HIGH SCHOOL SCIENCE. Physical Science 11: Chemical Bonds

Size: px
Start display at page:

Download "HIGH SCHOOL SCIENCE. Physical Science 11: Chemical Bonds"

Transcription

1 HIGH SCHOOL SCIENCE Physical Science 11: Chemical Bonds WILLMAR PUBLIC SCHOOL EDITION

2 CHAPTER 11 Chemical Bonds In this chapter you will: 1. Recognize stable electron configurations. 2.Predict an element s chemical properties using the number of valence electrons and electron dot diagrams. 3.Describe how ionic bonds form and relate the properties of ionic compounds to the structure of crystal lattices. 4.Describe how covalent bonds form and the attractions that keep atoms together in molecules. 5.Compare polar and nonpolar bonds. 6.Name and determine chemical formulas for ionic and molecular compounds. 7. Describe the structure and strength of bond in metals.

3 SECTION 11.1 What are Chemical Bonds? OBJECTIVES: 1. Recognize stable electron configurations. 2. Predict an element s chemical properties using the number of valence electrons and electron dot diagrams. Vocabulary: chemical bond electron dot diagram chemical formula subscript There is an amazing diversity of matter in the universe, but there are only about 100 elements. How can this relatively small number of pure substances make up all kinds of matter? Elements can combine in many different ways. Did you ever make cupcakes from scratch, like the boy pictured above? You mix together flour, sugar, eggs, and other ingredients to make the batter, put the batter into cupcake papers, and then put them into the oven to bake. The cupcakes that come out of the oven after baking are different from any of the individual ingredients that went into the batter. Like the ingredients that join together to make cupcakes, atoms of different elements can join together to form entirely different substances called compounds. In cupcakes, the eggs and other wet ingredients cause the dry ingredients to stick together. What causes elements to stick together in compounds? Elements form compounds when they combine chemically. Their atoms join together to form molecules, crystals, or other structures. The atoms are held together by chemical bonds. A chemical bond is a force of attraction between atoms or ions. It occurs when atoms share or transfer valence electrons. Valence electrons are the electrons in the outer energy level of an atom. Water (H2O) is an example of a chemical compound. Water molecules always consist of two atoms of hydrogen and one atom of oxygen. Like water, all other chemical compounds consist of a fixed ratio of elements. It doesn t matter how 2

4 much or how little of a compound there is. It always has the same composition. The same elements may combine in different ratios. If they do, they form different compounds. Both water (H2O) and hydrogen peroxide (H2O2) consist of hydrogen and oxygen. However, they have different ratios of the two elements. As a result, water and hydrogen peroxide are different compounds with different properties. If you ve ever used hydrogen peroxide to disinfect a cut, then you know that it is very different from water! Both carbon dioxide (CO2) and carbon monoxide (CO) consist of carbon and oxygen, but in different ratios. There are different types of compounds. They differ in the nature of the bonds that hold their atoms together. The type of bonds in a compound determines many of its properties. Three types of bonds are ionic, covalent, and metallic bonds. An ionic bond is the force of attraction that holds together oppositely charged ions. Ionic bonds form crystals. Table salt contains ionic bonds. A covalent bond is the force of attraction that holds together two nonmetal atoms that share a pair of electrons. One electron is provided by each atom, and the pair of electrons is attracted to the positive nuclei of both atoms. The water molecule represented above contains covalent bonds. A metallic bond is the force of attraction between a positive metal ion and the valence electrons that surround it both its own valence electrons and those of other ions of the same metal. The ions and electrons form a latticelike structure. Only metals form metallic bonds. Chemical properties depend on an element s electron configuration. When the highest occupied energy level of an atom is filled with electrons, the atom is stable and not likely to react. The noble gases have stable electron configurations since their outer shell is full. The chemical properties of an element depend on the number of valence electrons. An electron dot diagram is a model of an atom in which each dot represents a valence electron. The symbol in the center represents the nucleus and all other electrons in the atom. Electron dot diagrams for carbon and chlorine are shown below. The show paired electrons and unpaired electrons. These valence electrons are available for bonding. The unpaired electrons would like to be in a pair. 3

