Probability, Mean and Median


 Mavis Curtis
 1 years ago
 Views:
Transcription
1 Proaility, Mean and Median In the last section, we considered (proaility) density functions. We went on to discuss their relationship with cumulative distriution functions. The goal of this section is to take a closer look at densities, introduce some common distriutions and discuss the mean and median. Recall, we define proailities as follows: Proportion of population for Area under the graph of p( d ) which is etween a and p( ) etween a and a The cumulative distriution function gives the proportion of the population that has values elow t. That is, t Pt () pd ( ) Proportion of population having values of elow t When answering some questions involving proailities, oth the density function and the cumulative distriution can e used, as the net eample illustrates. Eample : Consider the graph of the function p(). p Figure : The graph of the function p() a. Eplain why the function is a proaility density function.. Use the graph to find P(X < 3) c. Use the graph to find P(3 X 8)
2 Solution: a. Recall, a function is a proaility density function if the area under the curve is equal to and all of the values of p() are nonnegative. It is immediately clear that the values of p() are nonnegative. To verify that the area under the curve is equal to, we recognize that the graph aove can e viewed as a triangle. Its ase is and its height is.2. Thus its area is equal to There are two ways that we can solve this prolem. Before we get started, though, we egin y drawing the shaded region. p The first approach is to recognize that we can determine the area under the curve from to 3 immediately. The shaded area is another triangle, with a ase of 3 and a height of.. Thus, the area is equal to.5. A second approach would e to find the equation of the lines that form p() and use the integral formula on the previous page. For the first line, notice that the line passes through the points (, ) and (6,.2). Using the pointslope formula, we see that the line is given y p() = (/3). The second line passes through the points (6,.2) and (, ). Again, using the pointslope formula, we see that the line is given y p() = (/2) + /2. So, we have that if 6 3 p ( ) if 6 otherwise Returning to the original question, we have that P(X < 3) is given y the integral 3 pd ( ) P(3) P(). On [, 3), p() = (/3). Notice that P(t) = (/6)t 2. So, we have that PX ( 3) P(3) P() (3) ().5 2
3 c. Again, we have two ways that we can approach this prolem. Again, we start y drawing out the shaded region. p If we want to use triangles, it is easiest to use the fact that the area under the curve is equal to. The shaded region is thus equal to one minus the two triangles on the sides. In (), we found the area of the left triangle is equal to.5. The area of the right triangle is equal to.. So, the area of the shaded region is.5. =.75. If instead we were to use integrals, notice that p() changes functions at = 6. Thus, in order to compute the integral That is, p( d ) pd ( ) pd ( ) p( d ), we need to split into two pieces pd ( ) d pd ( ) d So, we see that the shaded area is equal to =.75, which agrees with the answer we found the other way. Often times, we are concerned with finding the average value of a distriution. There are two common measured that are used: the mean and the median. The Mean If a quantity has a density function p(), then we define the mean value of the quantity as p( d ). 3
4 Eample 2: Returning to the density function given in Eample, compute its mean. Solution: Notice that p() changes functions at = 6. Thus, in order to compute the integral p( d ), we will need to again split it into two pieces. Thus, we have that the mean is equal to 6 p( ) d d d The Median A median of a quantity distriuted through a population is a value T such that half of the population has values of less than T and half the population has values of greater than T. That is, T satisfies the equation T pd ( ) 2 where p() is the density function of the quantity. In words, we have that half the area under the graph of p() lies to the left of T (and half lies to the right of T.) Eample 3: Returning to the density function given in Eample, compute its median. Solution: Looking at Figure, notice that more than half of the area occurs in the left side of the triangle. Thus, the median will e a numer etween and 6. 4
5 Since we do not need to worry aout the function changing (since it is the same on the T 2 T interval [, 6]), we have that d. That is,. Solving for T, we see that T 3. Note: We did not use the 3 for T, since we know that T is a positive numer. There are a numer of important distriutions that arise in a variety of situations. Below, we list three such distriutions as well as associated properties. The first important distriution we shall consider is the uniform distriution. We introduced this distriution in the previous section. The graph of the density function is constant on the interval [a, ] and zero elsewhere. p a a Figure 2: The density of the uniform distriution on [a, ] Uniform Distriution The density of the uniform distriution is given y p ( ) a, for a The cumulative distriution function is given y t t a Pt () pd ( ), for a t a a Another important distriution we shall consider is the eponential distriution. The graph of the density function is characterized y an eponential decay. 5
