), 35% use extra unleaded gas ( A

Size: px
Start display at page:

Download "), 35% use extra unleaded gas ( A"

Transcription

1 . At a certain gas station, 4% of the customers use regular unleaded gas ( A ), % use extra unleaded gas ( A ), and % use premium unleaded gas ( A ). Of those customers using regular gas, onl % fill their tanks (event B). Of those customers using extra gas, 6% fill their tanks, whereas of those using premium, % fill their tanks. a. What is the probabilit that the next customer will request extra unleaded gas and fill the tank? b. What is the probabilit that the next customer fills the tank? c. If the next customer fills the tank, what is the probabilit that regular gas is requested? Extra gas? Premium gas? ANSWER: P( A ) =.4, P( A ) =., ( ) P(B A ) =. P(B A ) =.6 P(B A ) =. Therefore, P A =. ( ) ( ) ( ) ( )( ) P A B = P A P B A =.4. =. ( ) ( ) ( ) ( )( ) P A B = P A P B A =..6 =. ( ) ( ) ( ) ( )( ) P A B = P A P B A =.. =. a. ( A B) =. b. P(B) = PA ( B) + PA ( B) + PA ( B) =.+.+.=.4 PA ( B). c. P( PAB ( ) = = =.64 PB ( ).4 PA ( B). PAB ( ) = = =.46 PB ( ).4 PA ( B). = == PB ( ).4 ( ) =.7 PAB

2 . The number of tickets issued b a meter reader for parking meter violations can be modeled b a Poisson process with a rate parameter of five per hour. a. What is the probabilit that exactl three tickets are given out during a particular hour? b. What is the probabilit that at least three tickets are given out during a particular hour? c. How man tickets do ou expect to be given during a 4 min period? ANSWER: a. PX ( = ) = F(;) F(;) =.6. =.4 b. PX ( ) = PX ( ) = F(;) =. =.87 c. Tickets are given at the rate of per hour, so for a 4 minute period the rate is λ = ()(.7) =.7, which is also the expected number of tickets in a 4 minute period.. An aircraft can seat passengers, and each of the passengers booked on the flight has a probabilit of.9 of actuall arriving at the gate to board the plane, independent of the other passengers. a. Suppose the airline books passengers on the flight. What is the probabilit that there will be insufficient seats to accommodate all of the passengers who wish to board the plane? b. If the airline wants to be 7% confident that there will be no more than passengers who wish to board the plane, how man passengers can be booked on the flight? 4. In commuting to school, I must first get on a bus near m house and then transfer to a second bus. If the waiting time (in minutes) at each stop has a uniform distribution with A = and B =, then it can be shown that m total waiting time Y has the pdf f ( ) = < < or > a) Sketch a graph of the pdf of Y

3 b) Verif that f ( ) d = c) What is the probabilit that the total waiting time is at most minutes? d) What is the probabilit that the total waiting time is between and 8 minutes? e) What is the probabilit that the total waiting time is either less than minutes or more than 6 minutes? a...4. f(x)... x b. f ( ) d = d + ( ) d = + (4 ) ( ) = + = = + 9 c. P(Y ) = d =. 8 = d. P( Y 8) = P(Y 8) P(Y < ) = = =. 74 e. P(Y < or Y > 6) = d + = =. 4 d 6. Consider the pdf for total waiting time Y for two buses f ( ) = < < or > a) Compute and sketch the cdf of Y b) Compute E(Y) and Var(Y)

4 a. For, F() = udu = For, F() = f ( u) du = f ( u) du + f ( u) du = + u du =. F(x).. x b. E(Y) = b straightforward integration (or b smmetr of f()), and V(Y)= = Let X denote the number of Son digital cameras sold during a particular week b a certain store. The pmf of X is x 4 P(X = x)..... Sixt percent of all customers who purchase these cameras also bu an extended warrant. Let Y denote the number of purchasers during this week who bu an extended warrant. a) What is the value of P(X = 4, Y = )? b) Calculate P(X = Y) c) Determine the joint pmf of X and Y d) Determine the marginal pmf of Y 4 a. p(4,) = P( Y = X = 4) P(X = 4) = (.6) (.4) (.) =. 8 b. P(X = Y) = p(,) + p(,) + p(,) + p(,) + p(4,4) =.+(.)(.6) + (.)(.6) + (.)(.6) + (.)(.6) 4 =.44