5 Elements that do not have complete sets of valence electrons tend to react. By reacting, they achieve electron configurations similar to those of noble gases. For example, the chemical formula for magnesium chloride is MgCl2. The 2 written to the right and slightly below the symbol of the chlorine is a subscript. Subscripts are used to show the relative numbers of atoms of the element present. If there is only one atom of an element in a formula, no subscript is needed. From the formula, you can tell that there is one magnesium ion for every two chlorine ions in magnesium chlorine. A magnesium atom cannot reach a stable electron configuration by reacting with just one chlorine atom since it has two valence electrons. It must transfer electrons to two chlorine atoms. You can make a simple salad dressing using just the two ingredients: oil and vinegar. Recipes for oil-and-vinegar salad dressing vary, but they typically include about three parts oil to one part vinegar, or a ratio of 3:1. For example, if you wanted to make a cup of salad dressing, you could mix together 3 cup of oil and 1 cup of vinegar. Chemical compounds also have ingredients in a certain ratio. However, unlike oil-and-vinegar salad dressing, a chemical compound always has exactly the same ratio of elements. This ratio can be represented by a chemical formula. A chemical formula is a notation that shows what elements a compound contains and the ratio of the atoms or ions of these elements in the compound. 4

6 Section Review: 1. Describe when an atom is stable and not likely to react. 2. What does each dot in an electron dot diagram represent? 3. When do elements tend to react? 4. What information is in a chemical formula? 5. What are subscripts used to show? 6. Why must magnesium react with two chlorine atoms to reach a stable electron configuration? 7. The compound sodium sulfide consists of a ratio of one sodium ion (Na+) to two sulfide ions (S-2). Write the chemical formula for this compound. 8. A molecule of sulfur dioxide consists of one sulfur atom (S) and two oxygen atoms (O). What is the chemical formula for this compound? 9. Identify the ratio of atoms in the compound represented by the following chemical formula: N2O5. 5

7 SECTION 11.2 Ionic Bonds OBJECTIVES: 1. Describe how ionic bonds form and relate the properties of ionic compounds to the structure of crystal lattices. 2. Predict an element s chemical properties using the number of valence electrons and electron dot diagrams. Some elements achieve stable electron configurations through the transfer of electrons between atoms. Look at the electron dot diagram for chlorine. A chlorine atom is missing one valence electron for it to have a full outer shell. Look at the electron dot diagram for sodium. A sodium atom has one valence electron. If sodium were to lose this valence electron, its outer shell would be full and be a stable electron configuration. When sodium reacts with chlorine, an electron is transferred from the sodium atom to the chlorine atom. Each atom ends up with a more stable electron configuration after transferring the electrons than it had before the transfer. 3. Name and determine chemical formulas for ionic and molecular compounds. Vocabulary: ion cation ionization energy crystals polyatomic ions anion ionic bond ionic compound binary compound When an atom gains or loses an electron, the number of electrons is no longer equal to the number of protons. The charge is not balance and the charge is not neutral. An ion is an atom that has a positive or negative electric charge. An ion with a negative charge (-) is an anion. An ion with a positive charge (+) is a cation. 6

8 When an anion and cation are close together, a chemical bond forms between the ions. A chemical bond is the force that holds atoms together. An ionic bond is the force that holds cations and anions together. An electron can move to a higher energy level when an atom absorbs energy. The energy allows electrons to overcome the attraction of the positive protons in the nucleus. Cations form when electrons gain enough energy to escape from atoms. It takes energy to remove valence electrons from an atom because the force of attraction between the negative electrons and the positive nucleus must be overcome. The amount of energy needed depends on the element. The amount of energy used to remove an electron is called ionization energy. It varies from element to element. The lower the ionization energy, the easier it is to remove an electron from an atom. Ionization energies tend to increase from left to right across a period. It takes more energy to remove an electron from a nonmetal than from a metal in the same period. Ionization energies tend to increase from bottom to top in a group. Compounds that contain ionic bonds are ionic compounds. A chemical formula for an ionic compound tells you the ratio of the ions in the compound, but it does not tell you how the ions are arranged in the compound. Solids whose particles are arranged in a lattice structure are called crystals. Lattice structures keep the ions in a fixed position. The repeating pattern of ions in the lattice is like the repeating pattern of designs on wallpaper. Ionic crystals depend on the ratio of ions and their relative size. Crystals are classified into groups based on the shape of their crystals. The properties of an ionic compound can be explained by the strong attractions among ions within a crystal lattice. Ionic compounds have high melting points, are poor conductors of electric current, and shatter when struck with a hammer. 7

