# Mathematical Modeling and Design Analysis of a Dexterous Endeffector

Save this PDF as:

Size: px
Start display at page:

Download "Mathematical Modeling and Design Analysis of a Dexterous Endeffector"

## Transcription

2 orientation.one topic of immediate interest is the manner in which we represent these quantities and manipulate them mathematically. II. DESIGN OF ANTHROPOMORPHIC END EFFECTOR Based on the discussion given in the previous sections, it was decided to design a new anthropomorphic robot hand that incorporated two fingers and an opposable thumb. Each of the fingers in the new design has three joints allowing flexion motion, equivalent to the MCP, PIP and DIP joints of the human finger, here in after referred to as finger joints 1, 2, and 3 respectively. Each finger has three independent degrees-of-freedom, The thumb has two joints and here In after referred to as thumb joints 1 and 2 respectively. Hence making the design of total 8 DOF.Each joints where to be controlled by different actuators, the actuators where to be located at a remote location and to drive the joints using tendons connected to pulley s at respective joints. Parameters (mm) Table 1.Dimensions of the designed End Effector. Proximal Phalange Middle Phalange Distal Phalange Length Breadth Thickness Diameter of Pulley Fig.1. End Effector Designed in Solid works. III. ACTUATION MECHANISM We employed a tendon-driven mechanism to drive the fingers in order to design a small hand part with a sufficient fingertip force. The driving forces from the actuators are transmitted to the fingers through a gear mechanism at the wrist. The gear mechanism at the wrist makes the hand part and the actuator part split able. By splitting the hand part and the actuator part, we can separately maintain either parts, and moreover, we can replace the actuator part to meet conditions. The gears for driving the fingers are arranged in line In order to develop a human-sized finger, we have integrated a special thin and small pulley. The pulley consists of a cover and a base with a wire guiding groove. The wire is set along the guiding groove and is held by screwing the cover part. The developed pulley is used in every joint. The dimensions of the developed robot hand is 200[mm] (length) 70[mm] (width) 20[mm] (thickness). and it has at least 10[N] at the fingertip in the current configuration. The simulation test in ADAMS showed the effectiveness of the developed mechanism in grasping objects of various shape and size. 2

3 Fig.2. End Effector Simulation in ADAMS. Fig.3. End Effector Simulation in ADAMS Grasping a ball. IV. MODEL OF A PROPOSED MULTI FINGER ROBOTIC HAND The finger has 3 active joints. DIP joint has connection with PIP joint. The thumb is designed by having 2 active joints. The joint of each link of MFRH model is a frame to determine the kinematic derivation. The frames are named by number according to which they are attached. The convention that was used to locate the frame on the links is known as the D-H convention which is given below: The z - axis of frame {i}, called {zi}, is coincident with the joint i. The origin of frame {i} is located where the αi perpendicular intersects the joint i axis. xi points along a i in the direction from joint i to joint i +1. Assuming that the frames have been attached to the links according to the D-H convention, the following definitions of the link parameters are valid.rotate the frame xi-1 yi-1z i-1 about the z i-1 axis through an angle i. Translate the current frame xi-1 yi-1 zi-1 along the current z i-1 axis by di units. Translate the current frame xi-1 yi-1 zi-1 along the current xi axis by αi units. Rotate the current frame xi-1 yi-1 zi-1 about the xi axis through an angle ai. Fig. 4 shows that the finger has four frames with three joints. The first frame also known as the base frame is x0, y0, z0 and the subsequent frames are assigned as per the figure starting with x1, y1, z1 and ending with x4, y4, z4. The forward kinematic solution of a finger will be assigned using homogenous matrix. 3

4 1) Forward Kinematic Fig.4. Model of Index finger Forward Kinematic is used to determine the position and orientation of MFRH to determine the position and orientation of the robot hand relative to the robot base coordinate system. The derivation of forward kinematic equation based on TableI Table I. DH Table i i i a i 1 α i L1(MCP) 0 0 L2(PIP) L3(DIP) 0 V. DYNAMIC MODELING Manipulator dynamics is concerned with the equations of motion, the way in which the manipulator moves in response to torques applied by the actuators, or external forces. The history and mathematics of the dynamics of serial-link manipulators is well covered by Paul and Hollerbach. There are two problems related to manipulator dynamics that are important to solve: inverse dynamics in which the manipulator s equations of motion are solved for given motion to determine the generalized forces. direct dynamics in which the equations of motion are integrated to determine the generalized coordinate response to applied generalized forces. The equations of motion for an n-axis manipulator are given by Q =M( ) +C(, ) +F( )+G( ) (1) where is the vector of generalized joint coordinates describing the pose of the manipulator, is the vector of joint velocities, is the vector of joint accelerations, M is the symmetric joint-space inertia matrix, or manipulator inertia tensor, C describes Coriolis and centripetal effects-centripetal torques are proportional to 2 i, while the Coriolis torques are proportional to i j, 4

