# Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day.

Save this PDF as:

Size: px
Start display at page:

Download "Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day."

## Transcription

1 16 The Exponential Distribution Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. Let T be the time (in days) between hits. 2. You observe the number of calls that arrive each day over a period of a year, and note that the arrivals follow a Poisson distribution with an average of 3 per day. Let T be the waiting time between calls. 3. Records show that job submissions to a busy computer centre have a Poisson distribution with an average of 4 per minute. Let T be the time in minutes between submissions. 4. Records indicate that messages arrive to a computer server following a Poisson distribution at the rate of 6 per hour. Let T be the time in hours that elapses between messages.

2 Probability Density Function Of Waiting Times Generally the exponential distribution describes waiting time between Poisson occurrences Proof: Let T = time that elapses after a Poisson event. P(T > t) = probability that no event occurred in the time interval of length t. The probability that no Poisson event occurred in the time interval [, t]: P(, t) = e λt. where λ is the average Poisson occurrence rate in a unit time interval. So: P(T > t) = e λt, Hence the CDF is: F(t) = P(T t) = 1 e λt and, working backwards, the PDF is f(t) = F (t) = λe λt

3 The PDF: f(t) = λe λt, t > = otherwise The CDF: P(T t) = F(t) = t λe λt dt = [ e λt ] t T= = e λt + 1 i.e. F(t) = 1 e λt, t > = otherwise.

4 Example: If jobs arrive every 15 seconds on average, λ = 4 per minute, what is the probability of waiting less than or equal to 3 seconds, i.e.5 min? P(T.5). dexp(x, 4) P (X <=.5) x P(T.5) =.5 4e 4t dt = [ e 4t].5 t= = 1 e 2 =.86 From R pexp(.5,4) [1]

5 What is the maximum waiting time between two job submissions with 95% confidence? We need to find k so that This is the quantile function. qexp(.95, 4) [1] P(T k) =.95 The probability that there will be.74 min, about 45 seconds, between two job submissions is.95. Applications of the Exponential Distribution: 1. Time between telephone calls 2. Time between machine breakdowns 3. Time between successive job arrivals at a computing centre

6 Example Accidents occur with a Poisson distribution at an average of 4 per week. i.e. λ = 4 1. Calculate the probability of more than 5 accidents in any one week 2. What is the probability that at least two weeks will elapse between accident? Solution 1. Poisson: In R 1-ppois(5, 4) [1] Exponential: P(X > 5) = 1 P(X 5) P(Time between occurrences > 2) = 2 λe λt dt In R = [ e λt ] T=2 = e 8 =.34 pexp(2, 4) [1] pexp(2, 4) [1]

7 Density of the Exponential Distribution with λ = 2, 3, 4 and 6 lambda = 2 lambda = 3 dexp(x, 2) dexp(x, 3) x x lambda = 4 lambda = 6 dexp(x, 4) 2 4 dexp(x, 6) x x par(mfrow = c(2,2)) curve(dexp(x, 2),, 3, main ="lambda = 2") curve(dexp(x, 3),, 3, main ="lambda = 3") curve(dexp(x, 4),, 3, main ="lambda = 4") curve(dexp(x, 6),, 3, main ="lambda = 6")

8 The Markov Property of Exponential Examples: 1. The distribution of the remaining life does not depend on how long the component has been operating. i.e. the component does not age - its breakdown is a result of some sudden failure not a gradual deterioration 2. Time between telephone calls Waiting time for a call is independent of how long we have been waiting

9 The Markov property Show: P(T x + t T > t) = P(T x) Proof: E 1 = T x + t, and E 2 = T > t Then: Now P(E 1 E 2 ) = P(E 1 E 2 ) P(E 2 ) P(E 1 E 2 ) = P(t < T x + t) = x+t t λe λt dt = e λt [1 e λx ] and thus now P(E 2 ) = t λe λt dt = e λt P(E 1 E 2 ) = e λt [1 e λx ] e λt = 1 e λx 1 e λx = F(x) = P(T x)