5 c. p(x,) = unless =,,, x; x =,,,, 4. For an such pair, x x p(x,) = P(Y = X = x) P(X = x) = (. 6) (.4) px ( x) d. p (4) = p( = 4) = p(x = 4, = 4) = p(4,4) = (.6) 4 (.) =.94 4 p () = p(,) + p(4,) = (.6) (.) + (.6) (.4)(.) =. 8 p () = p(,) + p(,) + p(4,) = (.6) (.) + (.6) (.4)(.) 4 + (.6) (.4) (.) =.678 p () = p(,) + p(,) + p(,) + p(4,) = (. 6)(.) + (.6)(.4)(.) 4 (.6)(.4) (.) + (.6)(.4) (.) =.9 p () = [ ] = Somchai and Soming have agreed to meet between : PM and 6: PM for dinner at a local health food restaurant. Let X be Somchai s arrival time and Y be Soming s arrival time. Suppose X and Y are independent with each uniforml distributed on the interval [, 6]. a) What is the joint pdf of X and Y? b) What is the probabilit that the both arrive between : and :4 PM? c) If the first one to arrive will wait onl minutes before leaving to eat elsewhere, what is the probabilit that the have dinner at the health food restaurant? x 6, 6 a. f(x,) = otherwise since f x (x) =, f () = for x 6, 6 b. P(. X.7,. Y.7) = P(. X.7) P(. Y.7) = (b independence) (.)(.) =. c. 6 I = x+/6 = x / 6 II 6

6 P((X,Y) A) = A dxd = area of A = (area of I + area of II ) = = = A nut compan markets cans of deluxe mixed nuts containing almonds, cashews, and peanuts. Suppose the net weight of each can is exactl lb., but the weight contribution of each tpe of nut is random. Because the three weighs sum to, a joint probabilit model for an two gives all necessar information about the weight of the third tpe. Let the joint pdf for (X, Y) be f X, Y 4x ( x, ) = x, otherwise, x + Are X and Y correlated? If not, what s the correlation coefficient of X and Y? Cov(X,Y) = and μ x = μ =. 7 E(X ) = x f x ( x) dx = x ( x dx) = =, 6 4 so Var (X) = = Similarl, Var(Y) =, 7 so ρ X, Y = = =

Examples: Joint Densities and Joint Mass Functions Example 1: X and Y are jointly continuous with joint pdf

Examples: Joint Densities and Joint Mass Functions Example 1: X and Y are jointly continuous with joint pdf AMS 3 Joe Mitchell Eamples: Joint Densities and Joint Mass Functions Eample : X and Y are jointl continuous with joint pdf f(,) { c 2 + 3 if, 2, otherwise. (a). Find c. (b). Find P(X + Y ). (c). Find marginal

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

PSTAT 120B Probability and Statistics

PSTAT 120B Probability and Statistics - Week University of California, Santa Barbara April 10, 013 Discussion section for 10B Information about TA: Fang-I CHU Office: South Hall 5431 T Office hour: TBA email: chu@pstat.ucsb.edu Slides will

More information

Name: Math 29 Probability. Practice Second Midterm Exam 1. 1. Show all work. You may receive partial credit for partially completed problems.

Name: Math 29 Probability. Practice Second Midterm Exam 1. 1. Show all work. You may receive partial credit for partially completed problems. Name: Math 29 Probability Practice Second Midterm Exam 1 Instructions: 1. Show all work. You may receive partial credit for partially completed problems. 2. You may use calculators and a one-sided sheet

More information

ECE302 Spring 2006 HW4 Solutions February 6, 2006 1

ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 Solutions to HW4 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

More information

Tenth Problem Assignment

Tenth Problem Assignment EECS 40 Due on April 6, 007 PROBLEM (8 points) Dave is taking a multiple-choice exam. You may assume that the number of questions is infinite. Simultaneously, but independently, his conscious and subconscious

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

ISyE 6761 Fall 2012 Homework #2 Solutions

ISyE 6761 Fall 2012 Homework #2 Solutions 1 1. The joint p.m.f. of X and Y is (a) Find E[X Y ] for 1, 2, 3. (b) Find E[E[X Y ]]. (c) Are X and Y independent? ISE 6761 Fall 212 Homework #2 Solutions f(x, ) x 1 x 2 x 3 1 1/9 1/3 1/9 2 1/9 1/18 3

More information

STAT 3502. x 0 < x < 1

STAT 3502. x 0 < x < 1 Solution - Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous

More information

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) =

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) = . A mail-order computer business has si telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. 0 2 3 4 5 6 p(.0.5.20.25.20.06.04

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

More information

e.g. arrival of a customer to a service station or breakdown of a component in some system.

e.g. arrival of a customer to a service station or breakdown of a component in some system. Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

More information

Constrained Optimization: The Method of Lagrange Multipliers:

Constrained Optimization: The Method of Lagrange Multipliers: Constrained Optimization: The Method of Lagrange Multipliers: Suppose the equation p(x,) x 60x 7 00 models profit when x represents the number of handmade chairs and is the number of handmade rockers produced

More information

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

More information

Chapter 4. Probability Distributions

Chapter 4. Probability Distributions Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

More information

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1.