6 p Figure 3: The density of the eponential distriution for c >. Eponential Distriution The density of the eponential distriution is given y p( ) ce c, for and any constant c > The cumulative distriution function is given y t Pt () pd ( ) e ct, for t Eample 4: Suppose that the proaility density function for the wait time in line at a counter is if given y p ( ) /5 ke if a. What is the value of the constant k?. Determine the proaility that a person will wait at least 3 minutes. c. What is the mean wait time? Solution: a. Comparing the form of the density function with that given in the o aove, we see that c = /5. Thus, we must have that k = /5. Another way to see this would e to do the integration and solve for k. /5 /5 /5 /5 5 ke d lim ke d lim 5ke lim 5k 5ke k Dividing oth sides y 5, we see that k = /5. 6
7 . The proaility that a person will wait at least 3 minutes is given y 3 3 3/5 3/5 p( d ) lim pd ( ) lim P ( ) P(3) P(3) ( e ) e. Here, we used the fact that lim P ( ) to simplify the aove epression. c. The mean wait time is given y e /5 5 d. Using integration y parts, we have: /5 /5 /5 /5 e dlim e dlime e d 5 5 /5 /5 lim e 5e lim /5 e /5 5e 5 5 Note: In general, if p( ) c ce for, then p ( ) d. c The final distriution which we shall eamine is the normal distriution. The graph of its density function is a ellshaped curve which peaks at its mean, denoted y m. The width of the curve is determined y the standard deviation, denoted y s. s s m Figure 4: The density of the normal distriution with parameters m and s. 7
8 Normal Distriution The density of the normal distriution is given y ( ) 2 p ( ) e, for  < < 2 where m is the mean of the distriution and s is the standard deviation. It is eyond the scope of this course to verify that p( d ). However, we can see ( ) 2 that p() for all, since e will always e positive (ut less than ) and is a positive scalar that is less than. 2 The normal density function is not an elementary integral. That is, a closed form of the antiderivative does not eist. But, as Figure 4 aove illustrates, there is still area under the curve. To evaluate the integral, we use a calculator or a tale of values. Eample 5: Lengths of human pregnancies are normally distriuted with mean 268 days and standard deviation 5 days. What percentage of pregnancies last etween 25 days and 28 days? Solution: Using the fact that m = 268 and s = 5, we have that the density function is given y ( 268) 2(5) p ( ) e. Finding the integral numerically, we have: 5 2 Proportion of pregnancies lasting etween 25 days and 28 days ( 268) 2(5) e d
CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
More information5 Double Integrals over Rectangular Regions
Chapter 7 Section 5 Doule Integrals over Rectangular Regions 569 5 Doule Integrals over Rectangular Regions In Prolems 5 through 53, use the method of Lagrange multipliers to find the indicated maximum
More informationLesson 20. Probability and Cumulative Distribution Functions
Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic
More informationAP Calculus AB 2003 Scoring Guidelines
AP Calculus AB Scoring Guidelines The materials included in these files are intended for use y AP teachers for course and exam preparation; permission for any other use must e sought from the Advanced
More informationExponent Law Review 3 + 3 0. 12 13 b. 1 d. 0. x 5 d. x 11. a 5 b. b 8 a 8. b 2 a 2 d. 81u 8 v 10 81. u 8 v 20 81. Name: Class: Date:
Name: Class: Date: Eponent Law Review Multiple Choice Identify the choice that best completes the statement or answers the question The epression + 0 is equal to 0 Simplify 6 6 8 6 6 6 0 Simplify ( ) (
More information( ) is proportional to ( 10 + x)!2. Calculate the
PRACTICE EXAMINATION NUMBER 6. An insurance company eamines its pool of auto insurance customers and gathers the following information: i) All customers insure at least one car. ii) 64 of the customers
More informationChapter 4  Lecture 1 Probability Density Functions and Cumul. Distribution Functions
Chapter 4  Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the
More informationSubstitute 4 for x in the function, Simplify.
Page 1 of 19 Review of Eponential and Logarithmic Functions An eponential function is a function in the form of f ( ) = for a fied ase, where > 0 and 1. is called the ase of the eponential function. The
More informationA.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it
Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply
More informationReview of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
More informationEstimating the Average Value of a Function
Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and
More information8.8. Probability 81. Random Variables EXAMPLE 1 EXAMPLE 2
8.8 Proaility The outcome of some events, such as a heavy rock falling from a great height, can e modeled so that we can predict with high accuracy what will happen. On the other hand, many events have
More informationSect 9.5  Perimeters and Areas of Polygons
Sect 9.5  Perimeters and Areas of Polygons Ojective a: Understanding Perimeters of Polygons. The Perimeter is the length around the outside of a closed two  dimensional figure. For a polygon, the perimeter
More informationSection 0.3 Power and exponential functions
Section 0.3 Power and eponential functions (5/6/07) Overview: As we will see in later chapters, man mathematical models use power functions = n and eponential functions =. The definitions and asic properties
More informationNotes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
More informationExponential equations will be written as, where a =. Example 1: Determine a formula for the exponential function whose graph is shown below.
