Robotics I. July 4, 2011

Size: px
Start display at page:

Download "Robotics I. July 4, 2011"

Transcription

1 Robotics I July 4, Several views of the Barrett 4-dof WAM arm are shown in Fig., together with the frame assignment used by the manufacturer. Six reference frames are considered, including one attached to the Base (fixed platform) and one attached at the Tool (end-effector). All data are in mm. The only information missing in the drawings is that the displacement at the elbow joint is equal to 45 mm. Also, the origin of the Tool frame is placed at the end of link 4 (the drawing may be misleading). Figure : The Barrett 4-dof WAM arm, with the frame assignment used by the manufacturer. Check whether the frame assignment used by the manufacturer is fully consistent with the Denavit-Hartenberg (D-H) convention, and modify it if needed. Derive the correct table of D-H parameters.. Determine the direct kinematic map for the position B p T of the origin of the Tool frame with respect to the Base frame (use symbols for geometric quantities, specifying separately their numerical values): B p T = B T T (θ ) T (θ ) T 3 (θ 3 ) 3 T 4 (θ 4 ) 4 T T ()

2 3. Four motors are used to drive the four joints through suitable transmission elements, with two motors (located at the shoulder) cooperating for the motion of joints and 3. The mapping between the motor velocity vector θ m and the joint velocity vector θ is N θ = N N n 3 n 3 N N N 4 θ m, () with N = 4, N = 8.5, n 3 =.68, N 4 = 8. Determine the mapping from the torque vector τ m at the output shaft of each motor to the torque vector τ producing work on the joint coordinates θ. 4. Find the 3 4 Jacobian matrix J(θ) relating the joint velocity vector θ to the velocity v T of the origin of the Tool frame v T = ṗ T = J(θ) θ. Choose your preferred reference frame for expressing v T. Note: In order to obtain the full expression of the associated Jacobian, the use of a symbolic manipulation program is appropriate. 5. Determine one singularity of J(θ). Verify whether this singularity is within the following joint limits of the robot or not: 5 θ +5, 3 θ +3, 57 θ 3 +57, 5 θ [5 minutes; open books]

3 Solution July 4, For item., the frame assignment used by the manufacturer is fully consistent with the Denavit- Hartenberg convention and there is no need of modifications. The D-H parameters are given in Tab., with a 3 = 45 and d 3 = 55 [mm]. In Fig., the arm is shown in its zero configuration (θ = ). i α i a i d i θ i π θ π θ 3 π a 3 d 3 θ 3 4 π a 3 θ 4 Table : D-H parameters for the Barrett 4-dof WAM arm For item., Table is used to compute the four homogeneous transformations i T i (θ i ), for i =,..., 4. The remaining two constant transformations are B T = B p x B p y I B p z T with B p x =, B p y = 4, B p z = 346 [mm], and 4 T T = I L T with L = 35 [mm]. Note that these constant transformations may not be expressed in general as D-H homogeneous matrices (i.e., in terms of the usual four, now all constant, D-H parameters). In particular, 4 T T has the structure of a D-H matrix (with α T = θ T =, a T =, and d T = L), whereas B T cannot be associated to D-H parameters. In order to find the expression of B p T in (), there is no need to compute the full product of all the transformation matrices, i.e., B T T (or even just T 4 ). In fact, expressing all vectors in,, 3