5 F describes viscous and Coulomb friction and is not generally considered part of the rigidbodydynamics, G is the gravity loading, Q is the vector of generalized forces associated with the generalized coordinates. A.. Recursive Newton-Euler formulation The recursive Newton-Euler (RNE) formulation computes the inverse manipulator dynamics, that is, the joint torques required for a given set of joint angles, velocities and accelerations. The forward recursion propagates kinematic information such as angular velocities, angular accelerations, linear accelerations from the base reference frame (inertial frame) to the end-effector. The backward recursion propagates the forces and moments exerted on each link from the end-effector of the manipulator to the base reference frame3. 1) Outward recursion, 1 i n. If axis i+1 is rotational Fig. 5 The Frames of the link with reference to the previous link i+1 w i+1 = i+1 R ii w i + i+1 i+1 ẑ i+1 i+1 w i+1 = i+1 R i i w i + i+1 R i i w i i+1 i+1 ẑ i+1 + i+1 i+1 ẑ i+1 i+1 v i+1 = i+1 R i ( i v i + i w i i p i+1 ) i+1 v i+1 = i+1 R i ( i w i i p i+1 + i w i ( i w i i p i+1 )+ i v i ) i+1 v Ci+1 = i+1 w i+1 i+1 pc i+1 + i+1 w i+1 { i+1 w i+1 i+1 pc i+1 }+ i+1 v i+1 i+1 F i+1 =m i+1 i+1 v Ci+1 i+1 N i+1 = Ci+1 I i+1 i+1 w i+1 + i+1 w i+1 Ci+1 I i+1 i+1 w i+1 2) Inward iterations: i: 4 to 1 i f i = i R i+1 i+i f i+1 + i F i i n i = i N i + i R i+1 i+i n i+1 + i pc i i F i + i p i+1 i R i+1 i+i f i+1 i = i n i T i ẑ i. VI. TRANSFORMATION MATRICES OF DIFFERENT FRAMES USING DENAVIT HARTENBERG While it is possible to carry out all of the analysis using an arbitrary frame attached to each link, it is helpful to be systematic in the choice of these frames. A commonly used convention for selecting frames of reference in robotic applications is the Denavit- Hartenberg, or D-H convention. In this convention, each homogeneous transformation Hi i-1 is represented as a product of four basic transformations 5

6 . Static Forces in Manipulator is obtained by taking the Transpose of the jacobian. =J T F VII. RESULTS AND DISCUSSIONS The Dexterous End effector design has a total 8 DOF, with 3 fingers which are to be actuated independently through motors placed at remote location. The objective of the design was to achieve the aesthetic and dexterity of human hand such that it can be used in work floor of an industry to perform various operation without the need of swapping of end effectors during operation cycles. 6