9 The stronger the attraction among the particles, the more kinetic energy the particles must have before they can separate. For an electric current to flow, charge particles must be able to move from one location to another. The ions in a solid crystal lattice have fixed position; however, when solid melts, the lattice breaks apart and the ions are free to flow. Cu1+ ions to balance an O2ions. CuO is copper (II) oxide because it takes one Cu2+ ions to balance an O2- ions. Polyatomic ions are a covalently bonded group of atoms that has a positive or negative charge and acts as a unit. When a crystal is struck, negative ions are pushed into positions near negative ions, and positive ions are pushed into position near positive ions. Ions with the same charge repel on another and cause the crystals to shatter. The name of an ionic compound must distinguish the compound from other ionic compounds containing the same elements. The formula of an ionic compound describes the ratio of the ions in the compound. A compound made from only two elements is a binary compound. The naming binary compounds are easy. The name of the cation followed by the name of the anion. The name of the cation is the name of the metal. The name of the anion uses part of the nonmetal with the suffix ide. For example, if you have sodium and chlorine in a compound, it would be sodium chloride. If you know the name of the ionic compound you can write its formula. Place the symbol for the cation first, followed by symbol for the anion. Use subscripts to show the ratio of the ions in the compound. Because all compounds are neutral, the total charge on the cations and anions must add up to zero. Many transition metals form more than one type of ion. When a metal forms more than one ion, the name of the ion contains a Roman numeral to indicate the charge of the ion. For example, Cu2O is copper (I) oxide because it takes two 8

10 Section Review: 1. How can an atom end up with a more stable electron configuration? 2. What happens when sodium reacts with chlorine? 3. When is it easier to remove an electron from an atom? 4. Across a period, how does the ionization energies increase? 5. In a group, how does the ionization energies increase? 6. Use ionization energy to explain why metals lose electrons more easily than nonmetals. 7. What does the shape of an ionic crystal depend on? 8. How would the properties of an ionic compound be explained? 9. Why do ionic crystals to shatter when struck? 10.What does the name for an ionic compound distinguish? 11.What does the formula for an ionic compound describe? 12.How are binary ionic compounds named? 13.How are transition metals distinguished from one another? 14. How do you write a formula for ionic compound? 9

11 SECTION 11.3 Covalent Bonds In a tennis match, two players keep hitting the ball back and forth. The ball bounces from one player to the other, over and over again. The ball keeps the players moving together on the court. What if the two players represented the nuclei of two atoms and the ball represented valence electrons? What would the back and forth movement of the ball represent? The answer is a covalent bond. OBJECTIVES: 1. Describe how covalent bonds form and the attractions that keep atoms together in molecules. 2. Compare polar and nonpolar bonds. 3. Name and determine chemical formulas for ionic and molecular compounds. Vocabulary: covalent bond polar covalent bond molecule nonpolar A covalent bond is a chemical bond in which two atoms share a pair of valence electrons. Covalent bonds share electrons while ionic bonds transfer electrons. The two atoms that are held together by a covalent bond may be atoms of the same element or different elements. When atoms of different elements form covalent bonds, a new substance, called a covalent compound, results. Water is an example of a covalent compound. A molecule is a neutral group of atoms that are joined together by one or more covalent bonds. The 10

12 attractions between the shared electrons and the protons in each nucleus hold the atoms together in a covalent bond. In a molecule of an element, the atoms that form covalent bonds have the same ability to attract an electron. Shared electrons are attracted equally to the nuclei of both atoms. In a molecule of a compound, electrons may not be shared equally. A covalent bond in which electrons are not shared equally is called a polar covalent bond. When atoms form a polar covalent bond, the atom with the greater attraction for electrons has a partial negative charge. The other atom has a partial positive charge. When two atoms share one pairs of electrons, the bond is called a single bond. When two atoms share two pairs of electrons, the bond is called a double bond. When two atoms share three pairs of electrons, the bond is called a triple bond. In general, elements on the right of the periodic table have a greater attraction for electrons than elements on the left have (except for Noble Gases). In general, elements at the top of a group have greater attraction for electrons than elements at the bottom of a group. Fluorine is on the far right and is at the top of its group, so it has the strongest attraction for electrons and is the most reactive metal. Covalent bonds form because the shared electrons fill each atom s outer energy level and this is the most stable arrangement of electrons. Not all polar bonds create a polar molecule. The type of atoms in a molecule and its shape are factors that determine whether a molecule is polar or nonpolar. If the molecule is in a straight line, or linear, with polar bonds, the molecule is non-polar. However, it the molecule is at an angle to each other with polar bonds, the molecule is polar. 11