.1 Eponential and Logistic Functions PreCalculus.1 EXPONENTIAL AND LOGISTIC FUNCTIONS 1. Recognize eponential growth and deca functions 2. Write an eponential function given the intercept and another
More informationNonLinear Regression 20062008 Samuel L. Baker
NONLINEAR REGRESSION 1 NonLinear Regression 20062008 Samuel L. Baker The linear least squares method that you have een using fits a straight line or a flat plane to a unch of data points. Sometimes
More informationSection 1.3 Exercises (Solutions)
Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146148. 1.109 Sketch some normal curves. (a) Sketch
More informationTriangular Distributions
Triangular Distributions A triangular distribution is a continuous probability distribution with a probability density function shaped like a triangle. It is defined by three values: the minimum value
More information2.6. Probability. In general the probability density of a random variable satisfies two conditions:
2.6. PROBABILITY 66 2.6. Probability 2.6.. Continuous Random Variables. A random variable a realvalued function defined on some set of possible outcomes of a random experiment; e.g. the number of points
More information9.3 OPERATIONS WITH RADICALS
9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in
More informationRandom variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.
Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()
More informationSo, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1.
Joint probabilit is the probabilit that the RVs & Y take values &. like the PDF of the two events, and. We will denote a joint probabilit function as P,Y (,) = P(= Y=) Marginal probabilit of is the probabilit
More informationThe PointSlope Form
7. The PointSlope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
More informationAlgebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
More informationA.3 POLYNOMIALS AND FACTORING
Appendi A.3 Polynomials and Factoring A27 A.3 POLYNOMIALS AND FACTORING What you should learn Write polynomials in standard form. Add, subtract, and multiply polynomials. Use special products to multiply
More informationChapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs
Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s
More informationThe numerical values that you find are called the solutions of the equation.
Appendi F: Solving Equations The goal of solving equations When you are trying to solve an equation like: = 4, you are trying to determine all of the numerical values of that you could plug into that equation.
More informationSECTION P.5 Factoring Polynomials
BLITMCPB.QXP.0599_4874 /0/0 0:4 AM Page 48 48 Chapter P Prerequisites: Fundamental Concepts of Algebra Technology Eercises Critical Thinking Eercises 98. The common cold is caused by a rhinovirus. The
More informationContinuous Random Variables
Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous
More informationImportant Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in reallife applications that they have been given their own names.
More informationMath 2443, Section 16.3
Math 44, Section 6. Review These notes will supplement not replace) the lectures based on Section 6. Section 6. i) ouble integrals over general regions: We defined double integrals over rectangles in the
More informationActuarial Present Values of Annuities under Stochastic Interest Rate
Int. Journal of Math. Analysis, Vol. 7, 03, no. 59, 9399 HIKARI Ltd, www.mhikari.com http://d.doi.org/0.988/ijma.03.3033 Actuarial Present Values of Annuities under Stochastic Interest Rate Zhao Xia
More informationDensity Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:
Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve
More informationSection 37. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative
202 Chapter 3 The Derivative Section 37 Marginal Analysis in Business and Economics Marginal Cost, Revenue, and Profit Application Marginal Average Cost, Revenue, and Profit Marginal Cost, Revenue, and
More informationCalculus Applied to Probability and Statistics
P P. Continuous Random Variables and Histograms P.2 Probability Density Functions: Uniform, Eponential, Normal, and Beta P.3 Mean, Median, Variance, and Standard Deviation Calculus Applied to Probability
More informationAlgebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED
Algebra Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED. Graph eponential functions. (Sections 7., 7.) Worksheet 6. Solve eponential growth and eponential decay problems. (Sections 7., 7.) Worksheet 8.
More informationAP Statistics Solutions to Packet 2
AP Statistics Solutions to Packet 2 The Normal Distributions Density Curves and the Normal Distribution Standard Normal Calculations HW #9 1, 2, 4, 68 2.1 DENSITY CURVES (a) Sketch a density curve that
More informationHomework 2 Solutions
Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to
More informationMATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1
MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on
More information3.5 Summary of Curve Sketching
3.5 Summary of Curve Sketching Follow these steps to sketch the curve. 1. Domain of f() 2. and y intercepts (a) intercepts occur when f() = 0 (b) yintercept occurs when = 0 3. Symmetry: Is it even or
More informationC3: Functions. Learning objectives
CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms oneone and manone mappings understand the terms domain and range for a mapping understand the
More informationFive 5. Rational Expressions and Equations C H A P T E R
Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.