10 Examples 1. Calls arrive at an average rate of 12 per hour. Find the probability that a call will occur in the next 5 minutes given that you have already waited 1 minutes for a call i.e. Find P(T 15 T > 1) From the Markov property P(T 15 T > 1) = P(T 5) So: P(T 5) = 1 e 5λ The average rate of telephone calls is λ = 2 in a minute, then P(T 5) = 1 e (5)( 2) = 1 e 1 = 1.37 =.63 In R > pexp(5,.2) [1]

11 Examples 2. The average rate of job submissions in a busy computer centre is 4 per minute. If it can be assumed that the number of submissions per minute interval is Poisson distributed, calculate the probability that: (a) at least 15 seconds will elapse between any two jobs. (b) less than 1 minutes will elapse between jobs. (c) If no jobs have arrived in the last 3 seconds, what is the probability that a job will arrive in the next 15 seconds? Solution λ = 4 per minute (a) P(t > 15 sec.) = P(T >.25 min) =.25 λe λt dt = [ e λt ] T=.25 = e 1 =.37 In R > 1- pexp(.25, 4) [1]

12 Mean of the Exponential Distribution Recall that when X is continuous: E(X) = x xf(x)dx For the exponential distribution: E(T) = tλe λt dt Integration by parts: udv = (uv) tλe λt dt = udv Trick is to spot the u and v: vdu Take and u = t dv = λe λt dt which gives v = e λt Then tλe λt dt = ( te λt) + e λt dt = ( te λt λ 1 e λt) = 1 λ

13 R Functions for the Exponential Distribution Density Function: dexp dexp(1, 4) Cumulative Distribution Function pexp pexp(5, 4) P(T 5) with λ = 4 Quantile Function qexp qexp(.95, 4) Choose k so that > qexp(.95, 4) 1] P(T k).95.

### Examples 1. You have observed that the number of hits to your web site occur at a rate of 2 a day. Let X be be the number of hits in a day

13 POISSON DISTRIBUTION Examples 1. You have observed that the number of hits to your web site occur at a rate of 2 a day. Let X be be the number of hits in a day 2. You observe that the number of telephone

### Continuous random variables

Continuous random variables So far we have been concentrating on discrete random variables, whose distributions are not continuous. Now we deal with the so-called continuous random variables. A random

### Homework set 4 - Solutions

Homework set 4 - Solutions Math 495 Renato Feres Problems R for continuous time Markov chains The sequence of random variables of a Markov chain may represent the states of a random system recorded at

### Renewal Theory. (iv) For s < t, N(t) N(s) equals the number of events in (s, t].

Renewal Theory Def. A stochastic process {N(t), t 0} is said to be a counting process if N(t) represents the total number of events that have occurred up to time t. X 1, X 2,... times between the events

### Exponential Distribution

Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1

### Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

### e.g. arrival of a customer to a service station or breakdown of a component in some system.

Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

### Continuous Random Variables

Continuous Random Variables COMP 245 STATISTICS Dr N A Heard Contents 1 Continuous Random Variables 2 11 Introduction 2 12 Probability Density Functions 3 13 Transformations 5 2 Mean, Variance and Quantiles

### Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions

Math 37/48, Spring 28 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 3 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

### UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

### The Exponential Distribution

21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding

### University of California, Berkeley, Statistics 134: Concepts of Probability

University of California, Berkeley, Statistics 134: Concepts of Probability Michael Lugo, Spring 211 Exam 2 solutions 1. A fair twenty-sided die has its faces labeled 1, 2, 3,..., 2. The die is rolled

### IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)

### P(a X b) = f X (x)dx. A p.d.f. must integrate to one: f X (x)dx = 1. Z b

Continuous Random Variables The probability that a continuous random variable, X, has a value between a and b is computed by integrating its probability density function (p.d.f.) over the interval [a,b]:

### CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

### Performance Analysis of Computer Systems

Performance Analysis of Computer Systems Introduction to Queuing Theory Holger Brunst (holger.brunst@tu-dresden.de) Matthias S. Mueller (matthias.mueller@tu-dresden.de) Summary of Previous Lecture Simulation

### Continuous Probability Distributions (120 Points)

Economics : Statistics for Economics Problem Set 5 - Suggested Solutions University of Notre Dame Instructor: Julio Garín Spring 22 Continuous Probability Distributions 2 Points. A management consulting

### Poisson Processes. Chapter 5. 5.1 Exponential Distribution. The gamma function is defined by. Γ(α) = t α 1 e t dt, α > 0.