13 In a molecule compound, there are forces of attraction between molecules. Attractions between polar molecules are stronger than attractions between nonpolar molecules. The covalent bonds of covalent compounds are responsible for many of the properties of the compounds. Because valence electrons are shared in covalent compounds, rather than transferred between atoms as they are in ionic compounds, covalent compounds have very different properties than ionic compounds. Many covalent compounds, especially those containing carbon and hydrogen, burn easily. In contrast, many ionic compounds do not burn. Many covalent compounds do not dissolve in water, whereas most ionic compounds dissolve well in water. compound describe the type and number of atoms in a molecule of the compound. When naming molecular compounds, the general rule is that the most metallic element appears first in the name. If both elements are in the same group, the more metallic element is closer to the bottom of the group. The names of the elements in the compound reflect the actual number of atoms in a molecule. You put a prefix indicating the number of atoms before the element name. If there is only one atom in the first element, the mono is left off. The name of the second element is changed to end in the suffix ide. For example, N2O4 has two nitrogen atoms and four oxygen atoms. Its name would be dinitrogen tetraoxide. Unlike ionic compounds, covalent compounds do not have freely moving electrons, so they cannot conduct electricity. The individual molecules of covalent compounds are more easily separated than the ions in a crystal, so most covalent compounds have relatively low boiling points. This explains why many of them are liquids or gases at room temperature. Like ionic compounds, molecular compounds have names that identify specific compounds, and formulas that match those names. The name and formula of a molecular Writing a formula for a molecular compound is easy. Write the symbols for the element in the order the elements appear 12

14 in the name. The prefixes indicate the number of atoms of each element appear in molecule. The prefixes appears as subscripts in the formulas. If there is no prefix, the number of atoms is one. Section Review: 1. How is a covalent bond different from an ionic bond? 2. What keeps the atoms together in a molecule? 3. What do you call it when an atom shared one pair of electrons? 4. Two pairs of electrons? 5. Three pairs of electrons? 6. Which elements have the greatest attraction for electrons? 7. Which atoms become more negative in a polar covalent bond? More positive? 8. How do you determine if a molecule is polar or nonpolar? 9. What does the name and formula for molecular compounds describe? 10. What is the general rule for which element appears first in a molecular compound? 11. How is the second element name changed? 12. What does the prefix hexa- mean? 13. How do you write a formula for molecular compounds? 13

15 SECTION 11.4 Metallic Bonds OBJECTIVE: 1. Describe the structure and strength of bond in metals. Vocabulary: metallic bond ductile malleable alloy The thick, rigid trunk of the oak tree might crack and break in a strong wind. The slim, flexible trunk of the willow tree might bend without breaking. In one way, metals are like willow trees. They can bend without breaking. That s because metals form special bonds called metallic bonds. The properties of metal are related to bonds within the metal. There is a way for metal atoms to lose and gain electrons. In a metal, valence electrons are free to move among the atoms, thus becoming a cation with a pool of shared electrons. A metallic bond is the attraction between a metal cation and the shared electrons that surrounds it. Cations in a metal form a lattice that is held in place by strong metallic bonds. Although the electrons are moving among the atoms, the total number of electrons does not change. The valence electrons of metals move freely in this way because metals have relatively low electronegativity, or attraction to electrons. The positive metal ions form a lattice-like structure held together by all the metallic bonds. The more valence electrons an atom can contribute to the shared pool, the stronger the metallic bond. The valence electrons surrounding metal ions are constantly moving. This makes metals good conductors of electricity. The lattice-like structure of metal ions is strong but quite flexible. This allows metals to bend without breaking. Metals are both ductile (can be shaped into wires) and malleable (can be shaped into thin sheets). 14

16 Remember that a flow of charge particles is an electric current. A metal has a built-in supply of charged particles that can flow from one location to another, the pool of electrons. The lattice in metals is flexible compared to the rigid lattice of ionic compounds. The metal ions shift their position and shape of the metal changes, but the metal does not shatter. The ions are still held together by the metallic bonds. other elements in it. The molten solution is then allowed to cool and harden. Alloys generally have more useful properties than pure metals. Alloying one metal with other metal(s) or non metal(s) often enhances its properties. For instance, steel is stronger than iron, its primary element. Unlike pure metals, most alloys do not have a single melting point. Instead, they have a melting range in which the material is a mixture of solid and liquid phases. Metals such as iron are useful for many purposes because of their unique properties. For example, they can conduct electricity and bend without breaking. However, pure metals may be less useful than mixtures of metals with other elements. For example, adding a little carbon to iron makes it much stronger. This mixture is called steel. Steel is so strong that it can hold up huge bridges, like the one pictured above. Steel is also used to make skyscrapers, cargo ships, cars, and trains. Steel is an example of an alloy. An alloy is a mixture of a metal with one or more other elements. The other elements may be metals, nonmetals, or both. An alloy is formed by melting a metal and dissolving the 15