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1. Joint probabilit is the probabilit that the RVs & Y take values &. like the PDF of the two events, and. We will denote a joint probabilit function as P,Y (,) = P(= Y=) Marginal probabilit of is the probabilit

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

Probability Models.S1 Introduction to Probability

Probability Models.S1 Introduction to Probability Probability Models.S1 Introduction to Probability Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard The stochastic chapters of this book involve random variability. Decisions are

More information

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

More information

Continuous Random Variables

Continuous Random Variables Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Dongfeng Li. Autumn 2010

Dongfeng Li. Autumn 2010 Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.)

Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) Name: Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) The total score is 100 points. Instructions: There are six questions. Each one is worth 20 points. TA will grade the best five

More information

Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

More information

Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

TEST 2 STUDY GUIDE. 1. Consider the data shown below.

TEST 2 STUDY GUIDE. 1. Consider the data shown below. 2006 by The Arizona Board of Regents for The University of Arizona All rights reserved Business Mathematics I TEST 2 STUDY GUIDE 1 Consider the data shown below (a) Fill in the Frequency and Relative Frequency

More information

Chapter 9 Monté Carlo Simulation

Chapter 9 Monté Carlo Simulation MGS 3100 Business Analysis Chapter 9 Monté Carlo What Is? A model/process used to duplicate or mimic the real system Types of Models Physical simulation Computer simulation When to Use (Computer) Models?

More information

Probability for Estimation (review)

Probability for Estimation (review) Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear

More information

UNIT 2 QUEUING THEORY

UNIT 2 QUEUING THEORY UNIT 2 QUEUING THEORY LESSON 24 Learning Objective: Apply formulae to find solution that will predict the behaviour of the single server model II. Apply formulae to find solution that will predict the

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

Algebra II Notes Piecewise Functions Unit 1.5. Piecewise linear functions. Math Background

Algebra II Notes Piecewise Functions Unit 1.5. Piecewise linear functions. Math Background Piecewise linear functions Math Background Previousl, ou Related a table of values to its graph. Graphed linear functions given a table or an equation. In this unit ou will Determine when a situation requiring

More information

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION 6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

Graphs. Exploratory data analysis. Graphs. Standard forms. A graph is a suitable way of representing data if:

Graphs. Exploratory data analysis. Graphs. Standard forms. A graph is a suitable way of representing data if: Graphs Exploratory data analysis Dr. David Lucy d.lucy@lancaster.ac.uk Lancaster University A graph is a suitable way of representing data if: A line or area can represent the quantities in the data in

More information

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS TRUE/FALSE 235. The Poisson probability distribution is a continuous probability distribution. F 236. In a Poisson distribution,

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

Exponential Distribution

Exponential Distribution Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1

More information

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1 ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

More information

Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day.

Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. 16 The Exponential Distribution Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. Let T be the time (in days) between hits. 2.

More information

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22 Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability

More information

1) The table lists the smoking habits of a group of college students. Answer: 0.218

1) The table lists the smoking habits of a group of college students. Answer: 0.218 FINAL EXAM REVIEW Name ) The table lists the smoking habits of a group of college students. Sex Non-smoker Regular Smoker Heavy Smoker Total Man 5 52 5 92 Woman 8 2 2 220 Total 22 2 If a student is chosen

More information

3.4 The Normal Distribution

3.4 The Normal Distribution 3.4 The Normal Distribution All of the probability distributions we have found so far have been for finite random variables. (We could use rectangles in a histogram.) A probability distribution for a continuous

More information

Review #2. Statistics

Review #2. Statistics Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of

More information

SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION. School of Mathematical Sciences. Monash University, Clayton, Victoria, Australia 3168

SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION. School of Mathematical Sciences. Monash University, Clayton, Victoria, Australia 3168 SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION Ravi PHATARFOD School of Mathematical Sciences Monash University, Clayton, Victoria, Australia 3168 In this paper we consider the problem of gambling with

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte

More information

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 13 Introduction to Linear Regression and Correlation Analysis Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

More information

Binomial random variables

Binomial random variables Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance

More information

Lesson 20. Probability and Cumulative Distribution Functions

Lesson 20. Probability and Cumulative Distribution Functions Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic

More information

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS 6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

{ } Sec 3.1 Systems of Linear Equations in Two Variables

{ } Sec 3.1 Systems of Linear Equations in Two Variables Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y). Autonomous Equations / Stabilit of Equilibrium Solutions First order autonomous equations, Equilibrium solutions, Stabilit, Longterm behavior of solutions, direction fields, Population dnamics and logistic

More information

Note: Optimal base-stock policy for the inventory system with periodic review, backorders and sequential lead times

Note: Optimal base-stock policy for the inventory system with periodic review, backorders and sequential lead times WORKING PAPER L-2006-02 Søren Glud Johansen & Anders Thorstenson Note: Optimal base-stock polic for the inventor sstem with periodic review, backorders and sequential lead times Note: Optimal base-stock

