Why Do They Call It a Periodic Table? Investigating and Graphing Periodic Trends

Size: px
Start display at page:

Download "Why Do They Call It a Periodic Table? Investigating and Graphing Periodic Trends"

Transcription

1 Why Do They Call It a Periodic Table? Investigating and Graphing Periodic Trends About this Lesson This activity has two parts. Students arrange a set of cards in order before coming to class and then discuss the arrangement with others. This task is designed to give students appreciation for the organization of the periodic table that is currently used. Several of the trends are then graphed and examined. This lesson is included in the LTF Chemistry Module 5. Objectives Students will: Level Chemistry Graph various periodic properties. Examine the trends of the elements as they are arranged on the periodic table. Common Core State Standards for Science Content LTF Science lessons will be aligned with the next generation of multi-state science standards that are currently in development. These standards are said to be developed around the anchor document, A Framework for K 2 Science Education, which was produced by the National Research Council. Where applicable, the LTF Science lessons are also aligned to the Common Core Standards for Mathematical Content as well as the Common Core Literacy Standards for Science and Technical Subjects. (MATH) S-ID.6c Code Standard Level of Thinking (LITERACY) W. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. Fit a linear function for a scatter plot that suggests a linear association. Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence. Apply Apply Depth of Knowledge II II

2 Connections to AP* AP Chemistry: I. Structure of Matter 5. Periodic relationships including for example, atomic radii, ionization energies, electron affinities, oxidation states IV. Descriptive Chemistry 2. Relationships in the periodic table: horizontal, vertical, and diagonal with examples from alkali metals, alkaline earth metals, halogens, and the first series of transition elements *Advanced Placement and AP are registered trademarks of the College Entrance Examination Board. The College Board was not involved in the production of this product. Materials and Resources Each lab group will need the following: paper, copy paper, graph scissors tape, clear Assessments The following types of formative assessments are embedded in this lesson: Assessment of prior knowledge. Sharing data with explanations. Visual observation as students complete graphing and examination. The following additional assessments are located on the LTF website: Chemistry Assessment: Structure of Matter Short Lesson Assessment: Periodic Trends 2007 Chemistry Posttest, Free Response Question 2; 200 Chemistry Posttest, Free Response Question AP Style Free Response

3 Teaching Suggestions The day before the activity, distribute the page containing the elements with the atomic masses and the physical/chemical changes. Instruct the students to cut the cards apart and, using the properties, arrange the cards in some order. They should tape the cards to a piece of paper to secure the order for the in-class discussion. For the graphing activities, students should work in pairs and turn in one lab report for each student group. *An alternate method for doing this activity is to use computers and computer graphing software such as Graphical Analysis, LoggerPro, or Excel. This reduces the time needed for graphing and allows more time for discussion. Computer availability and software may dictate which method you choose. Students need a thorough understanding of atomic structure and periodic trends to be successful on the AP* Chemistry examination and indeed, to be successful in the field of chemistry in general. This exercise allows you to explain the reasons behind the trends. Emphasize that a trend is NOT an explanation, but rather an observation. When explaining the reasons behind the trends, it is helpful to start with atomic radii or size of the atoms. This is the easiest for students to understand and, once students grasp this concept, other concepts such as ionization energy, electron affinity, and electronegativity are easily understood. Size: As you move down a family, additional energy levels are added and the atoms get larger. As more levels are added, there are more electrons between the nucleus and the outer energy level. These electrons shield the nucleus from holding tightly to the outer electrons. As you move across a period from left to right, the electrons are in the same energy level, but each successive atom has one more proton in the nucleus. The additional proton increases the nuclear charge, or it increases the Z eff (Z effective), without increasing any inner shielding. This causes the electrons to be drawn closer to the nucleus. : Defined as the amount of energy needed to remove an electron from an atom (in the gaseous state) forming a + ion. Ionization energy can be expressed in equation form: M M + + e. The reasons for the general trends in IE are the same reasons as the trend for size. As you move down a family, electrons are further from the nucleus and have more inner electrons shielding them from the nuclear pull, therefore the amount of energy required to remove an electron decreases. As you move across a period from left to right, the Z eff for that period gets greater, the electrons are held more tightly and therefore electrons are more difficult to remove. IE gets larger. Emphasize that explanations of IE should be tied to the energy required to remove an electron.

