INTERPOLATION AND POLYNOMIAL APPROXIMATION

Size: px
Start display at page:

Download "INTERPOLATION AND POLYNOMIAL APPROXIMATION"

Transcription

1 ITERPOLATIO AD POLYOMIAL APPROXIMATIO Interpolation Methods Why would we be interested in interpolation methods? Interpolation method are the basis for other procedures that we will deal with: umerical differentiation umerical integration Solution of ODE (ordinary differential equations) and PDE (partial differential equations) Why would we be interested in interpolation methods? These methods demonstrate some important theory about polynomials and the accuracy of numerical methods. The interpolation of polynomials serve as an excellent introduction to some techniques for drawing smooth curves. Interpolation uses the data to approximate a function, which will fit all of the data points. All of the data is used to approximate the values of the function inside the bounds of the data. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). Interpolation: Problem Specification Input: A set S of data f( x, y 0 0 )( x 1, y 1 )( xn, y n)g( xi, y i) Output: A function () which interpolates the given set of data, i.e., ( x ) = y, for 0 in. i i ote. In general, the interpolating function () is OT unique. 1

2 LAGRAGE ITERPOLATIO Linear interpolation uses a line segment that passes two points ( x, y ) 1 1 ( x, y ) 0 0 The slope between ( x0, y0) and ( x1, y1 ) is y y m x x from the point slope formula y y m( x x ) 0 0 can be rearranged as x x y y0 y1 y0 x1 x0 0...( 1 ) When formula (1) is expanded, the result is a polynomial of degree 1. Evaluating Px ( ) at x and x 0 1 produces y and y 0 1 respectively. P( x ) y 0 0 P( x ) y 1 1.() Lagrange used slightly different method to find this polynomial as follows ( x x1) ( x x0) y P1 ( x) y0 y1 ( x x ) ( x x ) () Each term on the right hand side of () involves linear factor. Hence the sum is a polynomial of degree 1. The quotients in () are denoted by ( x x ) ( x x ) L x L x ( ) ( ) 1 0 1, 0( ), 1, 1( ) x0 x1 x1 x0 (4)

3 which are called the Lagrange coefficients polynomials based on the nodes x notation, () can be written in summation form ( ) 1 1 k 1, k 0 1, 0 1 1, 1 k0 P x y L y L y L..(5) and x 0 1. Using this The generalization of (5) is the construction of a polynomial P ( x ) of degree at most that passes through the 1 points ( x0, y0),( x1, y1 ),...,( x, y) and has the form P ( x) y L ( x) k, k k0..(6) where L, ( x) k j0 jk j0 jk x x x k j x j..(7) Using (6) and (7), find 1 st, nd, and rd Lagrange Interpolation polynomial. 1 st order Lagrange interpolation polynomial where ( ) 1 1 k 1, k 0 1, 0 1 1, 1 k0 P x y L y L y L ( x x ) ( x x ) L x L x ( ) ( ) 1 0 1, 0( ), 1, 1( ) x0 x1 x1 x0

4 nd order Lagrange interpolation polynomial where ( ) k, k 0, 0 1, 1, k0 P x y L y L y L y L ( x x )( x x ) ( x x )( x x ) ( x x )( x x L x L x L x ) ( )( ) ( )( ) ( )( ) , 0( ),, 1( ),, ( ) x0 x1 x0 x x1 x0 x1 x x x0 x x1 rd order Lagrange interpolation polynomial where ( ) k, k 0, 0 1, 1,, k0 P x y L y L y L y L y L ( x x )( x x )( x x ) ( x x )( x x )( x x ) L x L x ( )( )( ) ( )( )( ) 1 0, 0( ),, 1( ) x0 x1 x0 x x0 x x1 x0 x1 x x1 x ( x x )( x x )( x x ) ( x x )( x x )( x x ) L x L x ( )( )( ) ( )( )( ) , ( ),, ( ) x x0 x x1 x x x x0 x x1 x x ERROR TERMS AD ERROR BOUDS Theorem : Assume that 1 x a, b then, f C a, b and that x0, x1,..., x a, b are 1 nodes. If f ( x) P ( x) E ( x)..(1) where P ( x ) polynomial that can be approximate f( x ). f ( x) P ( x) y L ( x) () k, k k0 4