More information

39.2. The Normal Approximation to the Binomial Distribution. Introduction. Prerequisites. Learning Outcomes

39.2. The Normal Approximation to the Binomial Distribution. Introduction. Prerequisites. Learning Outcomes The Normal Approximation to the Binomial Distribution 39.2 Introduction We have already seen that the Poisson distribution can be used to approximate the binomial distribution for large values of n and

More information

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

More information

Mathematical Expectation

Mathematical Expectation Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the

More information

UNCERTAINTY, DATA & JUDGMENT EXTRA EXERCISES SET 1

UNCERTAINTY, DATA & JUDGMENT EXTRA EXERCISES SET 1 UNCERTAINTY, DATA & JUDGMENT EXTRA EXERCISES SET 1 INSEAD MBA Programme September/October 2009 1. The service lives of Sultania super light bulbs are normally distributed with a mean of 1200 hours and

More information

ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003

ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003 ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003 1. (4 points) The number of claims for missing baggage for a well-known airline

More information

STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS

STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could

More information

Statistics 100A Homework 8 Solutions

Statistics 100A Homework 8 Solutions Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

More information

Extra Practice 5.3 3. 3. 5y3-2y2- y - y. y + 1 1. 2 - 2. 6. 14xy- 6x2 - x2-6x + 2xy _. 7. ry + xy2 = xy 8. ~---~--- Name DISTRIBUTING DIVISION

Extra Practice 5.3 3. 3. 5y3-2y2- y - y. y + 1 1. 2 - 2. 6. 14xy- 6x2 - x2-6x + 2xy _. 7. ry + xy2 = xy 8. ~---~--- Name DISTRIBUTING DIVISION Extra Practice 5.3 DISTRIBUTING DIVISION Divide. 10x 2 + 6x + 2 1. 2-12x + 18y 2. 6 12x + 18y - 3. 3 2x + y 14xy- 6x2-4. 2x 5. x2-6x + 2xy _ X 6. 5y3-2y2- y - y 7. ry + xy2 = xy x(y + 1) + 2(y + 1) 8.

More information

Approximation of Aggregate Losses Using Simulation

Approximation of Aggregate Losses Using Simulation Journal of Mathematics and Statistics 6 (3): 233-239, 2010 ISSN 1549-3644 2010 Science Publications Approimation of Aggregate Losses Using Simulation Mohamed Amraja Mohamed, Ahmad Mahir Razali and Noriszura

More information

9231 FURTHER MATHEMATICS

9231 FURTHER MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the October/November 2012 series 9231 FURTHER MATHEMATICS 9231/21 Paper 2, maximum raw mark 100

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

2WB05 Simulation Lecture 8: Generating random variables

2WB05 Simulation Lecture 8: Generating random variables 2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2014 1 2 3 4 5 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Experiment, outcome, sample space, and

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008 Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

SIMULATING CANCELLATIONS AND OVERBOOKING IN YIELD MANAGEMENT

SIMULATING CANCELLATIONS AND OVERBOOKING IN YIELD MANAGEMENT CHAPTER 8 SIMULATING CANCELLATIONS AND OVERBOOKING IN YIELD MANAGEMENT In YM, one of the major problems in maximizing revenue is the number of cancellations. In industries implementing YM this is very

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

12.5: CHI-SQUARE GOODNESS OF FIT TESTS 125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

More information

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible

More information

Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form

Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form Rotation of Axes 1 Rotation of Axes At the beginning of Chapter we stated that all equations of the form Ax + Bx + C + Dx + E + F =0 represented a conic section, which might possibl be degenerate. We saw

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

Introduction to Matrices for Engineers

Introduction to Matrices for Engineers Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11

More information

Transportation Information

Transportation Information Transportation Information Here is the detailed transportation information for ICM 2012. For your convenience, please review the following information before preparing your trip to Busan, Korea.. There

More information

Solving Special Systems of Linear Equations

Solving Special Systems of Linear Equations 5. Solving Special Sstems of Linear Equations Essential Question Can a sstem of linear equations have no solution or infinitel man solutions? Using a Table to Solve a Sstem Work with a partner. You invest

More information

Module 2 Probability and Statistics

Module 2 Probability and Statistics Module 2 Probability and Statistics BASIC CONCEPTS Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The standard deviation of a standard normal distribution

More information

Solution of the System of Linear Equations: any ordered pair in a system that makes all equations true.

Solution of the System of Linear Equations: any ordered pair in a system that makes all equations true. Definitions: Sstem of Linear Equations: or more linear equations Sstem of Linear Inequalities: or more linear inequalities Solution of the Sstem of Linear Equations: an ordered pair in a sstem that makes

More information