CONSTRUCTION OF ROCK SOCKETED PILES IN SYDNEY SANDSTONE TO MEET PERFORMANCE REQUIREMENTS 1

Size: px
Start display at page:

Download "CONSTRUCTION OF ROCK SOCKETED PILES IN SYDNEY SANDSTONE TO MEET PERFORMANCE REQUIREMENTS 1"

Transcription

1 CONSTRUCTION OF ROCK SOCKETED PILES IN SYDNEY SANDSTONE TO MEET PERFORMANCE 1 Pawan L. Sethi 1, Ingrid Geng 2 and Patrick K. Wong 3 1 Associate, 2 Graduate Geotechnical Engineer, 3 Senior Principal, Coffey Geotechnics Pty Ltd, Sydney, Australia ABSTRACT Construction aspects are critical to ensure that the design intent / requirements are achieved through good construction methodology and quality control. This translates into ensuring the pile shaft/sidewalls are to a large extent free of crushed or smeared rock. Similarly, the base should be clear of any debris also. Presence of soft material / debris on the base of the pile will alter the load deflection characteristics. In order to meet the performance requirements through construction a strategy was formulated. The strategy included an advance programme of proof core drilling, use of appropriate drilling tools, reference to the available site investigation information and full-time geotechnical supervision. 1 INTRODUCTION Stage 1 of the Barangaroo Development accounts for approximately 4 ha of the total 22 ha of land currently occupied by the former shipping and overseas passenger terminal, located at the southern extent of the site, alongside Hickson Road, Millers Point. Barangaroo South, Stage 1 development includes the construction of three high rise commercial towers and associated structures including podiums. The foundation system consists entirely of piled foundations for the towers. All piles are required to be socketed into the underlying sandstone rock. The core and tower column piles are more heavily loaded than the podium piles. Consequently, core and tower piles require to be socketed into sandstone Class II or better Sandstone based on the Sydney rock classification system proposed by Pells et al. (1998). Some of the podium piles have relatively large uplift loads and consequently also require to be socketed into Class II or better Sandstone. 2 GEOLOGICAL SETTING AND STRATIGRAPHY The site locality is underlain by fill and Quaternary alluvium overlying Triassic age Hawkesbury Sandstone. The fill and alluvium are highly variable in nature and in thickness. The sandstone is described as medium to coarse grained quartz sandstone with very minor shale and laminite lenses. Rises and falls in sea level have resulted in incised valleys within the sandstone known as palaeochannels, that have been in-filled with alluvium and fill. There are two main joint sets within the Hawkesbury Sandstone in the Sydney CBD region, with one set trending north north east and an orthogonal set trending west north west. The joints are typically sub-vertical, relatively widely spaced and may not be continuous through the sandstone beds. There are a number of sub-vertical fault zones and joint swarms that have been identified trending roughly north east across the Sydney CBD that can result in more closely spaced jointing and may impact on excavation stability to a greater extent than the more widely spaced joints of the main joint sets. The site stratigraphy could be described as follows: heterogeneous fill of highly variable thickness, overlying alluvial and estuarine sediments, overlying residual soils and Hawkesbury sandstone bedrock. 1 This paper is included as a non refereed project paper Australian Geomechanics Vol 47 No 3 September

2 CONSTRUCTION OF ROCK SOCKETED PILES IN SYDNEY SANDSTONE TO MEET PERFORMANCE 3 GENERAL PILE CONSTRUCTION METHODOLOGY All the contract piles on the project are rotary bored pile type. Due to the high groundwater level and the variable and significant depth of fill on site a combination of techniques is being employed to temporarily support the pile bore. The type of temporary pile bore support method adopted varied for the different pile diameters. Double wall temporary segmental casing (1180 mm and 1500 mm piles) Single wall temporary casing (1000 mm diameter piles) Single wall temporary casing + bentonite (2400 mm diameter piles) The casings are being installed either all the way to the required toe level through the rock using double all segmental casing or just embedding into the rock with single walled (16 mm thick) conventional casing. In order to advance the casing through the hard soils and rock the double walled starter casings (cutting shoes) are fitted with changeable teeth. The teeth are being used to provide an overcut of between 5 mm and 10 mm i.e. to provide the required socket roughness. Figures 1 and 2 show casings with teeth. Figure 1: Casing with changeable teeth Figure 2: Cutting edges of double wall starter casing Where the casings were not advanced all the way to the toe level (1000 mm diameter), the drilling in the rock was carried out using rock tools with appropriate teeth fitted to achieve the socket roughness. An example of such a tool is shown in Figure 3. Figure 3: Progressive rock auger The largest piles (2400 mm diameter) were drilled using single walled casings for the first 6 m to 7 m depth and then the bores were supported by drilling fluid, bentonite in this case. 96 Australian Geomechanics Vol 47 No 3 September 2012