7 q3 (deg) q2 (deg) q1 (deg) Mathematical Modeling and Design Analysis of a Dexterous End-effector The kinematic and dynamic analysis where derived manually to determine the position, velocity, acceleration and torque with respect to time. Dynamic simulation was carried out using ADAMS which gave us the simulation regarding various grasp positions regarding different size and objects. The maximum finger tip force that can be obtained using this design was about 8 15 N which is similar to that several designs developed in the past GIFU hand was able to produce only 4-9 N. Fig 6. Reaction force developed in End Effector during grasp simulation in ADAMS t (s) t (s) 4 x t (s) Fig7.The variable q (or) varying with respect to time, plot obtained in Matlab REFERENCES [1]. H. Kawasaki, T. Komatu, K. Uchiyama, Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II, IEEE/ASME Transactions on Mechatronics 7 (3) (2002) [2]. T. Mouri, H. Kawasaki, K. Yoshikawa, J. Takai, S. Ito, Anthropomorphic Robot Hand: Gifu Hand III, 2002, pp [3]. J. Butterfass, M. Grebenstein, H. Liu, G. Hirzinger, DLR-Hand-II: next generation of a dextrous robot hand, Proc. of IEEE Int. Conf. on Robotics and Automation, 2001, pp [4]. J. Ueda, M. Kondo, T. Ogasawara, The multifingered naist-hand system for robot in-hand manipulation, Mechanism and Machine Theory 45 (2) (2010) [5]. S.C. Jacobsen, E.K. Iversen, D.F. Knutti, R.T. Johnson, K.B. Biggers, Design of the utah/mit dexterous hand, Proc. of IEEE International Conference on Robotics and Automation, 1986, pp [6]. M. Diftler, C. Lovchik, The robonaut hand: a dexterous robot hand for space, Proc. of IEEE International Conference on Robotics and Automation, 1999, pp [7]. H. Kobayashi, K. Hyodo, and D. Ogane, On tendon-driven robotic mechanisms with redundant tendons, International Journal of Robotics Research, vol. 17, no. 5, pp , [8]. F. Laurin-Kovitz, K. Colgate, J. Carnes, and D. Steven, Design of components for programmable passive impedance, Proceedings - IEEE International Conference on Robotics and Automation, vol. 2, pp ,

8 [9]. K. Koganezawa and M. Yamazaki, Mechanical stiffness control of tendon-driven joints, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, 2002, pp [10]. H. Kino, N. Okamura, and S. Yabe, Basic characteristics of tendondriven manipulator using belt pulleys, in Proceedings of 2004 IEEE International Conference on Intelligent Robots and Systems, vol. 2, 2004, pp [11]. M. Grebenstein and P. van der Smagt, Antagonism for a highly anthropomorphic hand arm system, Advanced Robotics, no. 22, pp ,

### Torque and Workspace Analysis for Flexible Tendon Driven Mechanisms

21 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 21, Anchorage, Alaska, USA Torque and Workspace Analysis for Flexible Tendon Driven Mechanisms Maxime

### ACTUATOR DESIGN FOR ARC WELDING ROBOT

ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar-388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda-391760,

### A Microcontroller Based Four Fingered Robotic Hand

A Microcontroller Based Four Fingered Robotic Hand P.S.Ramaiah 1 1 Dept. Of Computer Science And Systems Engineering,Andhra University Visakhapatnam, psrama@gmail.com M.Venkateswara Rao 2 2 Dept of Information

### Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD)

Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD) Jatin Dave Assistant Professor Nirma University Mechanical Engineering Department, Institute

### Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot

### Design Aspects of Robot Manipulators

Design Aspects of Robot Manipulators Dr. Rohan Munasinghe Dept of Electronic and Telecommunication Engineering University of Moratuwa System elements Manipulator (+ proprioceptive sensors) End-effector

### UOM Robotics and Industrial Automation Laboratory

UOM Robotics and Industrial Automation Laboratory Department of Industrial and Manufacturing Engineering, RIAL Mission o to be a Centre of Excellence in Malta for research, development, teaching and outreach

### Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

### Véronique PERDEREAU ISIR UPMC 6 mars 2013

Véronique PERDEREAU ISIR UPMC mars 2013 Conventional methods applied to rehabilitation robotics Véronique Perdereau 2 Reference Robot force control by Bruno Siciliano & Luigi Villani Kluwer Academic Publishers

### INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users

INSTRUCTOR WORKBOOK for MATLAB /Simulink Users Developed by: Amir Haddadi, Ph.D., Quanser Peter Martin, M.A.SC., Quanser Quanser educational solutions are powered by: CAPTIVATE. MOTIVATE. GRADUATE. PREFACE

### Design of a six Degree-of-Freedom Articulated Robotic Arm for Manufacturing Electrochromic Nanofilms

Abstract Design of a six Degree-of-Freedom Articulated Robotic Arm for Manufacturing Electrochromic Nanofilms by Maxine Emerich Advisor: Dr. Scott Pierce The subject of this report is the development of

### C is a point of concurrency is at distance from End Effector frame & at distance from ref frame.

Module 6 : Robot manipulators kinematics Lecture 21 : Forward & inverse kinematics examples of 2R, 3R & 3P manipulators Objectives In this course you will learn the following Inverse position and orientation

### Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and

### Design and Implementation of a 4-Bar linkage Gripper

IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 5 Ver. IV (Sep- Oct. 2014), PP 61-66 Design and Implementation of a 4-Bar linkage Gripper

### Preliminary Design of a Three-Finger Underactuated Adaptive End Effector with a Breakaway Clutch Mechanism

Telegenov, K. et al. Paper: Preliminary Design of a Three-Finger Underactuated Adaptive End Effector with a Breakaway Clutch Mechanism Kuat Telegenov, Yedige Tlegenov, Shahid Hussain, and Almas Shintemirov

### Design of a Robotic Arm with Gripper & End Effector for Spot Welding

Universal Journal of Mechanical Engineering 1(3): 92-97, 2013 DOI: 10.13189/ujme.2013.010303 http://www.hrpub.org Design of a Robotic Arm with Gripper & End Effector for Spot Welding Puran Singh *, Anil

### Synthesis of Constrained nr Planar Robots to Reach Five Task Positions

Synthesis of Constrained nr Planar Robots to Reach Five Task Positions Gim Song Soh Robotics and Automation Laboratory University of California Irvine, California 9697-3975 Email: gsoh@uci.edu J. Michael

### Operational Space Control for A Scara Robot

Operational Space Control for A Scara Robot Francisco Franco Obando D., Pablo Eduardo Caicedo R., Oscar Andrés Vivas A. Universidad del Cauca, {fobando, pacaicedo, avivas }@unicauca.edu.co Abstract This

### Modeling and Simulation of SCORA-ER14 Robot in ADAMS Platform

Modeling and Simulation of SCORA-ER14 Robot in ADAMS Platform Ashok Kumar Jha, Partha Pratim Roy, Ajoy Kumar Dutta, Jyotirmoy Saha Abstract SCORA-ER14 robot is a four degree of freedom robot which is basically

### Design of Distributed End-effectors for Caging-Specialized Manipulator

Design of Distributed End-effectors for Caging-Specialized Manipulator (Design Concept and Development of Finger Component ) Rui Fukui, Keita Kadowaki, Yamato Niwa, Weiwei Wan, Masamichi Shimosaka and

### Introduction to Robotics Analysis, Systems, Applications

Introduction to Robotics Analysis, Systems, Applications Saeed B. Niku Mechanical Engineering Department California Polytechnic State University San Luis Obispo Technische Urw/carsMt Darmstadt FACHBEREfCH

### Universal Exoskeleton Arm Design for Rehabilitation

Journal of Automation and Control Engineering Vol. 3, No. 6, December 215 Universal Exoskeleton Arm Design for Rehabilitation Siam Charoenseang and Sarut Panjan Institute of Field Robotics, King Mongkut

### Design of a Universal Robot End-effector for Straight-line Pick-up Motion

Session Design of a Universal Robot End-effector for Straight-line Pick-up Motion Gene Y. Liao Gregory J. Koshurba Wayne State University Abstract This paper describes a capstone design project in developing

### How Far Is the Human Hand? A Review on Anthropomorphic Robotic End-effectors

How Far Is the Human Hand? A Review on Anthropomorphic Robotic End-effectors L. Biagiotti 1, F. Lotti 2, C. Melchiorri 1, and G. Vassura 2 1 DEIS, University of Bologna Via Risorgimento 2, 40136 Bologna,

### Robot Task-Level Programming Language and Simulation

Robot Task-Level Programming Language and Simulation M. Samaka Abstract This paper presents the development of a software application for Off-line robot task programming and simulation. Such application

### Force/position control of a robotic system for transcranial magnetic stimulation

Force/position control of a robotic system for transcranial magnetic stimulation W.N. Wan Zakaria School of Mechanical and System Engineering Newcastle University Abstract To develop a force control scheme

### Robot coined by Karel Capek in a 1921 science-fiction Czech play

Robotics Robot coined by Karel Capek in a 1921 science-fiction Czech play Definition: A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices

### Constraint satisfaction and global optimization in robotics

Constraint satisfaction and global optimization in robotics Arnold Neumaier Universität Wien and Jean-Pierre Merlet INRIA Sophia Antipolis 1 The design, validation, and use of robots poses a number of

### Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

### ME 115(b): Solution to Homework #1

ME 115(b): Solution to Homework #1 Solution to Problem #1: To construct the hybrid Jacobian for a manipulator, you could either construct the body Jacobian, JST b, and then use the body-to-hybrid velocity