5 The error term E ( x ) has the form x x x x... x x 1! 0 1 ( 1) E ( x) f ( c)...( ) for some value of c c( x) that lies in the interval a, b x x0 x x1... x x 1! ( 1 max ) () E ( x) M...( 4) M f c x xx 0 Theorem : (Error bounds for Lagrange Interpolation, equally space nodes) Assume that f( x ) defined on ab,, which contains equally space nodes xk x0 hk. Additionally, assume that f( x ) and the derivatives of f( x ) up to the +1, are continuous and x0, x1, x1, x and x, x bounded on the special subinterval ( 1 M f ) ( c) M1 for x0 x x 1,, respectively ; that is The error terms corresponding the cases =1,, have the following useful bounds on their magnitude. hm E1( x) valid for x 0, x1 8 hm E( x) valid for x 0, x 9 4 hm4 E( x) valid for x 0, x 4 5

6 Example : The function y sin x is tabulated as x 0 4 y Using lagrange interpolation polynomial, find its value at x Solution Given x0 0, x1, x, y0 0, y , y 1 4 Find P ( x), P ( ) and E( x) 6 6 estimate the error. k, k 0, 0 1, 1, 1, 1, 0 0, 0 k0 P ( x) y L y L y L y L 0 y L y L ( where, y 0 then y L 0 ) x0 x ( x x )( x x ) 0 x L, ( x) 16 1 x ( x x )( x x ) x0 x ( x x )( x x ) 0 1 x L, ( x) 4 8 x ( x x )( x x ) x 8 x P ( x) x 1 x x 1. 8x 0. 81x 0. 66x 4 P ( x) 0. 6x x P P hm E( x) where h 9 4 ( Find M, f ) ( x) M in 0, f ( x) cos x, f ( x) sin x, f ( x) cos x f ( x) cos x maximum value of f ( x) in 0, M cos 0 1 then hm 1 E ( x)

7 Exercise 1: Find Lagrange interpolation polynomial which agrees with the following data and obtain a bound x for the errors in estimating the function f( x) sin. x y Exercise : Consider y cos x over,. P1 ( x), P ( x) and P ( x) Determine the error bounds for the Lagrange polynomials Exercise : a) Find a second degree polynomial approximating the function f ( x) x ln x, and passing from the points 1, f ( 1),, f ( ) and ( 4, f ( 4 )). b) Approximate f ( 5. ) using the polynomial in part (a) c) use the error formula ( 1 ) () c f E( x) x x0 x x1 x x... x x 1! To estimate the error at x=.5 Exercise 4: Use lagrange interpolation to approximate y(0) for the following data. x 4 y 5 4 7

8 EWTO POLYOMIALS If the Lagrange interpolation are used, there is no constructive relationship between P1 ( x) and P( x). Each polynomial has to be constructed individually and the work required to compute the higher degree polynomials involves many computations. We take the new approach and construct ewton s polynomials that have the recursive pattern. P ( x) a a ( x x ) ( 1) P ( x) a a ( x x ) a ( x x )( x x ) P ( x) a ( x x )( x x ) ( ) P ( x) a a ( x x ) a ( x x )( x x ) a ( x x )( x x )( x x ) P ( x) a ( x x )( x x )( x x ) ( ) 0 1 P ( x) P ( x) a ( x x )( x x )( x x )...( x 1) ( 4) The polynomial (4) is said to be ewton Polynomial with centers x 0, x 1,..., x 1. It involves sums of products of linear factors up to a( x x0)( x x1)( x x)...( x x 1 ) x So P ( x ) will simply to be an ordinary polynomials of degree. The ewton interpolation uses a divided difference method. The technique allows one to add additional points easily P x a a x x a x x x x For given set of data points: x, y, x, y and x, y If three data points are available, the estimate is improved by introducing some curvature into the line connecting the points. P ( x) a a ( x x ) a ( x x )( x x )

