STAT/MATH 395 PROBABILITY II

Size: px
Start display at page:

Download "STAT/MATH 395 PROBABILITY II"

Transcription

1 STAT/MATH 395 PROBABILITY II Continuous Random Variables Néhémy Lim University of Washington Winter 2017

2 Outline Probability Density Function and Cumulative Distribution Function Expectation and Variance Common Continuous Distributions Uniform Distribution Gaussian Distribution Quantiles Exponential Distribution

3 Outline Probability Density Function and Cumulative Distribution Function Expectation and Variance Common Continuous Distributions Uniform Distribution Gaussian Distribution Quantiles Exponential Distribution

4 Example Let X be the distance between Federer s position when he serves and the location where the ball lands. What is the probability that X is exactly 15 metres? Hint: See Hawk eye system

5 Definition (Probability density function) A rrv is said to be (absolutely) continuous if there exists a real-valued function f X such that, for any subset B R: P(X B) = f X (x) dx (1) Then f X is called the probability density function (pdf) of the random variable X. Property If X is a continuous rrv, then For any real numbers a and b, with a < b B P(a X b) = P(a X < b) = P(a < X b) = P(a < X < b) (2) P(X = a) = 0, for all a R

6 Theorem A probability density function completely determines the distribution of a continuous real-valued random variable.

7 Definition (Cumulative distribution function) Let (Ω, A, P) be a probability space. The (cumulative) distribution function (cdf) of a real-valued random variable X is the function F X given by F X (x) = P(X x), for all x R (3) Property Let F X be the cumulative distribution function of a random variable X. Following are some properties of F X : F X is increasing : x y F X (x) F X (y) lim x F X (x) = 1 and lim x F X (x) = 0 F X is càdlàg : FX is right continuous : lim x x0 F X (x) = F X (x 0 ), for x 0 R FX has left limits : lim x x0 F X (x) exists, for x 0 R

8 Cumulative Distribution Function of a continuous rrv Property Let X be a continuous rrv with pdf f X. Then the cumulative distribution function F X of X is given by : F X (x) = x f X (t) dt (4) Corollary Let X be a continuous rrv with pdf f X and cdf F X. Then F X (x) = f X(x), if f X is continuous at x; P(a X b) = F X (b) F X (a), for any a, b R with a < b; A cdf completely determines the distribution of a continuous real-valued random variable.

9 Proposition Let X be a continuous rrv on probability space (Ω, A, P) with pdf f X. Then, we have : f X is nonnegative on R : f X is integrable on R and f X (x) 0, for all x R; (5) f X (x) dx = 1 (6) Definition (Valid probability density function) A real-valued function f is said to be a valid pdf if it satisfies (5) and (6).

10 Example A continuous rrv X is said to follow a uniform distribution on [0, 1/2] if its pdf is : f X (x) = { c if 0 x 1/2 0 otherwise = c1 [0,1/2] (x) Questions. (1) Graph f X (2) Determine c such that f X satisfies the properties of a pdf. (3) Give the cdf of X and graph it.

11 Example Let X be the duration of a telephone call in minutes and suppose X has pdf : f X (x) = c e x/10 1 [0, ) (x) Questions. (1) Which value(s) of c make(s) f X a valid pdf? (2) Find the probability that the call lasts less than 5 minutes.

12 Outline Probability Density Function and Cumulative Distribution Function Expectation and Variance Common Continuous Distributions Uniform Distribution Gaussian Distribution Quantiles Exponential Distribution

13 Definition (Expected Value) Let X be a continuous rrv with pdf f X. If x f X(x) dx <, then the mathematical expectation (or expected value or mean) of X exists and is defined as follows : E[X] = xf X (x) dx (7) Let g : R R be a piecewise continuous function. If random variable g(x) is integrable. Then, the mathematical expectation of g(x) exists and is defined as follows : E[g(X)] = g(x)f X (x) dx (8) Example. Expectation of a uniform distribution on [0, 1/2]

14 Property Let X be a continuous rrv with pdf f X. for all c R, E[c] = c If g : R R is a nonnegative piecewise continuous function and g(x) is integrable. Then, we have : E[g(X)] 0 (9) If g 1 : R R and g 2 : R R are piecewise continuous functions and g 1 (X) and g 2 (X) are integrable such that g 1 g 2. Then, we have : E[g 1 (X)] E[g 2 (X)] (10)

