Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day.


 Daniela Hilda West
 1 years ago
 Views:
Transcription
1 16 The Exponential Distribution Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. Let T be the time (in days) between hits. 2. You observe the number of calls that arrive each day over a period of a year, and note that the arrivals follow a Poisson distribution with an average of 3 per day. Let T be the waiting time between calls. 3. Records show that job submissions to a busy computer centre have a Poisson distribution with an average of 4 per minute. Let T be the time in minutes between submissions. 4. Records indicate that messages arrive to a computer server following a Poisson distribution at the rate of 6 per hour. Let T be the time in hours that elapses between messages.
2 Probability Density Function Of Waiting Times Generally the exponential distribution describes waiting time between Poisson occurrences Proof: Let T = time that elapses after a Poisson event. P(T > t) = probability that no event occurred in the time interval of length t. The probability that no Poisson event occurred in the time interval [, t]: P(, t) = e λt. where λ is the average Poisson occurrence rate in a unit time interval. So: P(T > t) = e λt, Hence the CDF is: F(t) = P(T t) = 1 e λt and, working backwards, the PDF is f(t) = F (t) = λe λt
3 The PDF: f(t) = λe λt, t > = otherwise The CDF: P(T t) = F(t) = t λe λt dt = [ e λt ] t T= = e λt + 1 i.e. F(t) = 1 e λt, t > = otherwise.
4 Example: If jobs arrive every 15 seconds on average, λ = 4 per minute, what is the probability of waiting less than or equal to 3 seconds, i.e.5 min? P(T.5). dexp(x, 4) P (X <=.5) x P(T.5) =.5 4e 4t dt = [ e 4t].5 t= = 1 e 2 =.86 From R pexp(.5,4) [1]
5 What is the maximum waiting time between two job submissions with 95% confidence? We need to find k so that This is the quantile function. qexp(.95, 4) [1] P(T k) =.95 The probability that there will be.74 min, about 45 seconds, between two job submissions is.95. Applications of the Exponential Distribution: 1. Time between telephone calls 2. Time between machine breakdowns 3. Time between successive job arrivals at a computing centre
6 Example Accidents occur with a Poisson distribution at an average of 4 per week. i.e. λ = 4 1. Calculate the probability of more than 5 accidents in any one week 2. What is the probability that at least two weeks will elapse between accident? Solution 1. Poisson: In R 1ppois(5, 4) [1] Exponential: P(X > 5) = 1 P(X 5) P(Time between occurrences > 2) = 2 λe λt dt In R = [ e λt ] T=2 = e 8 =.34 pexp(2, 4) [1] pexp(2, 4) [1]
7 Density of the Exponential Distribution with λ = 2, 3, 4 and 6 lambda = 2 lambda = 3 dexp(x, 2) dexp(x, 3) x x lambda = 4 lambda = 6 dexp(x, 4) 2 4 dexp(x, 6) x x par(mfrow = c(2,2)) curve(dexp(x, 2),, 3, main ="lambda = 2") curve(dexp(x, 3),, 3, main ="lambda = 3") curve(dexp(x, 4),, 3, main ="lambda = 4") curve(dexp(x, 6),, 3, main ="lambda = 6")
8 The Markov Property of Exponential Examples: 1. The distribution of the remaining life does not depend on how long the component has been operating. i.e. the component does not age  its breakdown is a result of some sudden failure not a gradual deterioration 2. Time between telephone calls Waiting time for a call is independent of how long we have been waiting
9 The Markov property Show: P(T x + t T > t) = P(T x) Proof: E 1 = T x + t, and E 2 = T > t Then: Now P(E 1 E 2 ) = P(E 1 E 2 ) P(E 2 ) P(E 1 E 2 ) = P(t < T x + t) = x+t t λe λt dt = e λt [1 e λx ] and thus now P(E 2 ) = t λe λt dt = e λt P(E 1 E 2 ) = e λt [1 e λx ] e λt = 1 e λx 1 e λx = F(x) = P(T x)
10 Examples 1. Calls arrive at an average rate of 12 per hour. Find the probability that a call will occur in the next 5 minutes given that you have already waited 1 minutes for a call i.e. Find P(T 15 T > 1) From the Markov property P(T 15 T > 1) = P(T 5) So: P(T 5) = 1 e 5λ The average rate of telephone calls is λ = 2 in a minute, then P(T 5) = 1 e (5)( 2) = 1 e 1 = 1.37 =.63 In R > pexp(5,.2) [1]
11 Examples 2. The average rate of job submissions in a busy computer centre is 4 per minute. If it can be assumed that the number of submissions per minute interval is Poisson distributed, calculate the probability that: (a) at least 15 seconds will elapse between any two jobs. (b) less than 1 minutes will elapse between jobs. (c) If no jobs have arrived in the last 3 seconds, what is the probability that a job will arrive in the next 15 seconds? Solution λ = 4 per minute (a) P(t > 15 sec.) = P(T >.25 min) =.25 λe λt dt = [ e λt ] T=.25 = e 1 =.37 In R > 1 pexp(.25, 4) [1]