3 CONSTRUCTION OF ROCK SOCKETED PILES IN SYDNEY SANDSTONE TO MEET PERFORMANCE Following the completion of drilling the reinforcement cages were suspended and the pile bores filled with concrete with tremie pipes. Figures 5 and 6 show the reinforcement cages being installed and preparation for concreting respectively. Figure 4: Cage Placement 4 Figure 5: Installation of Tremi pipe for concreting DESIGN PHILOSOPHY AND PERFORMANCE The foundation pile design has been carried out in accordance with AS Piling Code, addressing both ultimate and serviceability limit states. The pile sockets have been designed for load sharing between shaft and the base. No contribution from the material other than rock (OTR) has been allowed in the design. The fundamental design criterion stipulated by the structural engineer was to limit the pile toe settlement to 0.3% of the pile diameter. We note that due to the varying pile lengths caused by the large variations in the rock level across the site, the majority of the long-term foundation settlement would result from compression of pile shafts, including longterm concrete shrinkage and creep effects. The structural engineers were concerned about differential settlement, and in particular lateral sway of the tall buildings under high wind loading. Therefore, although the stringent design criteria was not strictly required for satisfactory performance of the structure, it was set to limit additional differential settlement from the foundation, and also to allow for uncertainties in design predictions. Table 1, below shows the various diameters and their typical serviceability limit state loads (SLS) load range. Table 1: Pile Diameters with Corresponding Limiting Settlement Criteria Pile Diameter (mm) Typical SLS Loads (MN) 12 to to to 93 The adopted parameters for the design of the rock sockets are presented in Table 2. \ Australian Geomechanics Vol 47 No 3 September

4 CONSTRUCTION OF ROCK SOCKETED PILES IN SYDNEY SANDSTONE TO MEET PERFORMANCE Table 2: Adopted Pile Design Parameters Soil & Rock Class(1) Elastic Modulus (MPa) Ultimate Shaft Friction Ultimate End Bearing (MPa) Pressure (MPa) Fill and Alluvium 20 Ignored Not used Class V Sandstone 100 Ignored Not used Class IV Sandstone Not used Class III Sandstone 1, Class II or better Sandstone 2,000(2) (1) Rock Class based on Pells et al. (1998) (2) Initial tangent modulus at low stress level; secant modulus back-analysed from O-Cell testing were approximately 1,500 MPa and 1,200 MPa at load levels of 40 MPa and 59 MPa respectively. The project piling specification calls for: Sockets roughness between R3 and R4. Base cleanliness 90% of the base to be clear of any debris. Given the stringent toe settlement criterion in conjunction with construction requirements relating to the socket roughness and base cleanliness the need for good construction methodology and quality control was paramount. 5 FORMULATION AND EXECUTION OF STRATEGY TO ACHIEVE PERFORMANCE Construction aspects are critical to ensure that the design intent / requirements are achieved through good construction methodology and quality control. This translates into ensuring the pile shaft/sidewalls are to a large extent free of crushed or smeared rock. Walker and Pells highlighted that crushed rock or soil smeared on the sidewalls of sockets may attain a thickness of 20 mm or more and will form an infill on the grooves and undulations in the rock. The presence of sidewall smear will limit skin friction on the sidewall of the socket so that it may be less than that assumed in the design. Similarly, the base should be clear of any debris over 90% of the base area. Presence of soft material/debris on the base of the pile will alter the load deflection characteristics. Therefore, in order to meet the performance requirements, it was essential to ensure: Confirmation of founding material - Sockets are formed in the required (or better) sandstone class Minimum design sockets are achieved. Specified socket roughness was achieved. Clean pile bases with 90% of the base area to be free from debris. In order to verify the founding conditions an advance programme of proof coring was undertaken. The piles nominated with relatively high loads within the core were targeted. Not all the piles were proof cored except the large 2.4m diameter piles, which were all proof cored. The proof coring grid was developed by selecting sufficient core numbers to provide adequate coverage. The proof cores were drilled 3 to 5 times the diameter beyond the estimated design pile toe levels. A full-time geotechnical engineer was present on site to verify the founding conditions. Due to the drilling process it was not always straight forward to identify the rock classes. The distinction between Class V and IV Sandstone was comparatively easy, whereas distinction between Class III Sandstone and better classes of rock was not as simple. Therefore, information from the existing bore holes, proof cores and actual site observations were used to finalise the pile toe levels on site. In order to ensure the design side wall friction is achieved the socket walls need to be substantially free from crushed rock / smeared rock. Furthermore, appropriate drilling tools are employed to achieve the required socket roughness. Walker and Pells (1998) commented that there is no universal classification of roughness and a commonly adopted simple classification system for socket sidewalls, as given by Pells, Rowe and Turner (1980), is reproduced in Table 3 below. 98 Australian Geomechanics Vol 47 No 3 September 2012