17 Section Review: 1. How do metals achieve a stable electron configuration? 2. What holds metal ions together in a metal lattice? 3. What two important properties of metals can be explained by their structure? 4. What are some useful ways alloys may differ from pure metals? 16

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chapter 4: Structure and Properties of Ionic and Covalent Compounds Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot notation is a way of describing the outer shell (also called the valence shell) of an

More information

(b) Formation of calcium chloride:

(b) Formation of calcium chloride: Chapter 2: Chemical Compounds and Bonding Section 2.1: Ionic Compounds, pages 22 23 1. An ionic compound combines a metal and a non-metal joined together by an ionic bond. 2. An electrostatic force holds

More information

19.2 Chemical Formulas

19.2 Chemical Formulas In the previous section, you learned how and why atoms form chemical bonds with one another. You also know that atoms combine in certain ratios with other atoms. These ratios determine the chemical formula

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

19.1 Bonding and Molecules

19.1 Bonding and Molecules Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

More information

Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

More information

Test Bank - Chapter 4 Multiple Choice

Test Bank - Chapter 4 Multiple Choice Test Bank - Chapter 4 The questions in the test bank cover the concepts from the lessons in Chapter 4. Select questions from any of the categories that match the content you covered with students. The

More information

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

Chapter 5 Student Reading

Chapter 5 Student Reading Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

More information

Reading Preview. Key Terms covalent bond molecule double bond triple bond molecular compound polar bond nonpolar bond

Reading Preview. Key Terms covalent bond molecule double bond triple bond molecular compound polar bond nonpolar bond Section 4 4 bjectives After this lesson, students will be able to L.1.4.1 State what holds covalently bonded s together. L.1.4.2 Identify the properties of molecular compounds. L.1.4.3 Explain how unequal

More information

A PREVIEW & SUMMMARY of the 3 main types of bond:

A PREVIEW & SUMMMARY of the 3 main types of bond: Chemical Bonding Part 1 Covalent Bonding Types of Chemical Bonds Covalent Bonds Single Polar Double NonPolar Triple Ionic Bonds Metallic Bonds Other Bonds InterMolecular orces first A PREVIEW & SUMMMARY

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

Lewis Dot Structures of Atoms and Ions

Lewis Dot Structures of Atoms and Ions Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

H 2O gas: molecules are very far apart

H 2O gas: molecules are very far apart Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

More information

Chapter 2 Atoms and Molecules

Chapter 2 Atoms and Molecules Chapter 2 Atoms and Molecules 2-1 Elements and their symbols Most of the chemicals you find in everyday life can be broken down into simper substances Key Concepts: A substance that cannot be broken down

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

Ionic and Covalent Bonds

Ionic and Covalent Bonds Ionic and Covalent Bonds Ionic Bonds Transfer of Electrons When metals bond with nonmetals, electrons are from the metal to the nonmetal The becomes a cation and the becomes an anion. The between the cation

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Exam 2 Chemistry 65 Summer 2015. Score:

Exam 2 Chemistry 65 Summer 2015. Score: Name: Exam 2 Chemistry 65 Summer 2015 Score: Instructions: Clearly circle the one best answer 1. Valence electrons are electrons located A) in the outermost energy level of an atom. B) in the nucleus of

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS PERIODIC TABLE OF THE ELEMENTS Periodic Table: an arrangement of elements in horizontal rows (Periods) and vertical columns (Groups) exhibits periodic repetition of properties First Periodic Table: discovered

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

Nomenclature and the Periodic Table To name compounds and to determine molecular formulae from names a knowledge of the periodic table is helpful.