12 Mean of the Exponential Distribution Recall that when X is continuous: E(X) = x xf(x)dx For the exponential distribution: E(T) = tλe λt dt Integration by parts: udv = (uv) tλe λt dt = udv Trick is to spot the u and v: vdu Take and u = t dv = λe λt dt which gives v = e λt Then tλe λt dt = ( te λt) + e λt dt = ( te λt λ 1 e λt) = 1 λ
13 R Functions for the Exponential Distribution Density Function: dexp dexp(1, 4) Cumulative Distribution Function pexp pexp(5, 4) P(T 5) with λ = 4 Quantile Function qexp qexp(.95, 4) Choose k so that > qexp(.95, 4) 1] P(T k).95.
Homework set 4  Solutions
Homework set 4  Solutions Math 495 Renato Feres Problems R for continuous time Markov chains The sequence of random variables of a Markov chain may represent the states of a random system recorded at
More informationExponential Distribution
Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1
More informationImportant Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in reallife applications that they have been given their own names.
More informatione.g. arrival of a customer to a service station or breakdown of a component in some system.
Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be
More informationUNIT I: RANDOM VARIABLES PART A TWO MARKS
UNIT I: RANDOM VARIABLES PART A TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1x) 0
More informationIEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS
IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)
More informationMath 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions
Math 37/48, Spring 28 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 3 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
More informationThe Exponential Distribution
21 The Exponential Distribution From DiscreteTime to ContinuousTime: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding
More informationP(a X b) = f X (x)dx. A p.d.f. must integrate to one: f X (x)dx = 1. Z b
Continuous Random Variables The probability that a continuous random variable, X, has a value between a and b is computed by integrating its probability density function (p.d.f.) over the interval [a,b]:
More informationPoisson Processes. Chapter 5. 5.1 Exponential Distribution. The gamma function is defined by. Γ(α) = t α 1 e t dt, α > 0.
Chapter 5 Poisson Processes 5.1 Exponential Distribution The gamma function is defined by Γ(α) = t α 1 e t dt, α >. Theorem 5.1. The gamma function satisfies the following properties: (a) For each α >
More informationStochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations
56 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations FlorinCătălin ENACHE
More informationUniversity of California, Berkeley, Statistics 134: Concepts of Probability
University of California, Berkeley, Statistics 134: Concepts of Probability Michael Lugo, Spring 211 Exam 2 solutions 1. A fair twentysided die has its faces labeled 1, 2, 3,..., 2. The die is rolled
More informationPull versus Push Mechanism in Large Distributed Networks: Closed Form Results
Pull versus Push Mechanism in Large Distributed Networks: Closed Form Results Wouter Minnebo, Benny Van Houdt Dept. Mathematics and Computer Science University of Antwerp  iminds Antwerp, Belgium Wouter
More informationCHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
More informationProbabilities and Random Variables
Probabilities and Random Variables This is an elementary overview of the basic concepts of probability theory. 1 The Probability Space The purpose of probability theory is to model random experiments so
More informationNotes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
More informationIntroduction to Probability
Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence
More informationMAS108 Probability I
1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper
More informationECE302 Spring 2006 HW5 Solutions February 21, 2006 1
ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics
More informationMath 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions
Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the
More informationExamination 110 Probability and Statistics Examination
Examination 0 Probability and Statistics Examination Sample Examination Questions The Probability and Statistics Examination consists of 5 multiplechoice test questions. The test is a threehour examination
More informationWEEK #22: PDFs and CDFs, Measures of Center and Spread
WEEK #22: PDFs and CDFs, Measures of Center and Spread Goals: Explore the effect of independent events in probability calculations. Present a number of ways to represent probability distributions. Textbook
More informationManual for SOA Exam MLC.