More informationLINEAR FUNCTIONS OF 2 VARIABLES
CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for
More informationMathematics 31 Precalculus and Limits
Mathematics 31 Precalculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals
More informationMEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:
MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an
More informationAreas of Rectangles and Parallelograms
CONDENSED LESSON 8.1 Areas of Rectangles and Parallelograms In this lesson you will Review the formula for the area of a rectangle Use the area formula for rectangles to find areas of other shapes Discover
More informationFACTORING QUADRATICS 8.1.1 through 8.1.4
Chapter 8 FACTORING QUADRATICS 8.. through 8..4 Chapter 8 introduces students to rewriting quadratic epressions and solving quadratic equations. Quadratic functions are any function which can be rewritten
More informationMEASURES OF VARIATION
NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are
More informationInformation Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture  17 ShannonFanoElias Coding and Introduction to Arithmetic Coding
More informationUsing the Area Model to Teach Multiplying, Factoring and Division of Polynomials
visit us at www.cpm.org Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials For more information about the materials presented, contact Chris Mikles mikles@cpm.org From CCA
More informationExample 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph
The Effect of Taxes on Equilibrium Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph Solution to part a: Set the
More informationWorked examples Multiple Random Variables
Worked eamples Multiple Random Variables Eample Let X and Y be random variables that take on values from the set,, } (a) Find a joint probability mass assignment for which X and Y are independent, and
More information4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
More information6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH
6 CHAPTER 6 Techniques of Integration 6. PARTIAL FRACTIONS AND LOGISTIC GROWTH Use partial fractions to find indefinite integrals. Use logistic growth functions to model reallife situations. Partial Fractions
More informationSoftware Reliability Measuring using Modified Maximum Likelihood Estimation and SPC
Software Reliaility Measuring using Modified Maximum Likelihood Estimation and SPC Dr. R Satya Prasad Associate Prof, Dept. of CSE Acharya Nagarjuna University Guntur, INDIA K Ramchand H Rao Dept. of CSE
More informationt hours This is the distance in miles travelled in 2 hours when the speed is 70mph. = 22 yards per second. = 110 yards.
The area under a graph often gives useful information. Velocittime graphs Constant velocit The sketch shows the velocittime graph for a car that is travelling along a motorwa at a stead 7 mph. 7 The
More information2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
More informationRandom variables, probability distributions, binomial random variable
Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that
More informationGeoActivity. 1 Use a straightedge to draw a line through one of the vertices of an index card. height is perpendicular to the bases.
Page of 7 8. Area of Parallelograms Goal Find te area of parallelograms. Key Words ase of a parallelogram eigt of a parallelogram parallelogram p. 0 romus p. GeoActivity Use a straigtedge to draw a line
More information0 0 such that f x L whenever x a
EpsilonDelta Definition of the Limit Few statements in elementary mathematics appear as cryptic as the one defining the limit of a function f() at the point = a, 0 0 such that f L whenever a Translation:
More informationLESSON EIII.E EXPONENTS AND LOGARITHMS
LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential
More informationSUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills
SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)
More informationSection 6.4: Work. We illustrate with an example.
Section 6.4: Work 1. Work Performed by a Constant Force Riemann sums are useful in many aspects of mathematics and the physical sciences than just geometry. To illustrate one of its major uses in physics,
More informationWe start with the basic operations on polynomials, that is adding, subtracting, and multiplying.
R. Polnomials In this section we want to review all that we know about polnomials. We start with the basic operations on polnomials, that is adding, subtracting, and multipling. Recall, to add subtract
More informationRandom Variables. Chapter 2. Random Variables 1
Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets
More informationTeaching Algebra with Manipulatives. For use with Glencoe Algebra 1 Glencoe Algebra 2
Teaching Algebra with Manipulatives For use with Glencoe Algebra 1 Glencoe Algebra 2 Manipulatives Glencoe offers three types of kits to enhance the use of manipulatives in your PreAlgebra classroom.
More informationSection 0.2 Set notation and solving inequalities
Section 0.2 Set notation and solving inequalities (5/31/07) Overview: Inequalities are almost as important as equations in calculus. Man functions domains are intervals, which are defined b inequalities.