4 As you look at the graph of ionization energies across a period, there are clearly some anomalies. Looking at the second period, the first observed irregularity is the lower ionization energy from Be to B. The simplest explanation is that the first electron to be removed from boron is coming from a 2p orbital which is higher energy than the electron from beryllium which is in a 2s and is of lower energy. There are certainly more sophisticated arguments which may be dealt with in the AP* course. Under no circumstance should a student be given the impression that the reason the 2s electron is harder to remove is that it is being taken from a full subshell that has an intrinsic stability! The second anomaly occurs when you move from nitrogen to oxygen. The increasing nuclear charge should dictate that the first IE of oxygen should be higher than that of nitrogen. However, oxygen has a lower first ionization energy than nitrogen due to the spin-spin repulsion of two electrons in the same orbital. Again, there is no increased stability due to a half-filled subshell. Even though this is written in many textbooks, it is not true and students should not be taught that there is some magic stability to half and totally filled subshells! Electron affinity: Defined as the energy change involved in forcing a gaseous atom to accept an electron to form a ion. Electron affinity is represented by X + e X. Again, the trends are dictated by the same factors distance from the nucleus, inner electron shielding, and increasing nuclear charge (Z eff in the same period). Therefore, electron affinity decreases as you move down a family and increases as you move from left to right across a period. (Pauling s): actually combines several factors and gives a relative number expressing attraction for electrons within a chemical bond. It is relative and, while it is very useful, there are many factors which affect this attraction for electrons within compounds. You may choose to introduce it at this point, because the factors which influence the electronegativity trend are the same as the others that we have been discussing. Or you may choose to introduce it when you talk about bonding. Metallic trends: Metals are really defined by loosely held, mobile electrons. The elements with the most loosely held electrons, of course, are in the lower left portion of the periodic table (largest and furthest from the nucleus with the lowest Z eff ) and the trend gets less as you move diagonally from lower left to upper right. After students understand the other periodic trends, and what really defines a metal, it will be easier for them to see why the zigzag line divides the metals from the non-metals. In teaching students to discuss various periodic trends, it is very important that they not answer a why question with a what answer. For example, if they are asked why the first ionization energy for magnesium is greater than the first ionization energy for sodium, they must NOT say that the trend is for ionization energies to increase from left to right across the periodic table. Instead they must address the fact that the electrons are in the same energy level, but the number of protons in magnesium is greater than the number of protons in sodium and therefore the Z eff is greater. They must also clearly address both chemical species (i.e. magnesium and sodium) in their answer.

5 POSSIBLE ANSWERS TO THE CONCLUSION QUESTIONS AND SAMPLE DATA After the students have made the arrangement of their cards and discussed their ideas with their partner, you will need to tell them the actual name and atomic number represented by each of the cards. The chart below will help you do so without having to actually match each element card with the periodic table. You may find it easiest to make a transparency of this page. Atomic Mass 36 Atomic Mass 9 Chlorine Beryllium Atomic number: 7 Atomic number: 4 Atomic Mass 40 Atomic Mass 7 Argon Lithium Atomic number: 8 Atomic number: 3 Atomic Mass 2 Atomic Mass 4 Carbon Helium Atomic number: 6 Atomic number: 2 Atomic Mass Atomic Mass 28 Boron Silicon Atomic number: 5 Atomic number: 4 Atomic Mass 20 Neon Atomic number: 0 Atomic Mass 32 Sulfur Atomic number: 6 Atomic Mass 40 Calcium Atomic number: 20 Atomic Mass 24 Magnesium Atomic number: 2 Atomic Mass Hydrogen Atomic number: Atomic Mass 27 Aluminum Atomic number: 3 Atomic Mass 23 Sodium Atomic number: Atomic Mass 3 Phosphorus Atomic number: 5 Atomic Mass 9 Fluorine Atomic number: 9 Atomic Mass 6 Oxygen Atomic number: 8 Atomic Mass 39 Potassium Atomic number: 9 Atomic Mass 4 Nitrogen Atomic number: 7

6 DATA AND OBSERVATIONS. Compare the indicated graphs. Do any of f the graphs show a repeating, or cyclic, pattern? Focus on elements with very large or veryy small values. a. Oxygen Atoms vs. Atomic Number and Chlorine Atoms vs. Atomic Number These graphs show a rise and fall within the period, but definitely a repeating pattern. b. Melting Point vs. Atomic Number andd Boiling Point vs. Atomic Number Again, these graphs show a rise and fall within the period with the highest meltingg points and boiling points being toward the middle of the period.