5 CONSTRUCTION OF ROCK SOCKETED PILES IN SYDNEY SANDSTONE TO MEET PERFORMANCE Table 3: Roughness Classification Roughness Class R1 R2 R3 R4 Description Straight, Smooth sided socket, grooves or indentations less than 1 mm deep Grooves of depth 1-4 mm, width greater than 2 mm, at spacing 50 mm and 200 mm Grooves of depth 4-10 mm, width greater than 5 mm, at spacing 50 mm and 200 mm Grooves or undulations of depth > 10 mm, width >10 mm at spacing 50 mm to 200 mm. It has been reported that sockets in sandstone need to be R2 or rougher to avoid brittle failure of the interface. Peak shear strength will be mobilised at a small displacement and will be maintained. As reported in the earlier section, construction methodology based on using augers/casing with protruding teeth has been deemed to be adequate in achieving the required socket roughness between R3 and R4. Walker and Pells (1998) have reported that sidewall shear is usually worst when drilling in moist weathered shale or sandstone using flight auger. However, the majority of the sockets on this site are being constructed in sandstone Class III / II or better rock. To limit the design toe settlement to 0.3% of the pile diameter, it was imperative to ensure that the assumed stiffness in the design was achieved in practice by ensuring the pile base was substantially clean and free of debris. Walker and Pells (1998) have highlighted that debris at the base of pile alters the load deflection characteristics and could result in working load deflections exceeding those assumed in the design. Consequently, it was essential to inspect the base of every single pile. The piling specification calls for the 90% of the base area to be free from muck and rock debris. The primary method employed by the contractor to clean the pile base was a cleaning bucket. However, it was found that multiple passes (lowering and raising of cleaning bucket) were required to reach an acceptable level of base cleanliness. Each pass of cleaning bucket was followed by sounding of the pile base with a tape measure, which had a metal weight attached to it in the form of 200 mm long reo bar. This exercise was carried out numerous times along the circumference of the pile bore to detect any potential soft spots. As the contract progressed, another base cleaning tool in the form of a hydraulic plunger was introduced by the piling subcontractor to supplement the cleaning bucket for base cleaning. It was very important to minimise the delay between cleaning of the pile base and concreting of piles. This was considered critical to ensure that the suspended particles in the water in the pile bore did not settle at the pile base. However, inevitably delays do occur on sites during placing of reinforcement cages or receiving concrete deliveries. Therefore, the adopted approach on site was to clean the pile base using the conventional cleaning bucket and using the hydraulic plunger just ahead of placing reinforcement cages and concreting operation. Figures 5 and 6 show the cleaning bucket and hydraulic plunger respectively. Figure 6 Cleaning Bucket Figure 7 Hydraulic Plunger In the case of larger 2.4 m diameter piles it was not possible to sound the base of the pile to assess the presence of any debris. The properties of the bentonite stabilising fluid was sampled from just above the centre of the base. The sand content was reduced to acceptable levels through the de-sanding process. Verification of construction methodologies to achieve the specified socket roughness and base cleanliness was demonstrated by load testing. Two Osterberg Cell load tests were carried out. To verify the adequacy of construction techniques the load test piles were constructed using the same procedure as the contract piles. The toe and shaft \ Australian Geomechanics Vol 47 No 3 September

6 CONSTRUCTION OF ROCK SOCKETED PILES IN SYDNEY SANDSTONE TO MEET PERFORMANCE behaviour demonstrated by the loads test (Wong and Oliveira, 2012) confirmed that the pile construction methods being employed appear to be reasonable and appear to be achieving the design intent. 6 CONCLUSION Appropriate construction methodology and adequate supervision are essential to maximise the possibility of achieving the design intent. The drilling methods employed must be able to achieve the required / specified socket roughness assumed in the design. In the absence of measures which allow direct measurement of socket roughness, the verification must be achieved indirectly through assessing the drilling tools being used and load tests. The bases must be cleaned using the appropriately designed buckets or other tools. For the Barangaroo South Project, the design and construction intents were successfully achieved by the implementation of a program of proof coring, full-time independent geotechnical presence to validate that appropriate founding material has been reached and pile base is sufficiently cleaned. A program of prototype pile load testing was carried out (Wong and Oliveira, 2012) to validate pile capacity design requirements and to enable back-analysis of pile stiffness to be assessed. 7 REFERENCES Barangaroo Stage 1 Development (2012 )Coffey Geotechnical Report 15 October PELLS, P J N, ROWE, R K and TURNER, R M. (1980) "An Experimental Investigation into Side Shear for Socketed Piles in Sandstone", Int Conf Structural Foundations on Rock, Sydney, A.A. Balkema, pp WALKER, B.F. and PELLS, P.J.N, (1998) The Construction of Bored Piles Socketed into Shale and Sandstone, Australian Geomechanics Vol 33 No 3 Dec WONG,P.K and OLIVEIRA, D (2012) Class A Prediction versus Performance of O-Cell Pile Load Tests in Sydney Sandstone, Australian Geomechanics Vol 47 No 3 September Australian Geomechanics Vol 47 No 3 September 2012

SYDNEY SANDSTONE AND SHALE PARAMETERS FOR TUNNEL DESIGN

SYDNEY SANDSTONE AND SHALE PARAMETERS FOR TUNNEL DESIGN Robert Bertuzzi Pells Sullivan Meynink, Unit G3 56 Delhi Road, North Ryde NSW 2113, Australia 1 BACKGROUND Inherent in any set of rock mass parameters are various assumptions regarding, amongst other things

More information

SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS

SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS Page 1 of 9 SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS 1. GENERAL REQUIREMENTS 1. Description of Work: This work consists of furnishing all materials, equipment and

More information

Design and Construction of Auger Cast Piles

Design and Construction of Auger Cast Piles Design and Construction of Auger Cast Piles 101 th Annual Road School 2015 3/11/2015 Malek Smadi, Ph.D., P.E. Principal Engineer - GEOTILL - Fishers, IN msmadi@geotill.com - www.geotill.com CONTENTS 1.

More information

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL. STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

More information

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

Pile test at the Shard London Bridge

Pile test at the Shard London Bridge technical paper Pile test at the Shard London Bridge David Beadman, Byrne Looby Partners, Mark Pennington, Balfour Beatty Ground Engineering, Matthew Sharratt, WSP Group Introduction The Shard London Bridge,

More information

How To Prepare A Geotechnical Study For A Trunk Sewer Project In Lincoln, Nebraska

How To Prepare A Geotechnical Study For A Trunk Sewer Project In Lincoln, Nebraska APPENDIX B Geotechnical Engineering Report GEOTECHNICAL ENGINEERING REPORT Preliminary Geotechnical Study Upper Southeast Salt Creek Sanitary Trunk Sewer Lincoln Wastewater System Lincoln, Nebraska PREPARED