### INTRODUCTION. Robotics is a relatively young field of modern technology that crosses traditional

1 INTRODUCTION Robotics is a relatively young field of modern technology that crosses traditional engineering boundaries. Understanding the complexity of robots and their applications requires knowledge

### An Integrated Approach to the Design of Complex Robotic End-effectors

An Integrated Approach to the Design of Complex Robotic End-effectors L. Biagiotti, F. Lotti, C. Melchiorri, G. Vassura 1 DEIS - DIEM, University of Bologna Via Risorgimento 2, 40136 Bologna, Italy {lbiagiotti,

### Motion Control of 3 Degree-of-Freedom Direct-Drive Robot. Rutchanee Gullayanon

Motion Control of 3 Degree-of-Freedom Direct-Drive Robot A Thesis Presented to The Academic Faculty by Rutchanee Gullayanon In Partial Fulfillment of the Requirements for the Degree Master of Engineering

### Matrix Normalization for Optimal Robot Design

IEEE International Conference on Robotics and Automation Leuven, Belgium, May 16-21, 1998. Matrix Normalization for Optimal Robot Design L. Stocco, S. E. Salcudean and F. Sassani * Department of Electrical

### Motion planning for high DOF anthropomorphic hands

9 IEEE International Conference on Robotics and Automation Kobe International Conference Center Kobe, Japan, May -7, 9 Motion planning for high DOF anthropomorphic hands J. Rosell, R. Suárez, C. Rosales,

### Shadow Dexterous Hand Technical Specification. Shadow Dexterous Hand C6M2. Technical Specification Current Release 27st June /13

Shadow Dexterous Hand C6M2 Technical Specification Current Release 27st June 212 1/13 Table of Contents 1 Overview...4 2 Mechanical Profile...5 2.1 Dimensions...5 2.2 Kinematic structure...6 2.3 Weight...6

### THEORETICAL MECHANICS

PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents

### HYFLAM D3: Report of Scenarios 08/02/2012

08/02/2012 Author: Daniel Greenwald Reviewers: Hugo Elias, Rich Walker, Jan Gries, Jackie Duggan 1/13 Table of Contents 1 Introduction...2 2 Experiments...2 2.1 Opening and Closing a Plastic Jar...3 2.2

### Robotics and Automation Blueprint

Robotics and Automation Blueprint This Blueprint contains the subject matter content of this Skill Connect Assessment. This Blueprint does NOT contain the information one would need to fully prepare for

### Mechanical Design of a 6-DOF Aerial Manipulator for assembling bar structures using UAVs

Mechanical Design of a 6-DOF Aerial Manipulator for assembling bar structures using UAVs R. Cano*. C. Pérez* F. Pruaño* A. Ollero** G. Heredia** *Centre for Advanced Aerospace Technologies, Seville, Spain

### Robot Modeling and Control

Robot Modeling and Control First Edition Mark W. Spong, Seth Hutchinson, and M. Vidyasagar JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto Preface TO APPEAR i

### Dexterous Grasping via Eigengrasps: A Low-dimensional Approach to a High-complexity Problem

Dexterous Grasping via Eigengrasps: A Low-dimensional Approach to a High-complexity Problem Matei Ciocarlie Corey Goldfeder Peter Allen Columbia University, New York, USA E-mail: {cmatei,coreyg,allen}@cs.columbia.edu

### A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS

A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS Sébastien Briot, Ilian A. Bonev Department of Automated Manufacturing Engineering École de technologie supérieure (ÉTS), Montreal,

### RealTime Tracking Meets Online Grasp Planning

RealTime Tracking Meets Online Grasp Planning Danica Kragić, Computer Vision and Active Perception Numerical Analysis and Computer Science Royal Institute of Technology SE 100 44 Stockholm, Sweden Andrew

### Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Renuka V. S. & Abraham T Mathew Electrical Engineering Department, NIT Calicut E-mail : renuka_mee@nitc.ac.in,

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

### LEGO NXT-based Robotic Arm

Óbuda University e Bulletin Vol. 2, No. 1, 2011 LEGO NXT-based Robotic Arm Ákos Hámori, János Lengyel, Barna Reskó Óbuda University barna.resko@arek.uni-obuda.hu, hamoriakos@gmail.com, polish1987@gmail.com

### SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

### ROBOT END EFFECTORS SCRIPT

Slide 1 Slide 2 Slide 3 Slide 4 An end effector is the business end of a robot or where the work occurs. It is the device that is designed to allow the robot to interact with its environment. Similar in

### Subjects for period of study at LARM in Cassino For stages and thesis developments

Subjects for period of study at LARM in Cassino For stages and thesis developments CONTACT: prof Marco Ceccarelli at Ceccarelli@unicas.it LARM webpage: http://webuser.unicas.it/weblarm/larmindex.htm SUBJECT:

### Kinematics and Dynamics of Mechatronic Systems. Wojciech Lisowski. 1 An Introduction

Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Kinematics and Dynamics of Mechatronic Systems Wojciech Lisowski 1 An Introduction KADOMS KRIM, WIMIR, AGH Kraków 1 The course contents:

### Quadcopters. Presented by: Andrew Depriest

Quadcopters Presented by: Andrew Depriest What is a quadcopter? Helicopter - uses rotors for lift and propulsion Quadcopter (aka quadrotor) - uses 4 rotors Parrot AR.Drone 2.0 History 1907 - Breguet-Richet

### Practical Work DELMIA V5 R20 Lecture 1. D. Chablat / S. Caro Damien.Chablat@irccyn.ec-nantes.fr Stephane.Caro@irccyn.ec-nantes.fr

Practical Work DELMIA V5 R20 Lecture 1 D. Chablat / S. Caro Damien.Chablat@irccyn.ec-nantes.fr Stephane.Caro@irccyn.ec-nantes.fr Native languages Definition of the language for the user interface English,

### Design, Fabrication, and Evaluation of a New Haptic Device Using a Parallel Mechanism

IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 6, NO. 3, SEPTEMBER 2001 221 Design, Fabrication, and Evaluation of a New Haptic Device Using a Parallel Mechanism Jungwon Yoon and Jeha Ryu, Member, IEEE Abstract

### Engineering Mechanics I. Phongsaen PITAKWATCHARA

2103-213 Engineering Mechanics I Phongsaen.P@chula.ac.th May 13, 2011 Contents Preface xiv 1 Introduction to Statics 1 1.1 Basic Concepts............................ 2 1.2 Scalars and Vectors..........................

### CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS

CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS E. Batzies 1, M. Kreutzer 1, D. Leucht 2, V. Welker 2, O. Zirn 1 1 Mechatronics Research

### HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS

Engineering MECHANICS, Vol. 16, 2009, No. 4, p. 287 296 287 HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS Stanislav Věchet, Jiří Krejsa* System modeling is a vital tool for cost reduction and design

### Principle Analysis and Parameter Optimization for Uuderactuated End- Effector Manipulator for Apple Picking

Send Orders for Reprints to reprints@benthamscience.ae 50 The Open Materials Science Journal, 2015, 9, 50-55 Open Access Principle Analysis and Parameter Optimization for Uuderactuated End- Effector Manipulator

### A Simulation Study on Joint Velocities and End Effector Deflection of a Flexible Two Degree Freedom Composite Robotic Arm

International Journal of Advanced Mechatronics and Robotics (IJAMR) Vol. 3, No. 1, January-June 011; pp. 9-0; International Science Press, ISSN: 0975-6108 A Simulation Study on Joint Velocities and End

### Scooter, 3 wheeled cobot North Western University. PERCRO Exoskeleton

Scooter, 3 wheeled cobot North Western University A cobot is a robot for direct physical interaction with a human operator, within a shared workspace PERCRO Exoskeleton Unicycle cobot the simplest possible

### High Performance Medical Robot Requirements and Accuracy Analysis

High Performance Medical Robot Requirements and Accuracy Analysis Abstract C. Mavroidis 1, J. Flanz 2, S. Dubowsky 3, P. Drouet 4 and Michael Goitein 2 1 Department of Mechanical and Aerospace Engineering,

### Development of Easy Teaching Interface for a Dual Arm Robot Manipulator

Development of Easy Teaching Interface for a Dual Arm Robot Manipulator Chanhun Park and Doohyeong Kim Department of Robotics and Mechatronics, Korea Institute of Machinery & Materials, 156, Gajeongbuk-Ro,

### Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database

Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Seungsu Kim, ChangHwan Kim and Jong Hyeon Park School of Mechanical Engineering Hanyang University, Seoul, 133-791, Korea.