4 homogenous coordinates, we can compute recursively: 4 p T = 4 T T T p T = 4 T T 3 p T = 3 T 4 (θ 4 ) 4 p T. p T = T (θ ) p T B p T = B T 4 p T. = It is then tedious but straightforward to obtain B p x + (c c c 3 s s 3 )(a 3 + Ls 4 a 3 c 4 ) + c s (d 3 a 3 s 4 Lc 4 ) B p T = B p y + (s c c 3 + c s 3 )(a 3 + Ls 4 a 3 c 4 ) + s s (d 3 a 3 s 4 Lc 4 ), (3) B p z + s c 3 (a 3 + Ls 4 a 3 c 4 ) + c (d 3 + a 3 s 4 + Lc 4 ) where the short notations s i = sin θ i, c i = cos θ i have been used. At this point, we can substitute the numerical values previously defined. For item 3., writing eq. () as θ = A θ m, we have from the principle of virtual work τ T θ = τ T A θ m = τ T m θ m, θ m, L and thus Therefore, the mapping is τ m = A T τ τ = A T τ m. N N N τ = N N τ m. n 3 n 3 N 4 We can now replace in this expression the numerical data provided in the text. For item 4., the Jacobian J(θ) of interest is computed either geometrically or by analytic differentiation of eq. (3) w.r.t. θ. The result can be obtained by hand or by using symbolic/algebraic manipulation tools (e.g., the Matlab Symbolic Toolbox). However, very complex expressions are typically obtained which are difficult to be simplified automatically. A possible relatively simpler form for J(θ) is obtained when looking at the expression of the task velocity v T (naturally defined in the zero-th reference frame) in a suitable reference frame. In fact, we have i v T = R T i (θ,..., θ i ) v T = R T i (θ,..., θ i ) J(θ) θ i J(θ) = R T i (θ,..., θ i ) J(θ) where the Jacobian i J(θ) is expressed in the i-th frame of the robot, and R i (θ,..., θ i ) = R (θ ) R (θ )... i R i (θ i ) 4

5 is the composition of the rotation matrices defined by the D-H parameters of the robot. For the Barrett 4-dof WAM arm, a convenient choice is to refer the Jacobian to frame, i.e., J(θ) = R T (θ ) R T (θ ) J(θ). For illustration, we report in the Appendix the 3 4 = elements j ik of J(θ), i.e., j j j 3 j 4 J(θ) = j j j 3 j 4, (4) j 3 j 3 j 33 j 34 provided as output of a Matlab Symbolic Toolbox program (available upon request). For item 5., it is rather immediate to see from Fig. that the robot configuration having θ = θ 3 = θ 4 = (and arbitrary θ ) is certainly singular, since the arm is fully stretched. Plugging in these values of joint angles, the symbolic Jacobian matrix becomes J(θ) θ=θ 3=θ 4= = (L + d 3 ) c L c (L + d 3 ) s L s a 3 having, as expected, rank for any θ. In particular, this is true at the zero configuration (i.e., with θ =, in addition to the previously selected values for the other joints) illustrated in Fig.. This singularity is clearly within the assigned joint limits., 5