Nomenclature and the Periodic Table To name compounds and to determine molecular formulae from names a knowledge of the periodic table is helpful. Nomenclature and the Periodic Table To name compounds and to determine molecular formulae from names a knowledge of the periodic table is helpful. Atomic Number = number of protons Mass Number = number

More information

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013 3 Elements and Compounds Chapter Outline 3.1 Elements A. Distribution of Elements Foundations of College Chemistry, 14 th Ed. Morris Hein and Susan Arena Copyright This reclining Buddha in Thailand is

More information

Chapter 5. Chapter 5. Naming Ionic Compounds. Objectives. Chapter 5. Chapter 5

Chapter 5. Chapter 5. Naming Ionic Compounds. Objectives. Chapter 5. Chapter 5 Objectives Name cations, anions, and ionic compounds. Write chemical formulas for ionic compounds such that an overall neutral charge is maintained. Explain how polyatomic ions and their salts are named

More information

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

Chemical Building Blocks: Chapter 3: Elements and Periodic Table Name: Class: Date: Chemical Building Blocks: Chapter 3: Elements and Periodic Table Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

More information

Trends of the Periodic Table Diary

Trends of the Periodic Table Diary Trends of the Periodic Table Diary Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

Elements, Atoms & Ions

Elements, Atoms & Ions Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

5. Structure, Geometry, and Polarity of Molecules

5. Structure, Geometry, and Polarity of Molecules 5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those

More information

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study

More information

Science 20. Unit A: Chemical Change. Assignment Booklet A1

Science 20. Unit A: Chemical Change. Assignment Booklet A1 Science 20 Unit A: Chemical Change Assignment Booklet A FOR TEACHER S USE ONLY Summary Teacher s Comments Chapter Assignment Total Possible Marks 79 Your Mark Science 20 Unit A: Chemical Change Assignment

More information

Molecular Models in Biology

Molecular Models in Biology Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent,

More information

Chemistry Diagnostic Questions

Chemistry Diagnostic Questions Chemistry Diagnostic Questions Answer these 40 multiple choice questions and then check your answers, located at the end of this document. If you correctly answered less than 25 questions, you need to

More information

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

More information

The Periodic Table: Periodic trends

The Periodic Table: Periodic trends Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist

More information

TRENDS IN THE PERIODIC TABLE

TRENDS IN THE PERIODIC TABLE Noble gases Period alogens Alkaline earth metals Alkali metals TRENDS IN TE PERIDI TABLE Usual charge +1 + +3-3 - -1 Number of Valence e - s 1 3 4 5 6 7 Electron dot diagram X X X X X X X X X 8 Group 1

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

CHEM 150 Exam 1 KEY Name Multiple Choice

CHEM 150 Exam 1 KEY Name Multiple Choice CEM 150 Exam 1 KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. _B 1. Which of the following is synonymous with "fact"? a. a hypothesis

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY Purpose: 1. To distinguish between different types of chemical bonds. 2. To predict the polarity of some common molecules from a knowledge of bond

More information

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39)

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) ATOMS A T O M S, I S O T O P E S, A N D I O N S The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) THE ATOM All elements listed on the periodic table are made up of atoms.

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

Naming and Writing Formulas for Ionic Compounds Using IUPAC Rules

Naming and Writing Formulas for Ionic Compounds Using IUPAC Rules Naming and Writing Formulas for Ionic Compounds Using IUPAC Rules There are three categories of ionic compounds that we will deal with. 1.Binary ionic o simple ions (only single charges) o multivalent

More information

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num . ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

More information

Bonding in Elements and Compounds. Covalent

Bonding in Elements and Compounds. Covalent Bonding in Elements and Compounds Structure of solids, liquids and gases Types of bonding between atoms and molecules Ionic Covalent Metallic Many compounds between metals & nonmetals (salts), e.g. Na,

More information

BOND TYPES: THE CLASSIFICATION OF SUBSTANCES

BOND TYPES: THE CLASSIFICATION OF SUBSTANCES BOND TYPES: THE CLASSIFICATION OF SUBSTANCES Every (pure) substance has a unique set of intrinsic properties which distinguishes it from all other substances. What inferences, if any can be made from a

More information

Trends of the Periodic Table Basics

Trends of the Periodic Table Basics Trends of the Periodic Table Basics Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

Name: Block: Date: Test Review: Chapter 8 Ionic Bonding

Name: Block: Date: Test Review: Chapter 8 Ionic Bonding Name: Block: Date: Test Review: Chapter 8 Ionic Bonding Part 1: Fill-in-the-blank. Choose the word from the word bank below. Each word may be used only 1 time. electron dot structure metallic electronegativity