Chapter 11. Poisson processes. Section 11.4. Superposition and decomposition of a Poisson process. Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/18 Superposition
More informationMTH135/STA104: Probability
MTH135/STA14: Probability Homework # 8 Due: Tuesday, Nov 8, 5 Prof Robert Wolpert 1 Define a function f(x, y) on the plane R by { 1/x < y < x < 1 f(x, y) = other x, y a) Show that f(x, y) is a joint probability
More information), 35% use extra unleaded gas ( A
. At a certain gas station, 4% of the customers use regular unleaded gas ( A ), % use extra unleaded gas ( A ), and % use premium unleaded gas ( A ). Of those customers using regular gas, onl % fill their
More informationStatistics 100A Homework 7 Solutions
Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase
More informationLecture Notes 1. Brief Review of Basic Probability
Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters 3 are a review. I will assume you have read and understood Chapters 3. Here is a very
More informationDefinition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
More informationContinuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.
UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Neda Farzinnia, UCLA Statistics University of California,
More informationProbability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X
Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chisquared distributions, normal approx'n to the binomial Uniform [,1] random
More informationsheng@mail.ncyu.edu.tw 1 Content Introduction Expectation and variance of continuous random variables Normal random variables Exponential random variables Other continuous distributions The distribution
More informationSection 5.1 Continuous Random Variables: Introduction
Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,
More informationLecture 10: Other Continuous Distributions and Probability Plots
Lecture 10: Other Continuous Distributions and Probability Plots Devore: Section 4.44.6 Page 1 Gamma Distribution Gamma function is a natural extension of the factorial For any α > 0, Γ(α) = 0 x α 1 e
More informationAggregate Loss Models
Aggregate Loss Models Chapter 9 Stat 477  Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman  BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing
More informationLectures 5 & / Introduction to Queueing Theory
Lectures 5 & 6 6.263/16.37 Introduction to Queueing Theory MIT, LIDS Slide 1 Packet Switched Networks Messages broken into Packets that are routed To their destination PS PS PS PS Packet Network PS PS
More informationLECTURE  1 INTRODUCTION TO QUEUING SYSTEM
LECTURE  1 INTRODUCTION TO QUEUING SYSTEM Learning objective To introduce features of queuing system 9.1 Queue or Waiting lines Customers waiting to get service from server are represented by queue and
More information5. Continuous Random Variables
5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be
More informationChapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
More informationStatistics 100A Homework 8 Solutions
Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the onehalf
More informationChapter 4  Lecture 1 Probability Density Functions and Cumul. Distribution Functions
Chapter 4  Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the
More informationFor a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )
Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (19031987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll
More informationLecture 7: Continuous Random Variables
Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider
More information6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:309:30 PM. SOLUTIONS
6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:39:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total
More informationCommon probability distributionsi Math 217/218 Probability and Statistics Prof. D. Joyce, 2016
Introduction. ommon probability distributionsi Math 7/8 Probability and Statistics Prof. D. Joyce, 06 I summarize here some of the more common distributions used in probability and statistics. Some are
More informationMath 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)
Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course
More informationSTAT 3502. x 0 < x < 1
Solution  Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationANALYZING NETWORK TRAFFIC FOR MALICIOUS ACTIVITY
CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 12, Number 4, Winter 2004 ANALYZING NETWORK TRAFFIC FOR MALICIOUS ACTIVITY SURREY KIM, 1 SONG LI, 2 HONGWEI LONG 3 AND RANDALL PYKE Based on work carried out
More informationParametric Models. dh(t) dt > 0 (1)
Parametric Models: The Intuition Parametric Models As we saw early, a central component of duration analysis is the hazard rate. The hazard rate is the probability of experiencing an event at time t i
More informationLecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
More informationMath 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions
Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the
More information10 GEOMETRIC DISTRIBUTION EXAMPLES:
10 GEOMETRIC DISTRIBUTION EXAMPLES: 1. Terminals on an online computer system are attached to a communication line to the central computer system. The probability that any terminal is ready to transmit
More informationStats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
More information1. A survey of a group s viewing habits over the last year revealed the following
1. A survey of a group s viewing habits over the last year revealed the following information: (i) 8% watched gymnastics (ii) 9% watched baseball (iii) 19% watched soccer (iv) 14% watched gymnastics and
More informationThe Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University
The Normal Distribution Alan T. Arnholt Department of Mathematical Sciences Appalachian State University arnholt@math.appstate.edu Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Continuous Random
More information. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.