Chapter 5 Poisson Processes 5.1 Exponential Distribution The gamma function is defined by Γ(α) = t α 1 e t dt, α >. Theorem 5.1. The gamma function satisfies the following properties: (a) For each α >

### Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

56 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Florin-Cătălin ENACHE

### Pull versus Push Mechanism in Large Distributed Networks: Closed Form Results

Pull versus Push Mechanism in Large Distributed Networks: Closed Form Results Wouter Minnebo, Benny Van Houdt Dept. Mathematics and Computer Science University of Antwerp - iminds Antwerp, Belgium Wouter

### Probabilities and Random Variables

Probabilities and Random Variables This is an elementary overview of the basic concepts of probability theory. 1 The Probability Space The purpose of probability theory is to model random experiments so

### Software Reliability Introduction. Barbara Russo

Software Reliability Introduction Barbara Russo Lessons learned } Reliability concerns the study of failures } There are different notions of effect of an error } Often the difference regards where and

### Notes on Continuous Random Variables

Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

### Performance Analysis, Autumn 2010

Performance Analysis, Autumn 2010 Bengt Jonsson November 16, 2010 Kendall Notation Queueing process described by A/B/X /Y /Z, where Example A is the arrival distribution B is the service pattern X the

### MAS108 Probability I

1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

### Introduction to Probability

Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

### ECE302 Spring 2006 HW5 Solutions February 21, 2006 1

ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

### Chapter 4 Expected Values

Chapter 4 Expected Values 4. The Expected Value of a Random Variables Definition. Let X be a random variable having a pdf f(x). Also, suppose the the following conditions are satisfied: x f(x) converges

### Examination 110 Probability and Statistics Examination

Examination 0 Probability and Statistics Examination Sample Examination Questions The Probability and Statistics Examination consists of 5 multiple-choice test questions. The test is a three-hour examination

### Contents. TTM4155: Teletraffic Theory (Teletrafikkteori) Probability Theory Basics. Yuming Jiang. Basic Concepts Random Variables

TTM4155: Teletraffic Theory (Teletrafikkteori) Probability Theory Basics Yuming Jiang 1 Some figures taken from the web. Contents Basic Concepts Random Variables Discrete Random Variables Continuous Random

### WEEK #22: PDFs and CDFs, Measures of Center and Spread

WEEK #22: PDFs and CDFs, Measures of Center and Spread Goals: Explore the effect of independent events in probability calculations. Present a number of ways to represent probability distributions. Textbook

### MTH135/STA104: Probability

MTH135/STA14: Probability Homework # 8 Due: Tuesday, Nov 8, 5 Prof Robert Wolpert 1 Define a function f(x, y) on the plane R by { 1/x < y < x < 1 f(x, y) = other x, y a) Show that f(x, y) is a joint probability

### Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions

Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

### Manual for SOA Exam MLC.

Chapter 11. Poisson processes. Section 11.4. Superposition and decomposition of a Poisson process. Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/18 Superposition

### Statistics 100A Homework 7 Solutions

Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

### ), 35% use extra unleaded gas ( A

. At a certain gas station, 4% of the customers use regular unleaded gas ( A ), % use extra unleaded gas ( A ), and % use premium unleaded gas ( A ). Of those customers using regular gas, onl % fill their

### Continuous Distributions

MAT 2379 3X (Summer 2012) Continuous Distributions Up to now we have been working with discrete random variables whose R X is finite or countable. However we will have to allow for variables that can take