6 Appendix With reference to (4), using the short notations fors i = sin θ i and c i = cos θ i (i =,..., 4), we have: j = c (c (c (a 3 s 3 + s 3 (Ls 4 a 3 c 4 )) + s (s (d 3 + Lc 4 + a 3 s 4 ) + c (a 3 c 3 + c 3 (Ls 4 a 3 c 4 )))) + s (s (a 3 s 3 + s 3 (Ls 4 a 3 c 4 )) c (s (d 3 + Lc 4 + a 3 s 4 ) + c (a 3 c 3 + c 3 (Ls 4 a 3 c 4 ))))) j = s (s (d 3 + Lc 4 + a 3 s 4 ) + c (a 3 c 3 + c 3 (Ls 4 a 3 c 4 ))) c (c (c s (a 3 c 3 + c 3 (Ls 4 a 3 c 4 )) c c (d 3 + Lc 4 + a 3 s 4 )) s (c s (d 3 + Lc 4 + a 3 s 4 ) s s (a 3 c 3 + c 3 (Ls 4 a 3 c 4 )))) ( j 3 = s 3 a 3 sin ( θ 4 ) ) + Ls4 s c (c (c 3 s + c c s 3 ) (a 3 + Ls 4 a 3 c 4 ) s (c c 3 c s s 3 ) (a 3 + Ls 4 a 3 c 4 )) j 4 = s (c (Ls 4 a 3 c 4 ) + c 3 s (Lc 4 + a 3 s 4 )) c (c (c (s (Ls 4 a 3 c 4 ) c c 3 (Lc 4 + a 3 s 4 )) + s s 3 (Lc 4 + a 3 s 4 )) + s (s (s (Ls 4 a 3 c 4 ) c c 3 (Lc 4 + a 3 s 4 )) c s 3 (Lc 4 + a 3 s 4 ))) j = s (c (a 3 s 3 + s 3 (Ls 4 a 3 c 4 )) + s (s (d 3 + Lc 4 + a 3 s 4 ) + c (a 3 c 3 + c 3 (Ls 4 a 3 c 4 )))) c (s (a 3 s 3 + s 3 (Ls 4 a 3 c 4 )) c (s (d 3 + Lc 4 + a 3 s 4 ) + c (a 3 c 3 + c 3 (Ls 4 a 3 c 4 )))) j = s (c s (a 3 c 3 + c 3 (Ls 4 a 3 c 4 )) c c (d 3 + Lc 4 + a 3 s 4 )) + c (c s (d 3 + Lc 4 + a 3 s 4 ) s s (a 3 c 3 + c 3 (Ls 4 a 3 c 4 ))) j 3 = c (c c 3 c s s 3 ) (a 3 + Ls 4 a 3 c 4 ) + s (c 3 s + c c s 3 ) (a 3 + Ls 4 a 3 c 4 ) j 4 = s (c (s (Ls 4 a 3 c 4 ) c c 3 (Lc 4 + a 3 s 4 )) + s s 3 (Lc 4 + a 3 s 4 )) c (s (s (Ls 4 a 3 c 4 ) c c 3 (Lc 4 + a 3 s 4 )) c s 3 (Lc 4 + a 3 s 4 )) j 3 = s (c (c (a 3 s 3 + s 3 (Ls 4 a 3 c 4 )) + s (s (d 3 + Lc 4 + a 3 s 4 ) + c (a 3 c 3 + c 3 (Ls 4 a 3 c 4 )))) + s (s (a 3 s 3 + s 3 (Ls 4 a 3 c 4 )) c (s (d 3 + Lc 4 + a 3 s 4 ) + c (a 3 c 3 + c 3 (Ls 4 a 3 c 4 ))))) j 3 = s (c (c s (a 3 c 3 + c 3 (Ls 4 a 3 c 4 )) c c (d 3 + Lc 4 + a 3 s 4 )) s (c s (d 3 + Lc 4 + a 3 s 4 ) s s (a 3 c 3 + c 3 (Ls 4 a 3 c 4 )))) c (s (d 3 + Lc 4 + a 3 s 4 ) + c (a 3 c 3 + c 3 (Ls 4 a 3 c 4 ))) j 33 = c s s 3 ( a 3 sin ( θ 4 ) + Ls4 ) s (c (c 3 s + c c s 3 ) (a 3 + Ls 4 a 3 c 4 ) s (c c 3 c s s 3 ) (a 3 + Ls 4 a 3 c 4 )) j 34 = c (c (Ls 4 a 3 c 4 ) + c 3 s (Lc 4 + a 3 s 4 )) s (c (c (s (Ls 4 a 3 c 4 ) c c 3 (Lc 4 + a 3 s 4 )) + s s 3 (Lc 4 + a 3 s 4 )) + s (s (s (Ls 4 a 3 c 4 ) c c 3 (Lc 4 + a 3 s 4 )) c s 3 (L cosθ 4 + a 3 sinθ 4 ))). 6

ME 115(b): Solution to Homework #1

ME 115(b): Solution to Homework #1 ME 115(b): Solution to Homework #1 Solution to Problem #1: To construct the hybrid Jacobian for a manipulator, you could either construct the body Jacobian, JST b, and then use the body-to-hybrid velocity

More information

Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD)

Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD) Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD) Jatin Dave Assistant Professor Nirma University Mechanical Engineering Department, Institute

More information

ACTUATOR DESIGN FOR ARC WELDING ROBOT

ACTUATOR DESIGN FOR ARC WELDING ROBOT ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar-388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda-391760,

More information

INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users

INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users INSTRUCTOR WORKBOOK for MATLAB /Simulink Users Developed by: Amir Haddadi, Ph.D., Quanser Peter Martin, M.A.SC., Quanser Quanser educational solutions are powered by: CAPTIVATE. MOTIVATE. GRADUATE. PREFACE