### MODELLING A SATELLITE CONTROL SYSTEM SIMULATOR

National nstitute for Space Research NPE Space Mechanics and Control Division DMC São José dos Campos, SP, Brasil MODELLNG A SATELLTE CONTROL SYSTEM SMULATOR Luiz C Gadelha Souza gadelha@dem.inpe.br rd

### Anthropomorphic Robots and Human Interactions

1 Introduction Anthropomorphic Robots and Human Interactions John M. Hollerbach and Stephen C. Jacobsen Dept. of Computer Science & Center for Engineering Design University of Utah, Salt Lake City, UT

### RoboAnalyzer: 3D Model Based Robotic Learning Software

International Conference on Multi Body Dynamics 2011 Vijayawada, India. pp. 3 13 RoboAnalyzer: 3D Model Based Robotic Learning Software C. G. Rajeevlochana 1 and S. K. Saha 2 1 Research Scholar, Dept.

### Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

### Obrero: A platform for sensitive manipulation

Proceedings of 2005 5th IEEE-RAS International Conference on Humanoid Robots Obrero: A platform for sensitive manipulation Eduardo Torres-Jara Computer Science and Artificial Intelligence Laboratory Massachusetts

### Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

### On-line trajectory planning of robot manipulator s end effector in Cartesian Space using quaternions

On-line trajectory planning of robot manipulator s end effector in Cartesian Space using quaternions Ignacio Herrera Aguilar and Daniel Sidobre (iherrera, daniel)@laas.fr LAAS-CNRS Université Paul Sabatier

### PRACTICAL SESSION 5: RAPID PROGRAMMING. Arturo Gil Aparicio. arturo.gil@umh.es

PRACTICAL SESSION 5: RAPID PROGRAMMING Arturo Gil Aparicio arturo.gil@umh.es OBJECTIVES After this practical session, the student should be able to: Program a robotic arm using the RAPID language. Simulate

### WEB ENABLED ROBOT DESIGN AND DYNAMIC CONTROL SIMULATION SOFTWARE SOLUTIONS FROM TASK POINTS DESCRIPTION

WEB ENABLED ROBOT DESIGN AND DYNAMIC CONTROL SIMULATION SOFTWARE SOLUTIONS FROM TASK POINTS DESCRIPTION Tarek M. Sobh, Bei Wang* and Sarosh H. Patel University of Bridgeport Bridgeport, CT 06601 U.S.A.

### An Application of Robotic Optimization: Design for a Tire Changing Robot

An Application of Robotic Optimization: Design for a Tire Changing Robot RAUL MIHALI, MHER GRIGORIAN and TAREK SOBH Department of Computer Science and Engineering, University of Bridgeport, Bridgeport,

### Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

### This week. CENG 732 Computer Animation. Challenges in Human Modeling. Basic Arm Model

CENG 732 Computer Animation Spring 2006-2007 Week 8 Modeling and Animating Articulated Figures: Modeling the Arm, Walking, Facial Animation This week Modeling the arm Different joint structures Walking

### High Accuracy Articulated Robots with CNC Control Systems

Copyright 2012 SAE International 2013-01-2292 High Accuracy Articulated Robots with CNC Control Systems Bradley Saund, Russell DeVlieg Electroimpact Inc. ABSTRACT A robotic arm manipulator is often an

### ABSTRACT. Emily Tai, Master of Science, 2007. Associate Professor David L. Akin Department of Aerospace Engineering

ABSTRACT Title of thesis: DESIGN OF AN ANTHROPOMORPHIC ROBOTIC HAND FOR SPACE OPERATIONS Emily Tai, Master of Science, 2007 Thesis directed by: Associate Professor David L. Akin Department of Aerospace

### An Application of Robotic Optimization: Design for a Tire Changing Robot

An Application of Robotic Optimization: Design for a Tire Changing Robot RAUL MIHALI, MHER GRIGORIAN and TAREK SOBH Department of Computer Science and Engineering, University of Bridgeport, Bridgeport,

### Introduction to Engineering System Dynamics

CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are

### Mechanism and Control of a Dynamic Lifting Robot

Mechanism and Control of a Dynamic Lifting Robot T. Uenoa, N. Sunagaa, K. Brownb and H. Asada' 'Institute of Technology, Shimizu Corporation, Etchujima 3-4-17, Koto-ku, Tokyo 135, Japan 'Department of