More information

DESIGNING STRUCTURES IN EXPANSIVE CLAY

DESIGNING STRUCTURES IN EXPANSIVE CLAY DESIGNING STRUCTURES IN EXPANSIVE CLAY A GUIDE FOR A RCHITECTS AND E NGINEERS Table of Contents 1. Introduction Page 1 2. Common Foundation Systems Page 2 3. Drilled Piers Page 3 a. Skin Friction Piers

More information

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS July 14, 2015 1.0 GENERAL BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS This work shall consist of furnishing all materials, equipment, labor, and incidentals necessary for conducting bi-directional

More information

SHAFT CONSTRUCTION IN TORONTO USING SLURRY WALLS

SHAFT CONSTRUCTION IN TORONTO USING SLURRY WALLS SHAFT CONSTRUCTION IN TORONTO USING SLURRY WALLS Vince Luongo Petrifond Foundation Co., Ltd. PROJECT DESCRIPTION The York Durham Sanitary System (YDSS) Interceptor in the Town of Richmond Hill located

More information

The design of foundations for high-rise buildings

The design of foundations for high-rise buildings Proceedings of ICE Civil Engineering 163 November 2010 Pages 27 32 Paper 10-00005 doi: 10.1680/cien.2010.163.6.27 Keywords buildings, structures & design; foundations; piles & piling The design of foundations

More information

PILE FOUNDATIONS FM 5-134

PILE FOUNDATIONS FM 5-134 C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 6-1. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics

More information

RECENT EXPERIENCES WITH BI-DIRECTIONAL STATIC LOAD TESTING

RECENT EXPERIENCES WITH BI-DIRECTIONAL STATIC LOAD TESTING RECENT EXPERIENCES WITH BI-DIRECTIONAL STATIC LOAD TESTING M. England BSc, MSc, PhD, MIC, P.F. Cheesman. Loadtest, 14 Scotts Avenue, Sunbury on Thames, TW16 7HZ, United Kingdom. Keywords: Bi-directional

More information

BUTE Department of Construction Management and Technology

BUTE Department of Construction Management and Technology BUTE Department of Construction Management and Technology 02.10.2012 Definition 1: Foundation: The structure, that transmits the load of the building to the soil Definition 2: Load bearing soil (strata):

More information

High Strain Dynamic Load Testing of Drilled Shafts

High Strain Dynamic Load Testing of Drilled Shafts Supplemental Technical Specification for High Strain Dynamic Load Testing of Drilled Shafts SCDOT Designation: SC-M-712 (9/15) September 3, 2015 1.0 GENERAL This work shall consist of performing high-strain

More information

Proceedings 2005 Rapid Excavation & Tunneling Conference, Seattle

Proceedings 2005 Rapid Excavation & Tunneling Conference, Seattle Proceedings 2005 Rapid Excavation & Tunneling Conference, Seattle EPB-TBM Face Support Control in the Metro do Porto Project, Portugal S. Babendererde, Babendererde Engineers LLC, Kent, WA; E. Hoek, Vancouver,

More information

Load Testing of Drilled Shaft Foundations in Limestone, Nashville, TN Dan Brown, P.E., Ph.D.

Load Testing of Drilled Shaft Foundations in Limestone, Nashville, TN Dan Brown, P.E., Ph.D. Dan A. Brown and Associates Consulting Geotechnical Engineers 300 Woodland Rd. (423)942-8681 Sequatchie, TN 37374 fax:(423)942-8687 Load Testing of Drilled Shaft Foundations in Limestone, Nashville, TN

More information

PDCA Driven-Pile Terms and Definitions

PDCA Driven-Pile Terms and Definitions PDCA Driven-Pile Terms and Definitions This document is available for free download at piledrivers.org. Preferred terms are descriptively defined. Potentially synonymous (but not preferred) terms are identified

More information

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Notation B1 = lowest level of basement slab c = cohesion E = drained Young s Modulus Eu = undrained Young s Modulus

More information

VERTICAL MICROPILE LATERAL LOADING. Andy Baxter, P.G.

VERTICAL MICROPILE LATERAL LOADING. Andy Baxter, P.G. EFFICIENT DESIGN OF VERTICAL MICROPILE SYSTEMS TO LATERAL LOADING Dr. Jesús Gómez, P.E. PE Andy Baxter, P.G. Outline When are micropiles subject to lateral load? How do we analyze them? Shear Friction

More information

Comprehensive Design Example 2: Foundations for Bulk Storage Facility

Comprehensive Design Example 2: Foundations for Bulk Storage Facility Comprehensive Design Example 2: Foundations for Bulk Storage Facility Problem The project consists of building several dry product storage silos near an existing rail siding in an open field presently

More information

Dead load (kentledge) A structure over the test pile. Ground anchorage either by tension piles or ground anchors. Bi-directional (Osterberg-cell)

Dead load (kentledge) A structure over the test pile. Ground anchorage either by tension piles or ground anchors. Bi-directional (Osterberg-cell) Introduction Fugro LOADTEST Overview STATIC LOAD TESTING O-cell Bi-directional testing State of the art Dr Melvin England Fugro LOADTEST Static load tests Previous/existing technology Developments O-cell

More information

The Installation and Load Testing of Drilled Shafts

The Installation and Load Testing of Drilled Shafts Presentation to the North American Chinese Geotechnical Engineers Association The Installation and Load Testing of Drilled Shafts at Clarksville, Virginia by James M. Sheahan, P.E. HDR Engineering, Inc.