More information

Mathematical Modeling and Design Analysis of a Dexterous Endeffector

Mathematical Modeling and Design Analysis of a Dexterous Endeffector International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 9 (June 2012), PP.01-08 www.ijerd.com Mathematical Modeling and Design Analysis of a Dexterous Endeffector

More information

INTRODUCTION. Robotics is a relatively young field of modern technology that crosses traditional

INTRODUCTION. Robotics is a relatively young field of modern technology that crosses traditional 1 INTRODUCTION Robotics is a relatively young field of modern technology that crosses traditional engineering boundaries. Understanding the complexity of robots and their applications requires knowledge

More information

Robot Task-Level Programming Language and Simulation

Robot Task-Level Programming Language and Simulation Robot Task-Level Programming Language and Simulation M. Samaka Abstract This paper presents the development of a software application for Off-line robot task programming and simulation. Such application

More information

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot

More information

Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction. Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

Computer Animation. Lecture 2. Basics of Character Animation

Computer Animation. Lecture 2. Basics of Character Animation Computer Animation Lecture 2. Basics of Character Animation Taku Komura Overview Character Animation Posture representation Hierarchical structure of the body Joint types Translational, hinge, universal,

More information

Force/position control of a robotic system for transcranial magnetic stimulation

Force/position control of a robotic system for transcranial magnetic stimulation Force/position control of a robotic system for transcranial magnetic stimulation W.N. Wan Zakaria School of Mechanical and System Engineering Newcastle University Abstract To develop a force control scheme

More information

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and

More information

Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes:

Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes: 3 3.1 2D Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes: 1. Change coordinate frames (world, window, viewport, device, etc). 2. Compose objects

More information

Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database

Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Seungsu Kim, ChangHwan Kim and Jong Hyeon Park School of Mechanical Engineering Hanyang University, Seoul, 133-791, Korea.

More information

Metrics on SO(3) and Inverse Kinematics

Metrics on SO(3) and Inverse Kinematics Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview

Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview Matthew T. Mason Mechanics of Manipulation Today s outline Readings, etc. We are starting chapter 3 of the text Lots of stuff online on representing rotations Murray, Li, and Sastry for matrix exponential

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1 19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A Two-DOF Mass-Spring-Dashpot Dynamic System Consider the lumped-parameter, mass-spring-dashpot dynamic system shown in the Figure. It has two point

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

RoboAnalyzer: 3D Model Based Robotic Learning Software

RoboAnalyzer: 3D Model Based Robotic Learning Software International Conference on Multi Body Dynamics 2011 Vijayawada, India. pp. 3 13 RoboAnalyzer: 3D Model Based Robotic Learning Software C. G. Rajeevlochana 1 and S. K. Saha 2 1 Research Scholar, Dept.

More information

Constraint satisfaction and global optimization in robotics

Constraint satisfaction and global optimization in robotics Constraint satisfaction and global optimization in robotics Arnold Neumaier Universität Wien and Jean-Pierre Merlet INRIA Sophia Antipolis 1 The design, validation, and use of robots poses a number of

More information

An Application of Robotic Optimization: Design for a Tire Changing Robot

An Application of Robotic Optimization: Design for a Tire Changing Robot An Application of Robotic Optimization: Design for a Tire Changing Robot RAUL MIHALI, MHER GRIGORIAN and TAREK SOBH Department of Computer Science and Engineering, University of Bridgeport, Bridgeport,

More information

Section 9.1 Vectors in Two Dimensions

Section 9.1 Vectors in Two Dimensions Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an

More information

A Simulation Study on Joint Velocities and End Effector Deflection of a Flexible Two Degree Freedom Composite Robotic Arm

A Simulation Study on Joint Velocities and End Effector Deflection of a Flexible Two Degree Freedom Composite Robotic Arm International Journal of Advanced Mechatronics and Robotics (IJAMR) Vol. 3, No. 1, January-June 011; pp. 9-0; International Science Press, ISSN: 0975-6108 A Simulation Study on Joint Velocities and End