9 A simple procedure can be used to determine the values of the coefficients x x a f ( x ) x x a 1 1 x x a f ( x1) f ( x0) x x 1 0 f ( x) f ( x1) f ( x1) f ( x0) x x1 x1 x0 x x 0 General Form of ewton s Interpolating Polynomials P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] a ( x x )( x x ) ( x x ) f [ x, x,, x ] f ( x ) 0 0 a f [ x, x ] a f [ x, x, x ] 1 0 a f [ x, x,, x, x ] f [ x, x ] i f [ x, x, x ] j i j k f ( x ) f ( x ) i x i x j j f [ x, x ] f [ x, x ] i j j k x i x k f [ x, x 1,, x1] f [ x 1, x,, x0] f [ x, x1,, x1, x0] x x0 and use to construct the divided differences in the following table x k f xk, f f,, f,,, f,,,, x 0 f x 0 x 1 f x 1 f x 1, x0 x f x f x, x x x 4 1 f x, x 1, x 0 f x f x, x f x, x, x 1 f x, x, x 1, x 0 f x 4 f x 4, x f x 4, x, x f x 4, x, x, x 1 f x 4, x, x, x 1, x 0 9

10 Theorem : ewton Polynomial Suppose that x, x,..., x ab,. There exist a unique polynomial P ( x ) of degree at most with the property that are +1 distinct numbers in The ewton form polynomial is j j 01,,..., f x P x for j P ( x) P ( x) a ( x x )( x x )( x x )...( x x ) where ak f x k, xk1,..., x1, x0 for k 01,,..., and the ewton approximation then f ( x) P ( x) E ( x) x x x x... x x 1! 0 1 ( 1) E ( x) f ( c) 10

11 EXAMPLE 1: Let f ( x) x 4x Construct the divided difference table based on the nodes x0 1, x1, x, x 4, x4 5, x5 6. Find the ewton polynomials P ( x ) base on the above nodes. x k k f x f, f,, f,,, f,,,, x f (1) 0 1 x1 f () 0 0 ( ) 1 x f () x 4 f (4) x4 5 f (5) x5 6 f (6) a, a, a 6, a 1, a 0 Where P ( x) a a x x a x x x x a x x x x x x P ( x) x 1 6 x 1 x 1 x 1 x x then add like terms P ( x) x 4x 11

12 EXAMPLE : For the function y f ( x), given the following table, use the divided difference to determine highest possible order and use the ewton s polynomial to determine the valu of 11 x if f ( x ). x k k f x f, f,, x0 0 f (0) 1 a = 0 x1 1 (1) f = a 1 x f () = a Highest possible order nd order P ( x) a a x x a x x x x P ( x) 11 x 0 x 0 x 1 then add like terms 1 11 P ( x) x x 1 find x where f ( x ) x x 1 x x 0 x x 8 0 x 4 ( x ) 0 then x 4 and x x x 0,, 4 0, 1

13 Exercise 1: Use the ewton divided-difference formula to compute the cubic interpolating x polynomial P ( x) for the function f( x) sin( ) using interpolation points x 0, x 1, x and x. What is an upper bound for the error at x=0.5? 0 1 Exercise : Given the table of the function f( x) x X 0 1 f(x) a) Write down the ewton polynomials P 1 (x), P (x), P (x). b) Evaluate f(.5) by using P (x). Exercise :For the function y f ( x) given the following table, use the divided differences to determine highest possible order and use ewton s polynomial to determine the value of x if f( x ) 0 x 0 1 y

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

More information

1 Review of Newton Polynomials

1 Review of Newton Polynomials cs: introduction to numerical analysis 0/0/0 Lecture 8: Polynomial Interpolation: Using Newton Polynomials and Error Analysis Instructor: Professor Amos Ron Scribes: Giordano Fusco, Mark Cowlishaw, Nathanael