More information

GUIDELINE FOR HAND HELD SHEAR VANE TEST

GUIDELINE FOR HAND HELD SHEAR VANE TEST GUIDELINE FOR HAND HELD SHEAR VANE TEST NZ GEOTECHNICAL SOCIETY INC August 2001 CONTENTS Page 1.0 Introduction 2 2.0 Background 2 3.0 Recommended Practice 3 4.0 Undrained Shear Strength 3 5.0 Particular

More information

BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM

BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM Swaminathan Srinivasan, P.E., M.ASCE H.C. Nutting/Terracon David Tomley, P.E., M.ASCE KZF Design Delivering Success for

More information

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Stephen W. Lacz 1, M. ASCE, P.E. and Richard C. Wells 2, F. ASCE, P.E. 1 Senior Professional, Trigon Kleinfelder, Inc., 313 Gallimore

More information

Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples

Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples Prof. V.S.Raju (Formerly: Director, IIT Delhi & Professor and Dean, IIT Madras) Email: rajuvs_b@yahoo.com

More information

Geotechnical Building Works (GBW) Submission Requirements

Geotechnical Building Works (GBW) Submission Requirements Building Control (Amendment) Act 2012 and Regulations 2012: Geotechnical Building Works (GBW) Submission Requirements Building Engineering Group Building and Construction Authority May 2015 Content : 1.

More information

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load Nature of Services The company has a long history of performance of tests of piles and pile groups under a variety

More information

ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT

ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT Description: This work shall consist of furnishing all materials, equipment and labor necessary for conducting an Osterberg Cell (O-Cell) Load

More information

Emergency repair of Bridge B421

Emergency repair of Bridge B421 Emergency repair of Bridge B421 over the Olifants River after fl ood damage INTRODUCTION AND BACKGROUND Bridge B421 is located on the R555 at km 5.03 on Section 01E between Witbank (now known as emalahleni)

More information

Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. The Leading Edge.

Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. The Leading Edge. TM TM Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. SM The Leading Edge. 10 One Major Causes of foundation settlement or more conditions may

More information

Local Authority Building Control Technical Information Note 3 Driven and In-situ Piled Foundations

Local Authority Building Control Technical Information Note 3 Driven and In-situ Piled Foundations Local Authority Building Control Technical Information Note 3 Driven and In-situ Piled Foundations Cambridge City Council - East Cambridgeshire District Council - Fenland District Council, Huntingdonshire

More information

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Brussels, 18-20 February 2008 Dissemination of information workshop 1 Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Dr.-Ing. Bernd Schuppener, Federal Waterways Engineering

More information

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland EN 1997 1: Sections 10, 11 and 12 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 10 Hydraulic Failure Section 11 Overall Stability Section

More information

SECTION 411 DRILLED PIERS

SECTION 411 DRILLED PIERS Section Payment will be made under: Pay Item Foundation Excavation Foundation Excavation for Bent No. at Station Foundation Excavation for End Bent No. at Station Pay Unit Cubic Yard Lump Sum Lump Sum

More information

Program COLANY Stone Columns Settlement Analysis. User Manual

Program COLANY Stone Columns Settlement Analysis. User Manual User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY

More information

Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

More information

Tremie Concrete CM 420 CM 420 CM 420 CM 420. Temporary Structures. Tremie Concrete

Tremie Concrete CM 420 CM 420 CM 420 CM 420. Temporary Structures. Tremie Concrete Tremie Concrete Underwater concrete plays an important role in the construction of offshore structures. It may be used to tie together various elements in composite action (i.e., to tie piling to the footing).

More information

Embedded Retaining Wall Design Engineering or Paradox?

Embedded Retaining Wall Design Engineering or Paradox? Embedded Retaining Wall Design Engineering or Paradox? A personal viewpoint by A.Y. Chmoulian, associate at Royal Haskoning Introduction Retaining wall design theory is a complicated subject with a long

More information

THE STAR, DARLING HOTEL AND SPA PYRMONT, NSW. Associate Director, Taylor Thomson Whitting Ltd, Sydney, Australia

THE STAR, DARLING HOTEL AND SPA PYRMONT, NSW. Associate Director, Taylor Thomson Whitting Ltd, Sydney, Australia THE STAR, DARLING HOTEL AND SPA PYRMONT, NSW H Nguyen BE (Hons), CPEng MIEAUST NPER Associate Director, Taylor Thomson Whitting Ltd, Sydney, Australia ABSTRACT The redevelopment at The Star in Sydney includes

More information

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Jeff R. Hill, P.E. Hayward Baker Inc. 111 W. Port Plaza Drive Suite 600 St. Louis, MO 63146 314-542-3040 JRHill@HaywardBaker.com

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code

LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code LEGACY REPORT Reissued November 1, 2003 ICC Evaluation Service, Inc. www.icc-es.org Business/Regional Office # 5360 Workman Mill Road, Whittier, California 90601 # (562) 699-0543 Regional Office # 900

More information

SERVICES 2015 ISO 18001

SERVICES 2015 ISO 18001 SERVICES 2015 A family business with a solid foundation of experience, we handle all aspects of site investigation.... Phase 1 Environmental Studies Phase 2 Intrusive Investigations Phase 3 Remediation

More information

Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin PLAN SUBGRADES

Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin PLAN SUBGRADES Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering Geotechnical Bulletin GB 1 PLAN SUBGRADES Geotechnical Bulletin GB1 was jointly developed by the Offices

More information

PVC PIPE PERFORMANCE FACTORS

PVC PIPE PERFORMANCE FACTORS PVC PIPE PERFORMANCE FACTORS PVC pipe, like all flexible pipe products, is very dependent on the surrounding soil for its structural capacity, in addition, the pipe material must have sufficient inherent

More information

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:!