More information

Vectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial

Vectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial Vectors VECTOR PRODUCT Graham S McDonald A Tutorial Module for learning about the vector product of two vectors Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk 1. Theory 2. Exercises

More information

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

More information

Modeling Mechanical Systems

Modeling Mechanical Systems chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab

More information

Matrix Normalization for Optimal Robot Design

Matrix Normalization for Optimal Robot Design IEEE International Conference on Robotics and Automation Leuven, Belgium, May 16-21, 1998. Matrix Normalization for Optimal Robot Design L. Stocco, S. E. Salcudean and F. Sassani * Department of Electrical

More information

Kinematics and Dynamics of Mechatronic Systems. Wojciech Lisowski. 1 An Introduction

Kinematics and Dynamics of Mechatronic Systems. Wojciech Lisowski. 1 An Introduction Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Kinematics and Dynamics of Mechatronic Systems Wojciech Lisowski 1 An Introduction KADOMS KRIM, WIMIR, AGH Kraków 1 The course contents:

More information

Design of a six Degree-of-Freedom Articulated Robotic Arm for Manufacturing Electrochromic Nanofilms

Design of a six Degree-of-Freedom Articulated Robotic Arm for Manufacturing Electrochromic Nanofilms Abstract Design of a six Degree-of-Freedom Articulated Robotic Arm for Manufacturing Electrochromic Nanofilms by Maxine Emerich Advisor: Dr. Scott Pierce The subject of this report is the development of

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

An Application of Robotic Optimization: Design for a Tire Changing Robot

An Application of Robotic Optimization: Design for a Tire Changing Robot An Application of Robotic Optimization: Design for a Tire Changing Robot RAUL MIHALI, MHER GRIGORIAN and TAREK SOBH Department of Computer Science and Engineering, University of Bridgeport, Bridgeport,

More information

Robot Dynamics and Control

Robot Dynamics and Control Robot Dynamics and Control Second Edition Mark W. Spong, Seth Hutchinson, and M. Vidyasagar January 28, 2004 2 Contents 1 INTRODUCTION 5 1.1 Robotics..................................... 5 1.2 History

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

More information

Matrix Differentiation

Matrix Differentiation 1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have

More information

This week. CENG 732 Computer Animation. Challenges in Human Modeling. Basic Arm Model

This week. CENG 732 Computer Animation. Challenges in Human Modeling. Basic Arm Model CENG 732 Computer Animation Spring 2006-2007 Week 8 Modeling and Animating Articulated Figures: Modeling the Arm, Walking, Facial Animation This week Modeling the arm Different joint structures Walking

More information

High Accuracy Articulated Robots with CNC Control Systems

High Accuracy Articulated Robots with CNC Control Systems Copyright 2012 SAE International 2013-01-2292 High Accuracy Articulated Robots with CNC Control Systems Bradley Saund, Russell DeVlieg Electroimpact Inc. ABSTRACT A robotic arm manipulator is often an

More information

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

More information

HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS

HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS Engineering MECHANICS, Vol. 16, 2009, No. 4, p. 287 296 287 HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS Stanislav Věchet, Jiří Krejsa* System modeling is a vital tool for cost reduction and design

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

DRAFT. Further mathematics. GCE AS and A level subject content

DRAFT. Further mathematics. GCE AS and A level subject content Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Affine Transformations

Affine Transformations A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates

More information

F Matrix Calculus F 1

F Matrix Calculus F 1 F Matrix Calculus F 1 Appendix F: MATRIX CALCULUS TABLE OF CONTENTS Page F1 Introduction F 3 F2 The Derivatives of Vector Functions F 3 F21 Derivative of Vector with Respect to Vector F 3 F22 Derivative

More information

Introduction to Engineering System Dynamics

Introduction to Engineering System Dynamics CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are

More information

Design Aspects of Robot Manipulators

Design Aspects of Robot Manipulators Design Aspects of Robot Manipulators Dr. Rohan Munasinghe Dept of Electronic and Telecommunication Engineering University of Moratuwa System elements Manipulator (+ proprioceptive sensors) End-effector

