIFICATION FOR CORDLESS TELEPHONE SYSTEMS Suruhanjaya Komunikasi dan Multimedia Malaysia Off Pesiaran Multimedia, 63000 Cyberjaya, Selangor Darul Ehsan, Malaysia Copyright of SKMM, 2007 FOREWORD

More information

Implementing Digital Wireless Systems. And an FCC update

Implementing Digital Wireless Systems. And an FCC update Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz

More information