7 c. vs. Atomic Number and vs. Atomic Number These graphs show an increase across the period and falling as a new period starts. 2. Are these graphs consistent with patterns found in your earlier grouping of elements? Explain. Student answers will vary based on their original arrangements. Focus on the logic of the answers and discourage any assignment of right or wrong patterns at this time. After all, there are still many versions of periodic tables that are being used. You might evenn encourage students to find other models of the periodic table to share with the class. 3. Based on your graphs, why is the chemist s organization of elements called a periodic table? Because the trends repeat themselves inn an organized repeating pattern, or periodically. 4. Wheree are the elements with the highest oxide numbers located on the periodic table? How about the elements with the highest chloride numbers? Highest oxide and chloride numbers are located toward the middle of the periods. 5. Predict which element should have the lowest boiling point: selenium (Se), bromine (Br), or krypton (Kr)? Explain your prediction.. Krypton will have the lowest boiling point. It is a noble gas and is located at the end of o the period. The boiling point trend shows a decrease in boiling point toward the end of a period.

8 6. Which should have the lowest ionization energy: rubidium (Rb) or cesium (Cs)? Explain your prediction. Cesium will have a lower ionization energy because its outer electrons are further from the nucleus. Rb has only 6 energy levels where Cs has 7 energy levels. The extra layer of electrons will cause the nucleus of Cs to be more shielded than in Rb, therefore, the outer electrons will not be held as tightly, resulting in a lower ionization energy. 7. Which would have the greatest ionization energy: arsenic (As) or selenium (Se)? Explain your prediction. This is tricky. Both elements are on the 4th period. Selenium has a higher Z eff, so you would at first expect it to have a higher ionization energy. However, it has a lower ionization energy because Se has paired electrons in its p-orbital and As does not. Spin-spin repulsion due to the pairing of the electrons will cause that electron to be more easily removed and therefore arsenic will have the higher ionization energy.

9 Why Do They Call It a Periodic Table? Investigating and Graphing Periodic Trends Have you ever wondered why chemists call that big chart in the front of the room that contains all of the elements, the periodic table? For years scientists attempted to find some order to the elements that they knew existed. They looked at various properties and tried out many arrangements. You are going to attempt to do a similar task. You will be given a set of cards that contain certain properties. Without referring to the actual periodic table you will attempt to put the cards in some order that makes sense to you. You will be asked to explain your reasoning to your classmates. PURPOSE In this activity you will graph various periodic properties to ascertain the order. In so doing, you will see the trends among the elements of the periodic table. MATERIALS Each lab group will need the following: paper, copy paper, graph scissors tape, clear AT HOME PREPARATION Cut along the lines of the periodic trends cards. Try to arrange them in an order. Try several different patterns to see which makes the most sense to you. When you have an arrangement that you like, tape them in order on a piece of paper. Justify your arrangement on your student answer page.

10 Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Periodic Trend Cards Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass Atomic Mass

11 PROCEDURE. Compare your arrangement with your classmates results. Are there differences? Are there similarities? If there are differences, try to resolve them. 2. Now your teacher will give you the atomic number and the symbol for each of your cards. Work with your partner to arrange the cards in order of atomic number. 3. Use two sheets of graph paper. Title each Trends in Chemical Properties. Label the x-axis Atomic Numbers and number it from to 20 on both. One of you should label your y-axis Oxygen Atoms per Atom of Element. The other should label the y-axis Chlorine Atoms per Atom of Element. Determine a proper scale for each. Construct a line graph for each. 4. Get two more sheets of graph paper. Label one Boiling Points vs. Atomic Number. Label the other Melting Points vs. Atomic Number. Number the x-axes with atomic numbers from to 20 as before. Determine an appropriate scale for the temperatures along the y-axes. Construct line graphs for each. 5. Construct two more graphs. Label one vs. Atomic Number. The units for ionization energy are volts. Be sure to include the units on your graph. The other should be labeled vs. Atomic Number. is a relative number and has no units. As you did before, label the x-axis Atomic Number and scale from to 20. Use a line graph to plot these properties. Look at all six graphs, and answer the conclusion questions.