Chapter 3 KolmogorovSmirnov Tests There are many situations where experimenters need to know what is the distribution of the population of their interest. For example, if they want to use a parametric
More information6. Jointly Distributed Random Variables
6. Jointly Distributed Random Variables We are often interested in the relationship between two or more random variables. Example: A randomly chosen person may be a smoker and/or may get cancer. Definition.
More informationSupplement to Call Centers with Delay Information: Models and Insights
Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290
More informationChapter 9 Monté Carlo Simulation
MGS 3100 Business Analysis Chapter 9 Monté Carlo What Is? A model/process used to duplicate or mimic the real system Types of Models Physical simulation Computer simulation When to Use (Computer) Models?
More informationDepartment of Mathematics, Indian Institute of Technology, Kharagpur Assignment 23, Probability and Statistics, March 2015. Due:March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 3, Probability and Statistics, March 05. Due:March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
More informationManual for SOA Exam MLC.
Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of
More informationProbability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
More informationExploratory Data Analysis
Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
More informationMath 425 (Fall 08) Solutions Midterm 2 November 6, 2008
Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
More informationFinal Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin
Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible
More informationSTA 256: Statistics and Probability I
Al Nosedal. University of Toronto. Fall 2014 1 2 3 4 5 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Experiment, outcome, sample space, and
More informationUNIVERSITY of TORONTO. Faculty of Arts and Science
UNIVERSITY of TORONTO Faculty of Arts and Science AUGUST 2005 EXAMINATION AT245HS uration  3 hours Examination Aids: Nonprogrammable or SOAapproved calculator. Instruction:. There are 27 equally weighted
More informationLesson 20. Probability and Cumulative Distribution Functions
Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic
More informationJoint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More informationOverview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
More information2.6. Probability. In general the probability density of a random variable satisfies two conditions:
2.6. PROBABILITY 66 2.6. Probability 2.6.. Continuous Random Variables. A random variable a realvalued function defined on some set of possible outcomes of a random experiment; e.g. the number of points
More informationPrinciple of Data Reduction
Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then
More informationModelling the performance of computer mirroring with difference queues
Modelling the performance of computer mirroring with difference queues Przemyslaw Pochec Faculty of Computer Science University of New Brunswick, Fredericton, Canada E3A 5A3 email pochec@unb.ca ABSTRACT
More informationRandom Variables. Chapter 2. Random Variables 1
Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets
More informationST 371 (VIII): Theory of Joint Distributions
ST 371 (VIII): Theory of Joint Distributions So far we have focused on probability distributions for single random variables. However, we are often interested in probability statements concerning two or
More informationMaster s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
More informationLecture 4 PARAMETRIC SURVIVAL MODELS
Lecture 4 PARAMETRIC SURVIVAL MODELS Some Parametric Survival Distributions (defined on t 0): The Exponential distribution (1 parameter) f(t) = λe λt (λ > 0) S(t) = t = e λt f(u)du λ(t) = f(t) S(t) = λ
More informationParametric Survival Models
Parametric Survival Models Germán Rodríguez grodri@princeton.edu Spring, 2001; revised Spring 2005, Summer 2010 We consider briefly the analysis of survival data when one is willing to assume a parametric
More informationTenth Problem Assignment
EECS 40 Due on April 6, 007 PROBLEM (8 points) Dave is taking a multiplechoice exam. You may assume that the number of questions is infinite. Simultaneously, but independently, his conscious and subconscious