More informationIn this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)
Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and
More informationUnit 8: Normal Calculations
Unit 8: Normal Calculations Summary of Video In this video, we continue the discussion of normal curves that was begun in Unit 7. Recall that a normal curve is bellshaped and completely characterized
More informationWhat Does Your Quadratic Look Like? EXAMPLES
What Does Your Quadratic Look Like? EXAMPLES 1. An equation such as y = x 2 4x + 1 descries a type of function known as a quadratic function. Review with students that a function is a relation in which
More informationOnline appendix for Innovation, Firm Dynamics, and International Trade
Online appendi for Innovation, Firm Dynamics, and International Trade Andrew Atkeson UCLA and Ariel Burstein UCLA, Feruary 2010 1 This appendi is composed of two parts. In the first part, we provide details
More informationAbout the Gamma Function
About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More information2. Properties of Functions
2. PROPERTIES OF FUNCTIONS 111 2. Properties of Funtions 2.1. Injetions, Surjetions, an Bijetions. Definition 2.1.1. Given f : A B 1. f is onetoone (short han is 1 1) or injetive if preimages are unique.
More informationProbability. Distribution. Outline
7 The Normal Probability Distribution Outline 7.1 Properties of the Normal Distribution 7.2 The Standard Normal Distribution 7.3 Applications of the Normal Distribution 7.4 Assessing Normality 7.5 The
More informationMATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,
More information18.2. STATISTICS 2 (Measures of central tendency) A.J.Hobson
JUST THE MATHS SLIDES NUMBER 18.2 STATISTICS 2 (Measures of central tendency) by A.J.Hobson 18.2.1 Introduction 18.2.2 The arithmetic mean (by coding) 18.2.3 The median 18.2.4 The mode 18.2.5 Quantiles
More informationHomework #7 Solutions
Homework #7 Solutions Problems Bolded problems are worth 2 points. Section 3.4: 2, 6, 14, 16, 24, 36, 38, 42 Chapter 3 Review (pp. 159 162): 24, 34, 36, 54, 66 Etra Problem 3.4.2. If f () = 2 ( 3 + 5),
More informationThe small increase in x is. and the corresponding increase in y is. Therefore
Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that
More informationAverage rate of change of y = f(x) with respect to x as x changes from a to a + h:
L151 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
More informationHISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
More informationChapter 4: Exponential and Logarithmic Functions
Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...
More informationHandout for three day Learning Curve Workshop
Handout for three day Learning Curve Workshop Unit and Cumulative Average Formulations DAUMW (Credits to Professors Steve Malashevitz, Bo Williams, and prior faculty. Blame to Dr. Roland Kankey, roland.kankey@dau.mil)
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationPolynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
More informationMidterm 1. Solutions
Stony Brook University Introduction to Calculus Mathematics Department MAT 13, Fall 01 J. Viro October 17th, 01 Midterm 1. Solutions 1 (6pt). Under each picture state whether it is the graph of a function
More informationTaylor Polynomials. for each dollar that you invest, giving you an 11% profit.
Taylor Polynomials Question A broker offers you bonds at 90% of their face value. When you cash them in later at their full face value, what percentage profit will you make? Answer The answer is not 0%.
More informationAP Calculus AB 2004 Scoring Guidelines
AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationRoots of equation fx are the values of x which satisfy the above expression. Also referred to as the zeros of an equation
LECTURE 20 SOLVING FOR ROOTS OF NONLINEAR EQUATIONS Consider the equation f = 0 Roots of equation f are the values of which satisfy the above epression. Also referred to as the zeros of an equation f()
More informationExperimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
More informationStudents Currently in Algebra 2 Maine East Math Placement Exam Review Problems
Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write
More informationPreCalculus II Factoring and Operations on Polynomials
Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...
More information15.1. Exact Differential Equations. Exact FirstOrder Equations. Exact Differential Equations Integrating Factors
SECTION 5. Eact FirstOrder Equations 09 SECTION 5. Eact FirstOrder Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential
More informationIntroduction to Basic Reliability Statistics. James Wheeler, CMRP
James Wheeler, CMRP Objectives Introduction to Basic Reliability Statistics Arithmetic Mean Standard Deviation Correlation Coefficient Estimating MTBF Type I Censoring Type II Censoring Eponential Distribution
More informationChapter 4 One Dimensional Kinematics
Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity
More informationAP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
More informationExponential Functions
Eponential Functions Deinition: An Eponential Function is an unction that has the orm ( a, where a > 0. The number a is called the base. Eample:Let For eample (0, (, ( It is clear what the unction means
More information