12 Why Do They Call It a Periodic Table? Investigating and Graphing Periodic Trends JUSTIFICATION OF ARRANGEMENT Explain why you arranged the cards in the particular order that you chose. DATA AND OBSERVATIONS Include your graphs with your report. ANALYSIS AND CONCLUSION QUESTIONS. Compare the indicated graphs. Do any of the graphs show a repeating, or cyclic, pattern? Focus on elements with very large or very small values. If the value is not given, skip that number or enter on the computer. a. Oxygen Atoms vs. Atomic Number and Chlorine Atoms vs. Atomic Number b. Melting Point vs. Atomic Number and Boiling Point vs. Atomic Number

13 c. vs. Atomic Number and vs. Atomic Number 2. Are these graphs consistent with patterns found in your earlier grouping of elements? Explain. 3. Based on your graphs, why is the chemist s organization of elements called a periodic table? 4. Where are the elements with the highest oxide numbers located on the periodic table? How about the elements with the highest chloride numbers? 5. Predict which element should have the lowest boiling point: selenium (Se), bromine (Br), or krypton (Kr)? Explain your prediction.

14 6. Which should have the lowest ionization energy: rubidium (Rb) or cesium (Cs)? Explain your prediction. 7. Which would have the greatest ionization energy: arsenic (As) or selenium (Se)? Explain your prediction.

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

More information

Be (g) Be + (g) + e - O (g) O + (g) + e -

Be (g) Be + (g) + e - O (g) O + (g) + e - 2.13 Ionisation Energies Definition :First ionisation energy The first ionisation energy is the energy required when one mole of gaseous atoms forms one mole of gaseous ions with a single positive charge

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

Unit 3.2: The Periodic Table and Periodic Trends Notes

Unit 3.2: The Periodic Table and Periodic Trends Notes Unit 3.2: The Periodic Table and Periodic Trends Notes The Organization of the Periodic Table Dmitri Mendeleev was the first to organize the elements by their periodic properties. In 1871 he arranged the

More information

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

More information

Trends of the Periodic Table Diary

Trends of the Periodic Table Diary Trends of the Periodic Table Diary Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

IONISATION ENERGY CONTENTS

IONISATION ENERGY CONTENTS IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

More information

IONISATION ENERGY CONTENTS

IONISATION ENERGY CONTENTS IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

More information

TRENDS IN THE PERIODIC TABLE

TRENDS IN THE PERIODIC TABLE Noble gases Period alogens Alkaline earth metals Alkali metals TRENDS IN TE PERIDI TABLE Usual charge +1 + +3-3 - -1 Number of Valence e - s 1 3 4 5 6 7 Electron dot diagram X X X X X X X X X 8 Group 1

More information

Look at a periodic table to answer the following questions:

Look at a periodic table to answer the following questions: Look at a periodic table to answer the following questions: 1. What is the name of group 1? 2. What is the name of group 2? 3. What is the name of group 17? 4. What is the name of group 18? 5. What is

More information

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a.

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a. Assessment Chapter Test A Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a 13. c 14. d 15. c 16. b 17. d 18. a 19. d 20. c 21. d 22. a

More information

Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

More information

The Periodic Table: Periodic trends

The Periodic Table: Periodic trends Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements 1. Elements in the modern version of the periodic table are arranged in order of increasing. (a). oxidation number (b). atomic mass (c). average atomic mass

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Lewis Dot Structures of Atoms and Ions

Lewis Dot Structures of Atoms and Ions Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron

More information

Chemistry: The Periodic Table and Periodicity

Chemistry: The Periodic Table and Periodicity Chemistry: The Periodic Table and Periodicity Name: per: Date:. 1. By what property did Mendeleev arrange the elements? 2. By what property did Moseley suggest that the periodic table be arranged? 3. What

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

Question: Do all electrons in the same level have the same energy?