More information

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

4.5 Chebyshev Polynomials

4.5 Chebyshev Polynomials 230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION 4.5 Chebyshev Polynomials We now turn our attention to polynomial interpolation for f (x) over [ 1, 1] based on the nodes 1 x 0 < x 1 < < x N 1. Both

More information

Piecewise Cubic Splines

Piecewise Cubic Splines 280 CHAP. 5 CURVE FITTING Piecewise Cubic Splines The fitting of a polynomial curve to a set of data points has applications in CAD (computer-assisted design), CAM (computer-assisted manufacturing), and

More information

1 Cubic Hermite Spline Interpolation

1 Cubic Hermite Spline Interpolation cs412: introduction to numerical analysis 10/26/10 Lecture 13: Cubic Hermite Spline Interpolation II Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore 1 Cubic Hermite

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON John Burkardt Information Technology Department Virginia Tech http://people.sc.fsu.edu/ jburkardt/presentations/cg lab fem basis tetrahedron.pdf

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

More information

Calculus AB 2014 Scoring Guidelines

Calculus AB 2014 Scoring Guidelines P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

AP CALCULUS AB 2009 SCORING GUIDELINES

AP CALCULUS AB 2009 SCORING GUIDELINES AP CALCULUS AB 2009 SCORING GUIDELINES Question 5 x 2 5 8 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

Student Performance Q&A:

Student Performance Q&A: Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

Objectives. Materials

Objectives. Materials Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways

More information

The degree of a polynomial function is equal to the highest exponent found on the independent variables.

The degree of a polynomial function is equal to the highest exponent found on the independent variables. DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate. Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set

More information

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

2008 AP Calculus AB Multiple Choice Exam

2008 AP Calculus AB Multiple Choice Exam 008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

MATH 132: CALCULUS II SYLLABUS

MATH 132: CALCULUS II SYLLABUS MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

More information

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker. http://numericalmethods.eng.usf.

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker. http://numericalmethods.eng.usf. Integration Topic: Trapezoidal Rule Major: General Engineering Author: Autar Kaw, Charlie Barker 1 What is Integration Integration: The process of measuring the area under a function plotted on a graph.

More information

Section 3.2 Polynomial Functions and Their Graphs

Section 3.2 Polynomial Functions and Their Graphs Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P(x) = 3, Q(x) = 4x 7, R(x) = x 2 +x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 +2x+4 (b)

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

Lesson 3. Numerical Integration

Lesson 3. Numerical Integration Lesson 3 Numerical Integration Last Week Defined the definite integral as limit of Riemann sums. The definite integral of f(t) from t = a to t = b. LHS: RHS: Last Time Estimate using left and right hand

More information

3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials

3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials 3. Interpolation Closing the Gaps of Discretization... Beyond Polynomials Closing the Gaps of Discretization... Beyond Polynomials, December 19, 2012 1 3.3. Polynomial Splines Idea of Polynomial Splines

More information

SMT 2014 Algebra Test Solutions February 15, 2014

SMT 2014 Algebra Test Solutions February 15, 2014 1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

Numerical Solution of Differential

Numerical Solution of Differential Chapter 13 Numerical Solution of Differential Equations We have considered numerical solution procedures for two kinds of equations: In chapter 10 the unknown was a real number; in chapter 6 the unknown

More information

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of. Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

Procedure for Graphing Polynomial Functions

Procedure for Graphing Polynomial Functions Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

More information

Numerical integration of a function known only through data points

Numerical integration of a function known only through data points Numerical integration of a function known only through data points Suppose you are working on a project to determine the total amount of some quantity based on measurements of a rate. For example, you

More information

Figure 2.1: Center of mass of four points.

Figure 2.1: Center of mass of four points. Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

More information

In this section, we will consider techniques for solving problems of this type.