More information6.263/16.37: Lectures 5 & 6 Introduction to Queueing Theory
6.263/16.37: Lectures 5 & 6 Introduction to Queueing Theory Massachusetts Institute of Technology Slide 1 Packet Switched Networks Messages broken into Packets that are routed To their destination PS PS
More informationUsing pivots to construct confidence intervals. In Example 41 we used the fact that
Using pivots to construct confidence intervals In Example 41 we used the fact that Q( X, µ) = X µ σ/ n N(0, 1) for all µ. We then said Q( X, µ) z α/2 with probability 1 α, and converted this into a statement
More informationRANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. DISCRETE RANDOM VARIABLES.. Definition of a Discrete Random Variable. A random variable X is said to be discrete if it can assume only a finite or countable
More informationDerivatives as Rates of Change
Derivatives as Rates of Change OneDimensional Motion An object moving in a straight line For an object moving in more complicated ways, consider the motion of the object in just one of the three dimensions
More informationLECTURE 16. Readings: Section 5.1. Lecture outline. Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process
LECTURE 16 Readings: Section 5.1 Lecture outline Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process Number of successes Distribution of interarrival times The
More informationModelling Patient Flow in an Emergency Department
Modelling Patient Flow in an Emergency Department Mark Fackrell Department of Mathematics and Statistics The University of Melbourne Motivation Eastern Health closes more beds Bed closures to cause ambulance
More informationSection 6.1 Joint Distribution Functions
Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function
More information1 IEOR 6711: Notes on the Poisson Process
Copyright c 29 by Karl Sigman 1 IEOR 6711: Notes on the Poisson Process We present here the essentials of the Poisson point process with its many interesting properties. As preliminaries, we first define
More information1 2 3 4 5 6 90 180 360 600 900 W kg M stop start P M 1. 2. M 3. P 4. M M 1. 2. P 3. P 4. M M 1. 2. P 3. P 4. M 250 250 250 1. P 2. 3. P pm h M1 M2 min sec kg M 1. 2. 3. M M 1. 2. 3. M M M 1. 2. M 90
More informationMonitoring Software Reliability using Statistical Process Control: An Ordered Statistics Approach
Monitoring Software Reliability using Statistical Process Control: An Ordered Statistics Approach Bandla Srinivasa Rao Associate Professor. Dept. of Computer Science VRS & YRN College Dr. R Satya Prasad
More informationCommonly Used Probability Distributions
Chapter Four 4.1 Introduction As we have seen in Charter 3, a probability density function (pdf) or a cumulative distribution function (cdf) can completely describe a random variable. Because of the physical
More informationProbability Models.S1 Introduction to Probability
Probability Models.S1 Introduction to Probability Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard The stochastic chapters of this book involve random variability. Decisions are
More informationChapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams
Review for Final Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams Histogram Boxplots Chapter 3: Set
More informationStatistiek (WISB361)
Statistiek (WISB361) Final exam June 29, 2015 Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1. The maximum number of points is 100. Points distribution: 23 20 20 20 17
More informationUniversity of Chicago Graduate School of Business. Business 41000: Business Statistics Solution Key
Name: OUTLINE SOLUTIONS University of Chicago Graduate School of Business Business 41000: Business Statistics Solution Key Special Notes: 1. This is a closedbook exam. You may use an 8 11 piece of paper
More informationThe random variable X  the no. of defective items when three electronic components are tested would be
RANDOM VARIABLES and PROBABILITY DISTRIBUTIONS Example: Give the sample space giving a detailed description of each possible outcome when three electronic components are tested, where N  denotes nondefective
More information7.1 The Hazard and Survival Functions
Chapter 7 Survival Models Our final chapter concerns models for the analysis of data which have three main characteristics: (1) the dependent variable or response is the waiting time until the occurrence
More information