Question: Do all electrons in the same level have the same energy? Question: Do all electrons in the same level have the same energy? From the Shells Activity, one important conclusion we reached based on the first ionization energy experimental data is that electrons

More information

Student Exploration: Electron Configuration

Student Exploration: Electron Configuration Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund s rule, orbital, Pauli exclusion

More information

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations.

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. The Periodic Table Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. Vertical Rows are called Families or Groups.

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

More information

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Copyrighted by Gabriel Tang B.Ed., B.Sc. Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested

More information

Part I: Principal Energy Levels and Sublevels

Part I: Principal Energy Levels and Sublevels Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found

More information

Trends of the Periodic Table Basics

Trends of the Periodic Table Basics Trends of the Periodic Table Basics Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

5.4 Trends in the Periodic Table

5.4 Trends in the Periodic Table 5.4 Trends in the Periodic Table Think about all the things that change over time or in a predictable way. For example, the size of the computer has continually decreased over time. You may become more

More information

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

More information

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

EXPERIMENT 4 The Periodic Table - Atoms and Elements

EXPERIMENT 4 The Periodic Table - Atoms and Elements EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Periodic Trends for Electronegativity... 1. Periodic Trends for Ionization Energy... 3. Periodic Trends for Electron Affinity... 5

Periodic Trends for Electronegativity... 1. Periodic Trends for Ionization Energy... 3. Periodic Trends for Electron Affinity... 5 Periodic Trends Periodic trends are certain patterns that describe specific aspects of the elements in the periodic table, such as size and properties with electrons. The main periodic trends include:

More information

Section 1: Arranging the Elements Pages 106-112

Section 1: Arranging the Elements Pages 106-112 Study Guide Chapter 5 Periodic Table Section 1: Arranging the Elements Pages 106-112 DISCOVERING A PATTERN 1. How did Mendeleev arrange the elements? a. by increasing density b. by increasing melting point

More information

REVIEW QUESTIONS Chapter 8

REVIEW QUESTIONS Chapter 8 Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum

More information

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson Chemistry - Elements Electron Configurations The Periodic Table Ron Robertson History of Chemistry Before 16 th Century Alchemy Attempts (scientific or otherwise) to change cheap metals into gold no real

More information

CHAPTER REVIEW. 3. What category do most of the elements of the periodic table fall under?

CHAPTER REVIEW. 3. What category do most of the elements of the periodic table fall under? CHAPTER REVIEW EVIEW ANSWERS 1. alkaline-earth metals 2. halogens 3. metals. electron affinity 5. actinides 6. answers should involve the transmutation of one element to another by a change in the number

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

Chapter 2 Atoms, Ions, and the Periodic Table

Chapter 2 Atoms, Ions, and the Periodic Table Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)

More information

CHAPTER 8 THE PERIODIC TABLE

CHAPTER 8 THE PERIODIC TABLE CHAPTER 8 THE PERIODIC TABLE 8.1 Mendeleev s periodic table was a great improvement over previous efforts for two reasons. First, it grouped the elements together more accurately, according to their properties.

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

Chapter 8 Atomic Electronic Configurations and Periodicity

Chapter 8 Atomic Electronic Configurations and Periodicity Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from

More information

Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of things.

Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of things. UNIT 6 Periodic Trends What are the Patterns in the Chemical and Physical Properties of Elements? Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of things. Isaac

More information

Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11

Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11 Electron Configurations, Isoelectronic Elements, & Ionization Reactions Chemistry 11 Note: Of the 3 subatomic particles, the electron plays the greatest role in determining the physical and chemical properties

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom )

ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom ) ANSWER KEY : PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom ) 1. Explore the Build an Atom simulation with your group. As you explore, talk about what

More information

THE PERIODIC TABLE O F T H E E L E M E N T S. The Academic Support Center @ Daytona State College (Science 117, Page 1 of 27)

THE PERIODIC TABLE O F T H E E L E M E N T S. The Academic Support Center @ Daytona State College (Science 117, Page 1 of 27) THE PERIODIC TABLE O F T H E E L E M E N T S The Academic Support Center @ Daytona State College (Science 117, Page 1 of 27) THE PERIODIC TABLE In 1872, Dmitri Mendeleev created the periodic table arranged

More information

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:) Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the

More information

Periodic Table. 1. In the modern Periodic Table, the elements are arranged in order of increasing. A. atomic number B. mass number

Periodic Table. 1. In the modern Periodic Table, the elements are arranged in order of increasing. A. atomic number B. mass number Name: ate: 1. In the modern, the elements are arranged in order of increasing. atomic number. mass number. oxidation number. valence number 5. s the elements in Group I are considered in order of increasing

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Chapter 4, Lesson 2: The Periodic Table

Chapter 4, Lesson 2: The Periodic Table Chapter 4, Lesson 2: The Periodic Table Key Concepts The periodic table is a chart containing information about the atoms that make up all matter. An element is a substance made up of only one type of

More information

Chapter 7. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 7. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 7 John D. Bookstaver St. Charles Community College Cottleville, MO Development of Table

More information

19.1 Bonding and Molecules

19.1 Bonding and Molecules Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

More information

KEY. Honors Chemistry Assignment Sheet- Unit 3

KEY. Honors Chemistry Assignment Sheet- Unit 3 KEY Honors Chemistry Assignment Sheet- Unit 3 Extra Learning Objectives (beyond regular chem.): 1. Related to electron configurations: a. Be able to write orbital notations for s, p, & d block elements.

More information

Periodic Table Trends in Element Properties Ron Robertson

Periodic Table Trends in Element Properties Ron Robertson Periodic Table Trends in Element Properties Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\ch9trans2.doc The Periodic Table Quick Historical Review Mendeleev in 1850 put together

More information

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.

More information

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1 AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

More information

APS Science Curriculum Unit Planner

APS Science Curriculum Unit Planner APS Science Curriculum Unit Planner Grade Level/Subject Chemistry Stage 1: Desired Results Enduring Understanding Topic 1: Elements and the Periodic Table: The placement of elements on the periodic table

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information

AP CHEMISTRY 2009 SCORING GUIDELINES

AP CHEMISTRY 2009 SCORING GUIDELINES AP CHEMISTRY 2009 SCORING GUIDELINES Question 6 (8 points) Answer the following questions related to sulfur and one of its compounds. (a) Consider the two chemical species S and S 2. (i) Write the electron

More information

Molecular Models & Lewis Dot Structures

Molecular Models & Lewis Dot Structures Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.

More information

Test Review Periodic Trends and The Mole

Test Review Periodic Trends and The Mole Test Review Periodic Trends and The Mole The Mole SHOW ALL WORK ON YOUR OWN PAPER FOR CREDIT!! 1 2 (NH42SO2 %N 24.1 %H 6.9 %S 27.6 %O 41.3 % Al %C 35.3 %H 4.4 %O 47.1 Al(C2H3O23 13.2 3 How many moles are

More information

Chapter 3, Elements, Atoms, Ions, and the Periodic Table

Chapter 3, Elements, Atoms, Ions, and the Periodic Table 1. Which two scientists in 1869 arranged the elements in order of increasing atomic masses to form a precursor of the modern periodic table of elements? Ans. Mendeleev and Meyer 2. Who stated that the

More information

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num . ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science, Fall 2005 Please use the following citation format: Sylvia Ceyer and Catherine Drennan, 5.111 Principles of Chemical Science,

More information

Write an equation, including state symbols, for the ionisation of indium that requires the minimum energy.(1)

Write an equation, including state symbols, for the ionisation of indium that requires the minimum energy.(1) MINI MOCK Questions Unit 1 Atomic Structure AS Chemistry Q1. Indium is in Group 3 in the Periodic Table and exists as a mixture of the isotopes 113 In and 115 In. (a) Use your understanding of the Periodic