### Lecture Notes 1. Brief Review of Basic Probability

Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

### 5. Continuous Random Variables

5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

### Worked examples Random Processes

Worked examples Random Processes Example 1 Consider patients coming to a doctor s office at random points in time. Let X n denote the time (in hrs) that the n th patient has to wait before being admitted

### 3. Continuous Random Variables

3. Continuous Random Variables A continuous random variable is one which can take any value in an interval (or union of intervals) The values that can be taken by such a variable cannot be listed. Such

### Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Neda Farzinnia, UCLA Statistics University of California,

### Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

### Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

### Section 5.1 Continuous Random Variables: Introduction

Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

sheng@mail.ncyu.edu.tw 1 Content Introduction Expectation and variance of continuous random variables Normal random variables Exponential random variables Other continuous distributions The distribution

### Lecture 10: Other Continuous Distributions and Probability Plots

Lecture 10: Other Continuous Distributions and Probability Plots Devore: Section 4.4-4.6 Page 1 Gamma Distribution Gamma function is a natural extension of the factorial For any α > 0, Γ(α) = 0 x α 1 e

### Poisson Processes and Applications in Hockey

Poisson Processes and Applications in Hockey by Zachary Viljo Calvin DeJardine A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 (Honours

### LECTURE - 1 INTRODUCTION TO QUEUING SYSTEM

LECTURE - 1 INTRODUCTION TO QUEUING SYSTEM Learning objective To introduce features of queuing system 9.1 Queue or Waiting lines Customers waiting to get service from server are represented by queue and

### Lectures 5 & / Introduction to Queueing Theory

Lectures 5 & 6 6.263/16.37 Introduction to Queueing Theory MIT, LIDS Slide 1 Packet Switched Networks Messages broken into Packets that are routed To their destination PS PS PS PS Packet Network PS PS

### Aggregate Loss Models

Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing

### Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

### ANALYZING NETWORK TRAFFIC FOR MALICIOUS ACTIVITY

CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 12, Number 4, Winter 2004 ANALYZING NETWORK TRAFFIC FOR MALICIOUS ACTIVITY SURREY KIM, 1 SONG LI, 2 HONGWEI LONG 3 AND RANDALL PYKE Based on work carried out

### Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

### Statistics 100A Homework 8 Solutions

Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

### For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

### Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

### Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

### 6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

### CHAPTER 4 MONTE-CARLO SIMULATION CONTENTS

Applied R&M Manual for Defence Systems Part D - Supporting Theory CHAPTER 4 MONTE-CARLO SIMULATION CONTENTS Page 1 SIMULATION AND ANALYTIC MODELS 2 2 COMPARISON OF METHODS 2 3 STATISTICAL ACCURACY OF RESULTS

### Common probability distributionsi Math 217/218 Probability and Statistics Prof. D. Joyce, 2016

Introduction. ommon probability distributionsi Math 7/8 Probability and Statistics Prof. D. Joyce, 06 I summarize here some of the more common distributions used in probability and statistics. Some are

### 2.6. Probability. In general the probability density of a random variable satisfies two conditions:

2.6. PROBABILITY 66 2.6. Probability 2.6.. Continuous Random Variables. A random variable a real-valued function defined on some set of possible outcomes of a random experiment; e.g. the number of points

### Stat-491-Fall2014-Assignment-VI

Stat-491-Fall214-Assignment-VI Hariharan Narayanan December 7, 214 Note: This assignment consists of practice problems with solutions on the exponential distribution and the Poisson process. Please try

### Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

### STAT 3502. x 0 < x < 1

Solution - Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous

### UNIVERSITY of TORONTO. Faculty of Arts and Science

UNIVERSITY of TORONTO Faculty of Arts and Science AUGUST 2005 EXAMINATION AT245HS uration - 3 hours Examination Aids: Non-programmable or SOA-approved calculator. Instruction:. There are 27 equally weighted

### SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

### Continuous Random Variables

Probability 2 - Notes 7 Continuous Random Variables Definition. A random variable X is said to be a continuous random variable if there is a function f X (x) (the probability density function or p.d.f.)

### Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

### Parametric Models. dh(t) dt > 0 (1)

Parametric Models: The Intuition Parametric Models As we saw early, a central component of duration analysis is the hazard rate. The hazard rate is the probability of experiencing an event at time t i

### 10 GEOMETRIC DISTRIBUTION EXAMPLES:

10 GEOMETRIC DISTRIBUTION EXAMPLES: 1. Terminals on an on-line computer system are attached to a communication line to the central computer system. The probability that any terminal is ready to transmit

### Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

### STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

### 6. Jointly Distributed Random Variables

6. Jointly Distributed Random Variables We are often interested in the relationship between two or more random variables. Example: A randomly chosen person may be a smoker and/or may get cancer. Definition.

### Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

### The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University

The Normal Distribution Alan T. Arnholt Department of Mathematical Sciences Appalachian State University arnholt@math.appstate.edu Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Continuous Random

### . (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.

Chapter 3 Kolmogorov-Smirnov Tests There are many situations where experimenters need to know what is the distribution of the population of their interest. For example, if they want to use a parametric

### Chapter 9 Monté Carlo Simulation

MGS 3100 Business Analysis Chapter 9 Monté Carlo What Is? A model/process used to duplicate or mimic the real system Types of Models Physical simulation Computer simulation When to Use (Computer) Models?

### Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average

PHP 2510 Expectation, variance, covariance, correlation Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average Variance Variance is the average of (X µ) 2

### Supplement to Call Centers with Delay Information: Models and Insights

Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290

### Manual for SOA Exam MLC.

Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of

### Solution Using the geometric series a/(1 r) = x=1. x=1. Problem For each of the following distributions, compute

Math 472 Homework Assignment 1 Problem 1.9.2. Let p(x) 1/2 x, x 1, 2, 3,..., zero elsewhere, be the pmf of the random variable X. Find the mgf, the mean, and the variance of X. Solution 1.9.2. Using the

### Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

### RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. DISCRETE RANDOM VARIABLES.. Definition of a Discrete Random Variable. A random variable X is said to be discrete if it can assume only a finite or countable

### 1. A survey of a group s viewing habits over the last year revealed the following

1. A survey of a group s viewing habits over the last year revealed the following information: (i) 8% watched gymnastics (ii) 9% watched baseball (iii) 19% watched soccer (iv) 14% watched gymnastics and

### Random Variable: A function that assigns numerical values to all the outcomes in the sample space.

STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.

### Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

### Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

### MATH 201. Final ANSWERS August 12, 2016

MATH 01 Final ANSWERS August 1, 016 Part A 1. 17 points) A bag contains three different types of dice: four 6-sided dice, five 8-sided dice, and six 0-sided dice. A die is drawn from the bag and then rolled.

### Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible

### 59 A taste of Monte Carlo method

Chapter 17 Monte Carlo Methods 59 A taste of Monte Carlo method Monte Carlo methods is a class of numerical methods that relies on random sampling. For example, the following Monte Carlo method calculates

### Is Software Reliability Modeling a Practical Technique?

Software Technology Conference 2002 Is Software Reliability Modeling a Practical Technique? Dolores R. Wallace SRS Information Services Software Assurance Technology Center http://satc.gsfc.nasa.gov/ dwallac@pop300.gsfc.nasa.gov

### Discrete and Continuous Random Variables. Summer 2003

Discrete and Continuous Random Variables Summer 003 Random Variables A random variable is a rule that assigns a numerical value to each possible outcome of a probabilistic experiment. We denote a random

### CSE 312, 2011 Winter, W.L.Ruzzo. 7. continuous random variables

CSE 312, 2011 Winter, W.L.Ruzzo 7. continuous random variables continuous random variables Discrete random variable: takes values in a finite or countable set, e.g. X {1,2,..., 6} with equal probability

### Lesson 20. Probability and Cumulative Distribution Functions

Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic

### 7.1 The Hazard and Survival Functions

Chapter 7 Survival Models Our final chapter concerns models for the analysis of data which have three main characteristics: (1) the dependent variable or response is the waiting time until the occurrence