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:! In-situ Testing! Insitu Testing! Insitu testing is used for two reasons:! To allow the determination of shear strength or penetration resistance or permeability of soils that would be difficult or impossible

More information

GUIDELINES FOR GEOTECHNICAL INVESTIGATION OF BRIDGE STRUCTURES. Materials Engineering Report No. 2009-8M (Supersedes Report No.

GUIDELINES FOR GEOTECHNICAL INVESTIGATION OF BRIDGE STRUCTURES. Materials Engineering Report No. 2009-8M (Supersedes Report No. GUIDELINES FOR GEOTECHNICAL INVESTIGATION OF BRIDGE STRUCTURES Materials Engineering Report No. 2009-8M (Supersedes Report No. 21) F CHOWDHURY GEOMECHANICS AND STRUCTURAL MATERIALS ENGINEER S REHMAN GEOTECHNICAL

More information

ATLAS RESISTANCE Pier Foundation Systems

ATLAS RESISTANCE Pier Foundation Systems ATLAS RESISTANCE Pier Foundation Systems Foundation Repair Systems for Civil Construction Applications: Residential, Commercial, Industrial Atlas Resistance Piers have been used to restore and/or stabilize

More information

TECHNICAL SPECIFICATIONS CEMENT-BENTONITE SLURRY TRENCH CUTOFF WALL

TECHNICAL SPECIFICATIONS CEMENT-BENTONITE SLURRY TRENCH CUTOFF WALL TECHNICAL SPECIFICATIONS CEMENT-BENTONITE SLURRY TRENCH CUTOFF WALL SCOPE This section of the specifications includes requirements for the Slurry Trench Cutoff Wall and related work as indicated on the

More information

How To Design A Foundation

How To Design A Foundation The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION Instructor : Dr. Jehad Hamad Definition The process of determining the layers of natural

More information

The advantages and disadvantages of dynamic load testing and statnamic load testing

The advantages and disadvantages of dynamic load testing and statnamic load testing The advantages and disadvantages of dynamic load testing and statnamic load testing P.Middendorp & G.J.J. van Ginneken TNO Profound R.J. van Foeken TNO Building and Construction Research ABSTRACT: Pile

More information

Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations

Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations Nathan A. Ingraffea, P.E., S.E. Associate, KPFF Consulting Engineers, Portland, Oregon, USA Abstract The use of steel sheet

More information

Tunnelling & Underground. Specialists

Tunnelling & Underground. Specialists Tunnelling & Underground Specialists Mined Tunnels Excavation at Ayer Rajah Avenue, Singapore Introduction Amberg & TTI Engineering Pte Ltd (AETTI) was established in Singapore in 2002 by Amberg Engineering

More information

Toe Bearing Capacity of Piles from Cone Penetration Test (CPT) Data

Toe Bearing Capacity of Piles from Cone Penetration Test (CPT) Data Toe Bearing Capacity of Piles from Cone Penetration Test (CPT) Data Abolfazl Eslami University of Ottawa, Civil Engineering Department PREPRINT International Symposium on Cone Penetrometer Testing, CPT

More information

CONCRETE SEGMENTAL RETAINING WALL SYSTEM

CONCRETE SEGMENTAL RETAINING WALL SYSTEM CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Vintage TM unit segmental retaining wall (SRW)

More information

and the design of construction working platforms

and the design of construction working platforms Federation A presentation to the Australian Geomechanics Society Victoria i Branch 11 August 2010 Dr Stephen Buttling Piling rig bearing pressures and the design of construction working platforms 1 The

More information

Anirudhan I.V. Geotechnical Solutions, Chennai

Anirudhan I.V. Geotechnical Solutions, Chennai Anirudhan I.V. Geotechnical Solutions, Chennai Often inadequate In some cases, excess In some cases, disoriented Bad investigation Once in a while good ones Depends on one type of investigation, often

More information

APPENDIX A PRESSUREMETER TEST INTERPRETATION

APPENDIX A PRESSUREMETER TEST INTERPRETATION APPENDIX A PRESSUREMETER TEST INTERPRETATION PRESSUREMETER TEST INTERPRETATION Description of test The pressuremeter test, discussed in great detail by Martin (1977), Baguelin et al. (1978), Barksdale

More information

The demand for new roadway

The demand for new roadway Designing strong walls on weak soils Civil engineers have options to remedy foundation soil problems and meet project cost and schedule requirements. By Fadi Faraj, P.E.; Michael H. Garrison, P.E.; and

More information

CONCRETE SEGMENTAL RETAINING WALL SYSTEM

CONCRETE SEGMENTAL RETAINING WALL SYSTEM CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Classic 8 with PCS unit segmental retaining wall

More information

Pro-Lift Steel Pile Foundation Repair

Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair System Pro-lift steel piles are designed for the stresses of Texas soils. They can have multiple steel walls, depending on the

More information

Industry Guidelines. Design Guidance for Polypropylene Structured Wall Pipes ISSUE 1.0

Industry Guidelines. Design Guidance for Polypropylene Structured Wall Pipes ISSUE 1.0 Industry Guidelines Design Guidance for Polypropylene Structured Wall Pipes ISSUE 1.0 Ref: POP015 18 July 2012 Disclaimer In formulating this guideline PIPA has relied upon the advice of its members and,

More information

Compression load testing straw bale walls. Peter Walker Dept. Architecture & Civil Engineering University of Bath Bath BA2 7AY.