15 Linearity of Expectation Property Let X be a continuous rrv with pdf f X. If c 1, c 2 R and g 1 : R R and g 2 : R R are piecewise continuous functions and g 1 (X) and g 2 (X) are integrable. Then, we have : E[c 1 g 1 (X) + c 2 g 2 (X)] = c 1 E[g 1 (X)] + c 2 E[g 2 (X)] (11)

16 Variance Standard Deviation Definition Let X be a rrv on probability space (Ω, A, P). If E[X 2 ] exists, the variance of X is defined as follows : Var(X) = E[(X E[X]) 2 ] (12) The standard deviation of X is: σ X = Var(X) (13)

17 Property Let X be a real-valued random variable. Var(X) 0 If a, b R are two constants, then Var(aX + b) = a 2 Var(X) (König-Huygens formula) When E[X 2 ] exists : Var(X) = E[X 2 ] (E[X]) 2 (14) If X is a continuous rrv with pdf f X, Equation (14) becomes : Var(X) = ( ) 2 x 2 f X (x) dx xf X (x) dx Example. Variance of a uniform distribution on [0, 1/2]

18 Outline Probability Density Function and Cumulative Distribution Function Expectation and Variance Common Continuous Distributions Uniform Distribution Gaussian Distribution Quantiles Exponential Distribution

19 Uniform Distribution A continuous rrv is said to follow a uniform distribution U(a, b) on a segment [a, b], with a < b, if its pdf is f X (x) = 1 b a 1 [a,b](x) (15) If X follows a uniform distribution U(a, b), then E[X] = a + b 2 (16) Var(X) = (b a)2 12 (17)

20 Motivation Generating random numbers based on a probability density function

21 Example A restaurant wants to advertise a new burger they call The Quarter-kilogram.

22 Normal distribution A continuous random variable is said to follow a normal (or Gaussian) distribution N (µ, σ 2 ) with parameters, mean µ and variance σ 2 if its pdf f X is given by: f X (x) = 1 { σ 2π exp 1 ( ) } x µ 2, for x R (18) 2 σ If X follows a normal distribution N (µ, σ 2 ), then E[X] = µ (19) Var(X) = σ 2 (20)

23 Property If X follows a normal distribution N (µ, σ 2 ). Then its pdf f X has the following properties: (1) f X is symmetric about the mean µ : (2) f X is maximized at x = µ. f X (µ x) = f X (µ + x), for x R (21) (3) The limit of f X (x), as x approches or, is 0: lim x f X(x) = lim x f X(x) = 0 (22)

24 Standard Normal Distribution Definition We say that a continuous rrv X follows a standard normal distribution if X follows a normal distribution N (0, 1) with mean 0 and variance 1. The cdf of a standard normal random variable is denoted Φ, that is : Φ(x) = x 1 2π e t2 2 dt, for x R (23) Property The cdf of a standard normal random variable satisfies the following property: Φ( z) = 1 Φ(z), for z R (24)

25 Property Let a R, a 0 and b R. If X follows a normal distribution N (µ, σ 2 ), then random variable ax + b follows a normal distribution N (aµ + b, a 2 σ 2 ). Corollary If X follows a normal distribution N (µ, σ 2 ), then random variable Z defined by: Z = X µ σ is a standard normal random variable.

26 Finding Normal probabilities. If X N (µ, σ 2 ). In order to find probabilities P(a X b) : (1) Transform X, a, and b, by: Z = X µ σ (2) Use the standard normal N (0, 1) Table to find the desired probability. Example. Let X be the weight of a burger. Assume X follows a normal distribution with mean 250 grams and standard deviation 15 grams. (a) What is the probability that a randomly selected burger has a weight below 240 grams? (b) What is the probability that a randomly selected burger has a weight above 270 grams? (c) What is the probability that a randomly selected burger has a weight between 230 and 265 grams?

27 Example Suppose X, the grade on a midterm exam, is normally distributed with mean 70 and standard deviation 10.The instructor wants to give 15% of the class an A. What cutoff should the instructor use to determine who gets an A?