More information

General model of a structure-borne sound source and its application to shock vibration

General model of a structure-borne sound source and its application to shock vibration General model of a structure-borne sound source and its application to shock vibration Y. Bobrovnitskii and T. Tomilina Mechanical Engineering Research Institute, 4, M. Kharitonievky Str., 101990 Moscow,

More information

Equivalent Spring Stiffness

Equivalent Spring Stiffness Module 7 : Free Undamped Vibration of Single Degree of Freedom Systems; Determination of Natural Frequency ; Equivalent Inertia and Stiffness; Energy Method; Phase Plane Representation. Lecture 13 : Equivalent

More information

Véronique PERDEREAU ISIR UPMC 6 mars 2013

Véronique PERDEREAU ISIR UPMC 6 mars 2013 Véronique PERDEREAU ISIR UPMC mars 2013 Conventional methods applied to rehabilitation robotics Véronique Perdereau 2 Reference Robot force control by Bruno Siciliano & Luigi Villani Kluwer Academic Publishers

More information

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix Malaysian Journal of Mathematical Sciences 8(2): 89-204 (204) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal On Motion of Robot End-Effector using the Curvature

More information

Abstract. Michael Scott Liszka, Master of Science, 2006. Department of Aerospace Engineering

Abstract. Michael Scott Liszka, Master of Science, 2006. Department of Aerospace Engineering Abstract Title of thesis: MECHANICAL DESIGN OF A ROBOTIC ARM EXOSKELETON FOR SHOULDER REHABILITATION Michael Scott Liszka, Master of Science, 2006 Thesis directed by: Professor David L. Akin Department

More information

Robotics. Chapter 25. Chapter 25 1

Robotics. Chapter 25. Chapter 25 1 Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Motor Control Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration

More information

Kinematical Animation. lionel.reveret@inria.fr 2013-14

Kinematical Animation. lionel.reveret@inria.fr 2013-14 Kinematical Animation 2013-14 3D animation in CG Goal : capture visual attention Motion of characters Believable Expressive Realism? Controllability Limits of purely physical simulation : - little interactivity

More information

A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS

A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS Sébastien Briot, Ilian A. Bonev Department of Automated Manufacturing Engineering École de technologie supérieure (ÉTS), Montreal,

More information

dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor

dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor Jaswandi Sawant, Divyesh Ginoya Department of Instrumentation and control, College of Engineering, Pune. ABSTRACT This

More information

Human-like Motion of a Humanoid Robot Arm Based on a Closed-Form Solution of the Inverse Kinematics Problem

Human-like Motion of a Humanoid Robot Arm Based on a Closed-Form Solution of the Inverse Kinematics Problem IEEE/RSJ Intern. Conf. on Intelligent Robots Systems IROS 23), USA, Oct. 27-3, 23 Human-like Motion of a Humanoid Robot Arm Based on a Closed-Form Solution of the Inverse Kinematics Problem T. Asfour R.

More information

Synthesis of Constrained nr Planar Robots to Reach Five Task Positions

Synthesis of Constrained nr Planar Robots to Reach Five Task Positions Synthesis of Constrained nr Planar Robots to Reach Five Task Positions Gim Song Soh Robotics and Automation Laboratory University of California Irvine, California 9697-3975 Email: gsoh@uci.edu J. Michael

More information

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,

More information

Introduction to Robotics Analysis, Systems, Applications

Introduction to Robotics Analysis, Systems, Applications Introduction to Robotics Analysis, Systems, Applications Saeed B. Niku Mechanical Engineering Department California Polytechnic State University San Luis Obispo Technische Urw/carsMt Darmstadt FACHBEREfCH

More information

Pre-requisites 2012-2013

Pre-requisites 2012-2013 Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional

More information

Lecture L5 - Other Coordinate Systems

Lecture L5 - Other Coordinate Systems S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

The Two-Body Problem

The Two-Body Problem The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic

More information

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z 28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

More information

Lab 2: Vector Analysis

Lab 2: Vector Analysis Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments

More information

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

Chapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 5A. Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Torque is a twist or turn that tends to produce rotation. * * * Applications