### Medical Robotics. Control Modalities

Università di Roma La Sapienza Medical Robotics Control Modalities The Hands-On Acrobot Robot Marilena Vendittelli Dipartimento di Ingegneria Informatica, Automatica e Gestionale Control modalities differ

### Dynamic Analysis. Mass Matrices and External Forces

4 Dynamic Analysis. Mass Matrices and External Forces The formulation of the inertia and external forces appearing at any of the elements of a multibody system, in terms of the dependent coordinates that

### Vibrations can have an adverse effect on the accuracy of the end effector of a

EGR 315 Design Project - 1 - Executive Summary Vibrations can have an adverse effect on the accuracy of the end effector of a multiple-link robot. The ability of the machine to move to precise points scattered

### CIM Computer Integrated Manufacturing

INDEX CIM IN BASIC CONFIGURATION CIM IN ADVANCED CONFIGURATION CIM IN COMPLETE CONFIGURATION DL CIM A DL CIM B DL CIM C DL CIM C DL CIM B DL CIM A Computer Integrated Manufacturing (CIM) is a method of

### On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix

Malaysian Journal of Mathematical Sciences 8(2): 89-204 (204) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal On Motion of Robot End-Effector using the Curvature

### Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

### UNIT II Robots Drive Systems and End Effectors Part-A Questions

UNIT II Robots Drive Systems and End Effectors Part-A Questions 1. Define End effector. End effector is a device that is attached to the end of the wrist arm to perform specific task. 2. Give some examples

### Design of an Anthropomorphic Robotic Finger System with Biomimetic Artificial Joints

Design of an Anthropomorphic Robotic Finger System with Biomimetic Artificial Joints Zhe Xu, Vikash Kumar, Yoky Matsuoka and Emanuel Todorov Abstract We describe a new robotic finger that is composed of

### dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor

dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor Jaswandi Sawant, Divyesh Ginoya Department of Instrumentation and control, College of Engineering, Pune. ABSTRACT This

### ANALYSIS AND OPTIMIZATION OF CLOSED-LOOP MANIPULATOR CALIBRATION WITH FIXED ENDPOINT

ANALYSIS AND OPTIMIZATION OF CLOSED-LOOP MANIPULATOR CALIBRATION WITH FIXED ENDPOINT Marco Antonio Meggiolaro Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Mechanical Engineering

### Robot Dynamics and Control

Robot Dynamics and Control Second Edition Mark W. Spong, Seth Hutchinson, and M. Vidyasagar January 28, 2004 2 Contents 1 INTRODUCTION 5 1.1 Robotics..................................... 5 1.2 History

### Robotics. Chapter 25. Chapter 25 1

Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Motor Control Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration

### Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 216-8440 This paper

### Onboard electronics of UAVs

AARMS Vol. 5, No. 2 (2006) 237 243 TECHNOLOGY Onboard electronics of UAVs ANTAL TURÓCZI, IMRE MAKKAY Department of Electronic Warfare, Miklós Zrínyi National Defence University, Budapest, Hungary Recent

### Innovative Painting Robotic Cell for Industrial Applications

Innovative Painting Robotic Cell for Industrial Applications Atef A. ATA * Alaa ELEYAN Department of Mechatronics Engineering, Mevlana University, Konya, TURKEY * Department of Electrical and Electronics

### Wind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6

Wind Turbines 1 Wind Turbines 2 Introductory Question Wind Turbines You and a child half your height lean out over the edge of a pool at the same angle. If you both let go simultaneously, who will tip

### Engineering Statics in High School Physics Courses. Paul S. Steif (steif@cmu.edu) Department of Mechanical Engineering Carnegie Mellon University

Engineering Statics in High School Physics Courses Paul S. Steif (steif@cmu.edu) Department of Mechanical Engineering Carnegie Mellon University INTRODUCTION Physics teachers have a number of goals for

### Design and Analysis of a Passively Compliant, Biologically Inspired Robot Arm

ISSN (Online): 2319-764 Impact Factor (212): 3.358 Design and Analysis of a Passively Compliant, Biologically Inspired Robot Arm Mary NyaradzayiHughslar Chikuruwo 1, M. Vidya Sagar 2 1 M Tech Student,