Compression load testing straw bale walls. Peter Walker Dept. Architecture & Civil Engineering University of Bath Bath BA2 7AY. Compression load testing straw bale walls Peter Walker Dept. Architecture & Civil Engineering University of Bath Bath BA2 7AY May 2004 1. Introduction Over the last 10 years a growing number of loadbearing

More information

Moving Small Mountains Vesuvius Dam Rehab

Moving Small Mountains Vesuvius Dam Rehab Moving Small Mountains Vesuvius Dam Rehab Susan L. Peterson, P.E., regional dams engineer, Eastern Region, Bedford, IN Note: The following article, Moving Small Mountains Vesuvius Dam Rehab, by Sue Peterson,

More information

Requirements for an Excavation and Lateral Support Plan Building (Administration) Regulation 8(1)(bc)

Requirements for an Excavation and Lateral Support Plan Building (Administration) Regulation 8(1)(bc) Buildings Department Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-57 Requirements for an Excavation and Lateral Support Plan Building

More information

Step 11 Static Load Testing

Step 11 Static Load Testing Step 11 Static Load Testing Test loading is the most definitive method of determining load capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended

More information

CIVL451. Soil Exploration and Characterization

CIVL451. Soil Exploration and Characterization CIVL451 Soil Exploration and Characterization 1 Definition The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally

More information

California Department of Transportation Doyle Drive Test Program Contract No. 04A3362

California Department of Transportation Doyle Drive Test Program Contract No. 04A3362 California Department of Transportation Doyle Drive Test Program Deep Soil Mixing (DSM) /Cutter Soil Mixing (CSM) Testing Report By Malcolm Drilling Company, Inc. 3524 Breakwater Ave., Suite 108 Hayward,

More information

COPYRIGHT. Dincel Construction System Pty Ltd

COPYRIGHT. Dincel Construction System Pty Ltd BASEMENT CONSTRUCTION Dincel Construction System Pty Ltd 101 Quarry Road ERSKINE PARK NSW 2759 PO Box 104, ST CLAIR NSW 2759 Phone: (612) 9670 1633 Fax: (612) 9670 6744 Email: construction@dincel.com.au

More information

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance

More information

MICROPILE FOUNDATIONS IN KARST: STATIC AND DYNAMIC TESTING VARIABILITY

MICROPILE FOUNDATIONS IN KARST: STATIC AND DYNAMIC TESTING VARIABILITY MICROPILE FOUNDATIONS IN KARST: STATIC AND DYNAMIC TESTING VARIABILITY Jesús Gómez, Ph.D., P.E Allen Cadden, P.E. O. Christopher Webster, P.E. Schnabel Engineering, Inc. Schnabel Engineering, Inc. Schnabel

More information

EVALUATING THE IMPROVEMENT FROM IMPACT ROLLING ON SAND

EVALUATING THE IMPROVEMENT FROM IMPACT ROLLING ON SAND EVALUATING THE IMPROVEMENT FROM IMPACT ROLLING ON SAND D.L. Avalle, Broons Hire (SA) Pty Ltd, Australia J.P. Carter, The University of Sydney, Australia Abstract Impact rolling, utilising a non-circular

More information

How To Retaining Wall Guide

How To Retaining Wall Guide How To Retaining Wall Guide Before you start: Consents and Engineering Building Consent Retaining walls over 1.5m high will require a building consent from the Local Body Council. Walls that carry extra

More information

SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS

SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS Section Page 36-1 GENERAL... 36.1 36-2 PIPEMAKING EQUIPMENT... 36.1 36-3 TRENCH EXCAVATION... 36.1 36-4 SPECIAL FOUNDATION TREATMENT...

More information

Report. Geotechnical Investigation Proposed Easy Access Upgrade Marrickville Railway Station Station Street, Marrickville, NSW

Report. Geotechnical Investigation Proposed Easy Access Upgrade Marrickville Railway Station Station Street, Marrickville, NSW Pty Ltd ABN 62 084 294 762 Unit 5/39-41 Fourth Avenue, Blacktown, NSW 2148, Australia Tel : (02) 9679 8733 PO Box 1543, Macquarie Centre. North Ryde, NSW 2113 Fax : (02) 9679 8744 Report Geotechnical Investigation

More information

Pavements should be well drained both during and upon completion of construction. Water should not be allowed to pond on or near pavement surfaces.

Pavements should be well drained both during and upon completion of construction. Water should not be allowed to pond on or near pavement surfaces. Project No. 208-8719 January, 2009 Ref: 2-8719BR Anthony Hudson - Broadscale Geotechnical Investigation - Proposed Commercial Development - 52 Old Pacific Highway, Pimpama Page 32 iii) Pavements should

More information

DESIGN OF PILES AND PILE GROUPS CONSIDERING CAPACITY, SETTLEMENT, AND NEGATIVE SKIN FRICTION

DESIGN OF PILES AND PILE GROUPS CONSIDERING CAPACITY, SETTLEMENT, AND NEGATIVE SKIN FRICTION DESIGN OF PILES AND PILE GROUPS CONSIDERING CAPACITY, SETTLEMENT, AND NEGATIVE SKIN FRICTION Introduction Bengt H. Fellenius, Dr.Tech., P.Eng. Background Notes for Demo Example for UniPile at www.unisoftltd.com

More information

SUGGESTION ABOUT DETERMINATION OF THE BEARING CAPACITY OF PILES ON THE BASIS OF CPT SOUNDING TESTS

SUGGESTION ABOUT DETERMINATION OF THE BEARING CAPACITY OF PILES ON THE BASIS OF CPT SOUNDING TESTS SUGGESTION ABOUT DETERMINATION OF THE BEARING CAPACITY OF PILES ON THE BASIS OF CPT SOUNDING TESTS JóZSEF PUSZTAI About the authors Pusztai József Budapest University of Technology and Economics, Department