More information

Autonomous Mobile Robot-I

Autonomous Mobile Robot-I Autonomous Mobile Robot-I Sabastian, S.E and Ang, M. H. Jr. Department of Mechanical Engineering National University of Singapore 21 Lower Kent Ridge Road, Singapore 119077 ABSTRACT This report illustrates

More information

Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

More information

Motion Control of 3 Degree-of-Freedom Direct-Drive Robot. Rutchanee Gullayanon

Motion Control of 3 Degree-of-Freedom Direct-Drive Robot. Rutchanee Gullayanon Motion Control of 3 Degree-of-Freedom Direct-Drive Robot A Thesis Presented to The Academic Faculty by Rutchanee Gullayanon In Partial Fulfillment of the Requirements for the Degree Master of Engineering

More information

CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS

CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS 1 CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS Written by: Sophia Hassiotis, January, 2003 Last revision: February, 2015 Modern methods of structural analysis overcome some of the

More information

Operational Space Control for A Scara Robot

Operational Space Control for A Scara Robot Operational Space Control for A Scara Robot Francisco Franco Obando D., Pablo Eduardo Caicedo R., Oscar Andrés Vivas A. Universidad del Cauca, {fobando, pacaicedo, avivas }@unicauca.edu.co Abstract This

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

CBE 6333, R. Levicky 1 Differential Balance Equations

CBE 6333, R. Levicky 1 Differential Balance Equations CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,

More information

Design and Analysis of a Passively Compliant, Biologically Inspired Robot Arm

Design and Analysis of a Passively Compliant, Biologically Inspired Robot Arm ISSN (Online): 2319-764 Impact Factor (212): 3.358 Design and Analysis of a Passively Compliant, Biologically Inspired Robot Arm Mary NyaradzayiHughslar Chikuruwo 1, M. Vidya Sagar 2 1 M Tech Student,

More information

FUNDAMENTALS OF ROBOTICS

FUNDAMENTALS OF ROBOTICS FUNDAMENTALS OF ROBOTICS Lab exercise Stäubli AULINAS Josep (u1043469) GARCIA Frederic (u1038431) Introduction The aim of this tutorial is to give a brief overview on the Stäubli Robot System describing

More information

2.2 Magic with complex exponentials

2.2 Magic with complex exponentials 2.2. MAGIC WITH COMPLEX EXPONENTIALS 97 2.2 Magic with complex exponentials We don t really know what aspects of complex variables you learned about in high school, so the goal here is to start more or

More information

Kinematics and force control for a Gantry-Tau robot

Kinematics and force control for a Gantry-Tau robot ISSN 0280-5316 ISRN LUTFD2/TFRT--5850--SE Kinematics and force control for a Gantry-Tau robot Johan Friman Department of Automatic Control Lund University January 2010 Lund University Department of Automatic

More information

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Let s first see how precession works in quantitative detail. The system is illustrated below: ... lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

More information

Practical Work DELMIA V5 R20 Lecture 1. D. Chablat / S. Caro Damien.Chablat@irccyn.ec-nantes.fr Stephane.Caro@irccyn.ec-nantes.fr

Practical Work DELMIA V5 R20 Lecture 1. D. Chablat / S. Caro Damien.Chablat@irccyn.ec-nantes.fr Stephane.Caro@irccyn.ec-nantes.fr Practical Work DELMIA V5 R20 Lecture 1 D. Chablat / S. Caro Damien.Chablat@irccyn.ec-nantes.fr Stephane.Caro@irccyn.ec-nantes.fr Native languages Definition of the language for the user interface English,

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Intelligent Robotics Lab.

Intelligent Robotics Lab. 1 Variable Stiffness Actuation based on Dual Actuators Connected in Series and Parallel Prof. Jae-Bok Song (jbsong@korea.ac.kr ). (http://robotics.korea.ac.kr) ti k Depart. of Mechanical Engineering, Korea

More information

Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING

Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING Technological Literacy Review of Robotics I Topics and understand and be able to implement the "design 8.1, 8.2 Technology Through the Ages

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product) 0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition

More information