28 Definition (Quantile) Let X be a rrv with cumulative distribution function F X and α [0, 1]. A quantile of order α for the distribution of X, denoted q α, is defined as follows : Remarks : q α = inf {x R F X (x) α } (25) The quantile of order 1/2 is called the median of the distribution If F X is a bijective function, then q α = F 1 X (α) Property For α (0, 1), the quantile function of a standard normal random variable is given by : Φ 1 (α) = Φ 1 (1 α) (26)

29 Finding the Quantiles of a Normal Distribution. In order to find the value of a normal random variable X N (µ, σ 2 ): (1) Find in the Table the z = (x µ)/σ value associated with the desired probability. (2) Use the transformation x = µ + zσ. Example. Suppose X, the grade on a midterm exam, is normally distributed with mean 70 and standard deviation 10. (a) The instructor wants to give 15% of the class an A. What cutoff should the instructor use to determine who gets an A? (b) The instructor now wants to give the next 10% of the class an A-. For which range of grades should the instructor assign an A-?

30 Motivating example Let Y be the discrete rrv equal to the number of people joining the line to visit the Eiffel Tower in an interval of one hour. Assume that the mean number of people arriving in an interval of one hour is 800. Let X be the waiting time until the first visitor arrives.

31 Exponential distribution A continuous random variable is said to follow an exponential distribution E(λ) with λ > 0 if its pdf f X is given by: f X (x) = λe λx 1 [0, ) (x), for x R (27) If X follows an exponential distribution E(λ), then E[X] = 1 λ (28) Var(X) = 1 λ 2 (29) Example. Suppose that people join the line to visit the Eiffel Tower at a mean rate of 800 visitors per hour. What is the probability that nobody joins the line in the next 30 seconds?

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

Random Variables. Chapter 2. Random Variables 1

Random Variables. Chapter 2. Random Variables 1 Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

More information

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

More information

The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University

The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University The Normal Distribution Alan T. Arnholt Department of Mathematical Sciences Appalachian State University arnholt@math.appstate.edu Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Continuous Random

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions) Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008 Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

More information

Continuous Random Variables

Continuous Random Variables Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous

More information

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.)

Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) Name: Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) The total score is 100 points. Instructions: There are six questions. Each one is worth 20 points. TA will grade the best five

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1 ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day.

Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. 16 The Exponential Distribution Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. Let T be the time (in days) between hits. 2.

More information

Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

More information

Example. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away)

Example. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away) : Three bets Math 45 Introduction to Probability Lecture 5 Kenneth Harris aharri@umich.edu Department of Mathematics University of Michigan February, 009. A casino offers the following bets (the fairest

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions Math 37/48, Spring 28 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 3 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 5 Solutions About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

3. The Economics of Insurance

3. The Economics of Insurance 3. The Economics of Insurance Insurance is designed to protect against serious financial reversals that result from random evens intruding on the plan of individuals. Limitations on Insurance Protection

More information

Transformations and Expectations of random variables

Transformations and Expectations of random variables Transformations and Epectations of random variables X F X (): a random variable X distributed with CDF F X. Any function Y = g(x) is also a random variable. If both X, and Y are continuous random variables,

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

1.1 Introduction, and Review of Probability Theory... 3. 1.1.1 Random Variable, Range, Types of Random Variables... 3. 1.1.2 CDF, PDF, Quantiles...

1.1 Introduction, and Review of Probability Theory... 3. 1.1.1 Random Variable, Range, Types of Random Variables... 3. 1.1.2 CDF, PDF, Quantiles... MATH4427 Notebook 1 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 1 MATH4427 Notebook 1 3 1.1 Introduction, and Review of Probability

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2014 1 2 3 4 5 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Experiment, outcome, sample space, and

More information

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS 6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

e.g. arrival of a customer to a service station or breakdown of a component in some system.

e.g. arrival of a customer to a service station or breakdown of a component in some system. Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

More information

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Lesson 20. Probability and Cumulative Distribution Functions

Lesson 20. Probability and Cumulative Distribution Functions Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces

More information

Sums of Independent Random Variables

Sums of Independent Random Variables Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

PSTAT 120B Probability and Statistics

PSTAT 120B Probability and Statistics - Week University of California, Santa Barbara April 10, 013 Discussion section for 10B Information about TA: Fang-I CHU Office: South Hall 5431 T Office hour: TBA email: chu@pstat.ucsb.edu Slides will

More information

Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations 56 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Florin-Cătălin ENACHE

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22 Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. DISCRETE RANDOM VARIABLES.. Definition of a Discrete Random Variable. A random variable X is said to be discrete if it can assume only a finite or countable