More information

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT 1.0 SOIL IMPROVEMENT 1.1 General Soil Investigation Information are provided in Part B1 annex as a guide to the Contractor for his consideration

More information

WEFTEC.06. Kent Von Aspern,* Collins Orton** *Carollo Engineers 2700 Ygnacio Valley Rd Suite 300 Walnut Creek, CA 94598

WEFTEC.06. Kent Von Aspern,* Collins Orton** *Carollo Engineers 2700 Ygnacio Valley Rd Suite 300 Walnut Creek, CA 94598 Lessons Learned from Large Diameter Sanitary Sewer Pipe Bursting Project: Conversion of Abandoned Gravity Sewer Main Into Upsized Sanitary Force Main South San Francisco, CA Kent Von Aspern,* Collins Orton**

More information

Specification Guidelines: Allan Block Modular Retaining Wall Systems

Specification Guidelines: Allan Block Modular Retaining Wall Systems Specification Guidelines: Allan Block Modular Retaining Wall Systems The following specifications provide Allan Block Corporation's typical requirements and recommendations. At the engineer of record's

More information

New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations

New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations from New construction foundations don t have to be a headache. The CHANCE Helical Pier Foundation System gives you the performance of concrete without the drawbacks and liabilities of driven piles and

More information

IS THAT LINER THICK ENOUGH?

IS THAT LINER THICK ENOUGH? IS THAT LINER THICK ENOUGH? Philip McFarlane, Opus International Consultants Ltd ABSTRACT The amount of pipeline rehabilitation being undertaken in New Zealand is increasing each year. Larger diameter

More information

7.2.4 Seismic velocity, attenuation and rock properties

7.2.4 Seismic velocity, attenuation and rock properties 7.2.4 Seismic velocity, attenuation and rock properties Rock properties that affect seismic velocity Porosity Lithification Pressure Fluid saturation Velocity in unconsolidated near surface soils (the

More information

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS While its use is not required, this checklist has been prepared to provide the field inspector a summary

More information

STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS?

STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS? STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS? Ioannis Anastasopoulos National Technical University of

More information

Design and installation of steel open end piles in weathered basalt. Luc Maertens*

Design and installation of steel open end piles in weathered basalt. Luc Maertens* Design and installation of steel open end piles in weathered basalt Luc Maertens* * Manager Engineering Department Besix, Belgium, lmaertens@besix.com Associate Professor Catholic University Leuven, luc.maertens@bwk.kuleuven.ac.be

More information

Ground improvement using the vibro-stone column technique

Ground improvement using the vibro-stone column technique Ground improvement using the vibro-stone column technique A. Kosho 1 A.L.T.E.A & Geostudio 2000, Durres, Albania ABSTRACT The vibro stone columns technique is one of the most used techniques for ground

More information

Forensic engineering of a bored pile wall

Forensic engineering of a bored pile wall NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Forensic engineering of a bored pile wall Willem Robert de Bruin Geovita AS, Norway,

More information

Design and Construction of Cantilevered Reinforced Concrete Structures

Design and Construction of Cantilevered Reinforced Concrete Structures Buildings Department Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-68 Design and Construction of Cantilevered Reinforced Concrete Structures

More information

Amendment to OPSS 415 (Nov 2008) Construction Specification for Pipeline and Utility Installation by Tunnelling

Amendment to OPSS 415 (Nov 2008) Construction Specification for Pipeline and Utility Installation by Tunnelling Engineering and Construction Services Division Standard Specifications for Sewers and Watermains TS 415 April 2013 Amendment to OPSS 415 (Nov 2008) Construction Specification for Pipeline and Utility Installation

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

UNDERPINNING OF NEW STUDENT HOUSING BUILDING USING MICROPILES, NORTH CAROLINA USA

UNDERPINNING OF NEW STUDENT HOUSING BUILDING USING MICROPILES, NORTH CAROLINA USA UNDERPINNING OF NEW STUDENT HOUSING BUILDING USING MICROPILES, NORTH CAROLINA USA John R. Wolosick, P.E.,D.GE 1, Michael W. Terry, P.E. 2, W. David Kirschner 3 and Robert F. Scott Jr. P.E. 4 SYNOPSIS In

More information

Piling Datasheets. Continuous flight auger (CFA) Driven Rotary

Piling Datasheets. Continuous flight auger (CFA) Driven Rotary Piling Datasheets Continuous flight auger (CFA) Driven Rotary Continuous Flight Auger Piles (CFA) Technical Data Application Well suited to soft and/or water bearing ground where deep casings or bentonite

More information

The International Workshop on Micropiles, 2007

The International Workshop on Micropiles, 2007 MICROPILE FOUNDATION REPAIR AND UNDERPINNING, ARTS AND SCIENCE MUSEUM, UNIVERSITY OF PUERTO RICO, MAYAGUEZ Presented at: International Society of Micropiles (ISM) The International Workshop on Micropiles,

More information

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer HS-4210_MAN_09.08 product manual HS-4210 Digital Static Cone Penetrometer Introduction This Manual covers the measurement of bearing capacity using the Humboldt Digital Static Cone Penetrometer (DSCP).

More information

A case study of large screw pile groups behaviour

A case study of large screw pile groups behaviour Jongerenforum Geotechniek 5 juni 2015 A case study of large screw pile groups behaviour Alice Manzotti Content of the presentation 2 Introduction General soil conditions at the site Foundation design -

More information