More information

Department of Physics and Geology The Elements and the Periodic Table

Department of Physics and Geology The Elements and the Periodic Table Department of Physics and Geology The Elements and the Periodic Table Physical Science 1422 Equipment Needed Qty Periodic Table 1 Part 1: Background In 1869 a Russian chemistry professor named Dmitri Mendeleev

More information

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck atoms- the smallest particle of an element that can be identified with that element are the building blocks of matter consists of protons and

More information

Sample Exercise 12.1 Calculating Packing Efficiency

Sample Exercise 12.1 Calculating Packing Efficiency Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal

More information

Chapter 3. Elements, Atoms, Ions, and the Periodic Table

Chapter 3. Elements, Atoms, Ions, and the Periodic Table Chapter 3. Elements, Atoms, Ions, and the Periodic Table The Periodic Law and the Periodic Table In the early 1800's many elements had been discovered and found to have different properties. In 1817 Döbreiner's

More information

Elements, Atoms & Ions

Elements, Atoms & Ions Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,

More information

Student Exploration: Electron Configuration

Student Exploration: Electron Configuration www.explorelearning.com Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund

More information

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

Chemical Building Blocks: Chapter 3: Elements and Periodic Table Name: Class: Date: Chemical Building Blocks: Chapter 3: Elements and Periodic Table Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

Chapter 2 Atoms, Molecules, and Ions

Chapter 2 Atoms, Molecules, and Ions Chapter 2 Atoms, Molecules, and Ions 1. Methane and ethane are both made up of carbon and hydrogen. In methane, there are 12.0 g of carbon for every 4.00 g of hydrogen, a ration of 3:1 by mass. In ethane,

More information

AP CHEMISTRY 2007 SCORING GUIDELINES (Form B)

AP CHEMISTRY 2007 SCORING GUIDELINES (Form B) AP CHEMISTRY 2007 SCORING GUIDELINES (Form B) First Ionization Energy Question 6 Second Ionization Energy Third Ionization Energy (kj mol 1 ) (kj mol 1 ) (kj mol 1 ) Element 1 1,251 2,300 3,820 Element

More information

Atoms and Molecules. Preparation. Objectives. Standards. Materials. Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4

Atoms and Molecules. Preparation. Objectives. Standards. Materials. Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4 Atoms and Molecules Preparation Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4 Objectives This lesson will enable students to: Describe how atoms are the building blocks of matter

More information

P. Table & E Configuration Practice TEST

P. Table & E Configuration Practice TEST P. Table & E Configuration Practice TEST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A line spectrum is produced when an electron moves from one energy

More information

Chem term # 1 review sheet C. 12 A. 1

Chem term # 1 review sheet C. 12 A. 1 hem term # 1 review sheet Name: ate: 1. n isotope of which element has an atomic number of 6 and a mass number of 14?. carbon. magnesium. nitrogen. silicon 6. Which atoms represent different isotopes of

More information

CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY

CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY 8.1 Elements are listed in the periodic table in an ordered, systematic way that correlates with a periodicity of their chemical and physical properties.

More information

LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY

LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY by DR. STEPHEN THOMPSON MR. JOE STALEY The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department

More information

Questions Q1. Lithium, sodium and potassium are metals in group 1 of the periodic table. They are good conductors of heat and electricity. The freshly-cut metals are shiny. (a) (i) Give another physical

More information

Electron Arrangements

Electron Arrangements Section 3.4 Electron Arrangements Objectives Express the arrangement of electrons in atoms using electron configurations and Lewis valence electron dot structures New Vocabulary Heisenberg uncertainty

More information

CHEMSITRY NOTES Chapter 13. Electrons in Atoms

CHEMSITRY NOTES Chapter 13. Electrons in Atoms CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Success criteria You should be able to write the correct formula for any ionic compound

Success criteria You should be able to write the correct formula for any ionic compound Chemical Formulas and Names of Ionic Compounds WHY? Going back to pre-historic times, humans have experimented with chemical processes that helped them to make better tools, pottery and weapons. In the

More information

Electron Configuration Worksheet (and Lots More!!)

Electron Configuration Worksheet (and Lots More!!) Electron Configuration Worksheet (and Lots More!!) Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration

More information