In this section, we will consider techniques for solving problems of this type. Constrained optimisation roblems in economics typically involve maximising some quantity, such as utility or profit, subject to a constraint for example income. We shall therefore need techniques for solving

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

7.6 Approximation Errors and Simpson's Rule

7.6 Approximation Errors and Simpson's Rule WileyPLUS: Home Help Contact us Logout Hughes-Hallett, Calculus: Single and Multivariable, 4/e Calculus I, II, and Vector Calculus Reading content Integration 7.1. Integration by Substitution 7.2. Integration

More information

Homework 2 Solutions

Homework 2 Solutions Homework Solutions Igor Yanovsky Math 5B TA Section 5.3, Problem b: Use Taylor s method of order two to approximate the solution for the following initial-value problem: y = + t y, t 3, y =, with h = 0.5.

More information

DRAFT. Further mathematics. GCE AS and A level subject content

DRAFT. Further mathematics. GCE AS and A level subject content Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

More information

How To Understand The Theory Of Algebraic Functions

How To Understand The Theory Of Algebraic Functions Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

More information

1 Error in Euler s Method

1 Error in Euler s Method 1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

More information

Roots of Polynomials

Roots of Polynomials Roots of Polynomials (Com S 477/577 Notes) Yan-Bin Jia Sep 24, 2015 A direct corollary of the fundamental theorem of algebra is that p(x) can be factorized over the complex domain into a product a n (x

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

8 Polynomials Worksheet

8 Polynomials Worksheet 8 Polynomials Worksheet Concepts: Quadratic Functions The Definition of a Quadratic Function Graphs of Quadratic Functions - Parabolas Vertex Absolute Maximum or Absolute Minimum Transforming the Graph

More information

Estimating the Average Value of a Function

Estimating the Average Value of a Function Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

More information

Lecture 21 Integration: Left, Right and Trapezoid Rules

Lecture 21 Integration: Left, Right and Trapezoid Rules Lecture 1 Integration: Left, Right and Trapezoid Rules The Left and Right point rules In this section, we wish to approximate a definite integral b a f(x)dx, where f(x) is a continuous function. In calculus

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear

More information

Inverse Functions and Logarithms

Inverse Functions and Logarithms Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

More information

(Refer Slide Time: 01:11-01:27)

(Refer Slide Time: 01:11-01:27) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,

More information

Efficient Curve Fitting Techniques

Efficient Curve Fitting Techniques 15/11/11 Life Conference and Exhibition 11 Stuart Carroll, Christopher Hursey Efficient Curve Fitting Techniques - November 1 The Actuarial Profession www.actuaries.org.uk Agenda Background Outline of

More information

3. Reaction Diffusion Equations Consider the following ODE model for population growth

3. Reaction Diffusion Equations Consider the following ODE model for population growth 3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent

More information

10.2 Series and Convergence

10.2 Series and Convergence 10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

More information

Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3)

Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3) MATH 1003 Calculus and Linear Algebra (Lecture 3) Future Value of an Annuity Definition An annuity is a sequence of equal periodic payments. We call it an ordinary annuity if the payments are made at the

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Corollary. (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality

Corollary. (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality Corollary For equidistant knots, i.e., u i = a + i (b-a)/n, we obtain with (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality 120202: ESM4A - Numerical Methods

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

On Chebyshev interpolation of analytic functions

On Chebyshev interpolation of analytic functions On Chebyshev interpolation of analytic functions Laurent Demanet Department of Mathematics Massachusetts Institute of Technology Lexing Ying Department of Mathematics University of Texas at Austin March

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

Approximating functions by Taylor Polynomials.

Approximating functions by Taylor Polynomials. Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If

More information

Calculus with Parametric Curves

Calculus with Parametric Curves Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS

Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS DUSP 11.203 Frank Levy Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS These notes have three purposes: 1) To explain why some simple calculus formulae are useful in understanding

More information

The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

I. Pointwise convergence

I. Pointwise convergence MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated

List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible

More information

AP Calculus BC 2004 Scoring Guidelines

AP Calculus BC 2004 Scoring Guidelines AP Calculus BC Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

Rolle s Theorem. q( x) = 1

Rolle s Theorem. q( x) = 1 Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

More information

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

More information

AP Calculus AB 2010 Free-Response Questions Form B

AP Calculus AB 2010 Free-Response Questions Form B AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

More information