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

WEEK #22: PDFs and CDFs, Measures of Center and Spread

WEEK #22: PDFs and CDFs, Measures of Center and Spread WEEK #22: PDFs and CDFs, Measures of Center and Spread Goals: Explore the effect of independent events in probability calculations. Present a number of ways to represent probability distributions. Textbook

More information

7 CONTINUOUS PROBABILITY DISTRIBUTIONS

7 CONTINUOUS PROBABILITY DISTRIBUTIONS 7 CONTINUOUS PROBABILITY DISTRIBUTIONS Chapter 7 Continuous Probability Distributions Objectives After studying this chapter you should understand the use of continuous probability distributions and the

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1 Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

Week 2: Exponential Functions

Week 2: Exponential Functions Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of

More information

Probability. Distribution. Outline

Probability. Distribution. Outline 7 The Normal Probability Distribution Outline 7.1 Properties of the Normal Distribution 7.2 The Standard Normal Distribution 7.3 Applications of the Normal Distribution 7.4 Assessing Normality 7.5 The

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

Elliptical copulae. Dorota Kurowicka, Jolanta Misiewicz, Roger Cooke

Elliptical copulae. Dorota Kurowicka, Jolanta Misiewicz, Roger Cooke Elliptical copulae Dorota Kurowicka, Jolanta Misiewicz, Roger Cooke Abstract: In this paper we construct a copula, that is, a distribution with uniform marginals. This copula is continuous and can realize

More information

3.4 The Normal Distribution

3.4 The Normal Distribution 3.4 The Normal Distribution All of the probability distributions we have found so far have been for finite random variables. (We could use rectangles in a histogram.) A probability distribution for a continuous

More information

), 35% use extra unleaded gas ( A

), 35% use extra unleaded gas ( A . At a certain gas station, 4% of the customers use regular unleaded gas ( A ), % use extra unleaded gas ( A ), and % use premium unleaded gas ( A ). Of those customers using regular gas, onl % fill their

More information

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment Statistics and Probability Example Part 1

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment Statistics and Probability Example Part 1 Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment Statistics and Probability Example Part Note: Assume missing data (if any) and mention the same. Q. Suppose X has a normal

More information

A Tutorial on Probability Theory

A Tutorial on Probability Theory Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,

More information

The Convolution Operation

The Convolution Operation The Convolution Operation Convolution is a very natural mathematical operation which occurs in both discrete and continuous modes of various kinds. We often encounter it in the course of doing other operations

More information

Probability, Mean and Median

Probability, Mean and Median Proaility, Mean and Median In the last section, we considered (proaility) density functions. We went on to discuss their relationship with cumulative distriution functions. The goal of this section is

More information

. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.

. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i. Chapter 3 Kolmogorov-Smirnov Tests There are many situations where experimenters need to know what is the distribution of the population of their interest. For example, if they want to use a parametric

More information

Probability and statistics; Rehearsal for pattern recognition

Probability and statistics; Rehearsal for pattern recognition Probability and statistics; Rehearsal for pattern recognition Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception

More information

STAT 830 Convergence in Distribution

STAT 830 Convergence in Distribution STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2011 1 / 31

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

Aggregate Loss Models

Aggregate Loss Models Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

Graphic Designing with Transformed Functions

Graphic Designing with Transformed Functions Math Objectives Students will be able to identify a restricted domain interval and use function translations and dilations to choose and position a portion of the graph accurately in the plane to match

More information

32. PROBABILITY P(A B)

32. PROBABILITY P(A B) 32. PROBABILITY 32. Probability 1 Revised September 2011 by G. Cowan (RHUL). 32.1. General [1 8] An abstract definition of probability can be given by considering a set S, called the sample space, and

More information

Some special discrete probability distributions

Some special discrete probability distributions University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

More information

Review of Random Variables

Review of Random Variables Chapter 1 Review of Random Variables Updated: January 16, 2015 This chapter reviews basic probability concepts that are necessary for the modeling and statistical analysis of financial data. 1.1 Random

More information

Measurements of central tendency express whether the numbers tend to be high or low. The most common of these are:

Measurements of central tendency express whether the numbers tend to be high or low. The most common of these are: A PRIMER IN PROBABILITY This handout is intended to refresh you on the elements of probability and statistics that are relevant for econometric analysis. In order to help you prioritize the information

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information