More information

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck atoms- the smallest particle of an element that can be identified with that element are the building blocks of matter consists of protons and

More information

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Elements and Compounds. Chemical Bonds compounds are made of atoms held together by chemical bonds bonds are forces of attraction between atoms

Elements and Compounds. Chemical Bonds compounds are made of atoms held together by chemical bonds bonds are forces of attraction between atoms Elements and Compounds elements combine together to make an almost limitless number of compounds the properties of the compound are totally different from the constituent elements Tro, Chemistry: A Molecular

More information

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment. Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The

More information

CHEMICAL NAMES AND FORMULAS

CHEMICAL NAMES AND FORMULAS 6 CEMICAL NAMES AND FORMULAS SECTION 6.1 INTRODUCTION TO CEMICAL BONDING (pages 133 137) This section explains how to distinguish between ionic and molecular compounds. It also defines cation and anion

More information

CHAPTER 9. 9.1 Naming Ions. Chemical Names and Formulas. Naming Transition Metals. Ions of Transition Metals. Ions of Transition Metals

CHAPTER 9. 9.1 Naming Ions. Chemical Names and Formulas. Naming Transition Metals. Ions of Transition Metals. Ions of Transition Metals CHAPTER 9 Chemical Names and Formulas 9.1 Naming Ions Monatomic Ions: a single atom with a positive or negative charge Cation (rules): listed first Anion (rules): ide ending Transition Metals have a varying

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

ATOMS AND BONDS. Bonds

ATOMS AND BONDS. Bonds ATOMS AND BONDS Atoms of elements are the simplest units of organization in the natural world. Atoms consist of protons (positive charge), neutrons (neutral charge) and electrons (negative charge). The

More information

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked. GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

More information

2 The Structure of Atoms

2 The Structure of Atoms CHAPTER 4 2 The Structure of Atoms SECTION Atoms KEY IDEAS As you read this section, keep these questions in mind: What do atoms of the same element have in common? What are isotopes? How is an element

More information

5s Solubility & Conductivity

5s Solubility & Conductivity 5s Solubility & Conductivity OBJECTIVES To explore the relationship between the structures of common household substances and the kinds of solvents in which they dissolve. To demonstrate the ionic nature

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

Atoms, Elements, and the Periodic Table (Chapter 2)

Atoms, Elements, and the Periodic Table (Chapter 2) Atoms, Elements, and the Periodic Table (Chapter 2) Atomic Structure 1. Historical View - Dalton's Atomic Theory Based on empirical observations, formulated as Laws of: Conservation of Mass Definite Proportions

More information

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

More information

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework Atoms and the Periodic Table The very hot early universe was a plasma with cationic nuclei separated from negatively charged electrons. Plasmas exist today where the energy of the particles is very high,

More information

Sugar or Salt? Ionic and Covalent Bonds

Sugar or Salt? Ionic and Covalent Bonds Lab 11 Sugar or Salt? Ionic and Covalent Bonds TN Standard 2.1: The student will investigate chemical bonding. Have you ever accidentally used salt instead of sugar? D rinking tea that has been sweetened

More information

WRITING CHEMICAL FORMULA

WRITING CHEMICAL FORMULA WRITING CHEMICAL FORMULA For ionic compounds, the chemical formula must be worked out. You will no longer have the list of ions in the exam (like at GCSE). Instead you must learn some and work out others.

More information

Properties and Classifications of Matter

Properties and Classifications of Matter PS-3.1 Distinguish chemical properties of matter (including reactivity) from physical properties of matter (including boiling point, freezing/melting point, density [with density calculations], solubility,

More information

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

More information

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part. Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is

More information

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o 2. VALENT BNDING, TET RULE, PLARITY, AND BASI TYPES F FRMULAS LEARNING BJETIVES To introduce the basic principles of covalent bonding, different types of molecular representations, bond polarity and its

More information

All about Chemical Bonding Ionic

All about Chemical Bonding Ionic Program Support Notes by: Peter Gribben BA BSc (Hons) PGCE Produced by: VEA Pty Ltd Commissioning Editor: Darren Gray Cert IV Training & Assessment Executive Producer: Simon Garner B.Ed, Dip Management

More information

Chapter 5, Lesson 3 Why Does Water Dissolve Salt?

Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Key Concepts The polarity of water molecules enables water to dissolve many ionically bonded substances. Salt (sodium chloride) is made from positive sodium

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour

More information

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and

More information