Astro Lecture 8 The Copernican Revolution (Cont d)

Size: px
Start display at page:

Download "Astro Lecture 8 The Copernican Revolution (Cont d)"

Transcription

1 Astro Lecture 8 The Copernican Revolution (Cont d) or the revolutionaries: Nicolas Copernicus ( ) Tycho Brahe ( ) Johannes Kepler ( ) Galileo Galilei ( ) Isaac Newton ( ) who toppled Aristotle s cosmos Astro Lecture 8 1

2 Johannes Kepler ( ) In the interplay between quantitative observation and theoretical construction that characterizes the development of modern science, Brahe was the master of the first but was deficient in the second. The next great development in the history of astronomy was the theoretical intuition of Johannes Kepler ( ), a German who went to Prague to become Brahe's assistant. Astro Lecture 8 2

3 Kepler and the Elliptical Orbits Unlike Brahe, Kepler believed firmly in the Copernican system. Kepler realized that the orbits of the planets were not the circles but were instead the "flattened circles" called ellipses The difficulties with the Martian orbit derive precisely from the fact that the orbit of Mars was the most elliptical of the planets for which Brahe had extensive data. Astro Lecture 8 3

4 What is an ellipse? An ellipse looks like an elongated circle. Astro Lecture 8 4

5 Eccentricity of an Ellipse Eccentricity and Semimajor Axis of an Ellipse Astro Lecture 8 5

6 Kepler s three laws of planetary motions Astro Lecture 8 6

7 Kepler s First Law: The orbit of each planet around the Sun is an ellipse with the Sun at one focus. [Greek: near the Sun] [Greek: away from the Sun] Astro Lecture 8 7

8 Kepler s Second Law: As a planet moves around its orbit, it sweeps out equal areas in equal times. A planet travels faster when it is nearer to the Sun and slower when it is farther from the Sun. Astro Lecture 8 8

9 Kepler's 2nd Law Astro Lecture 8 9

10 Kepler s Third Law The ratio of the squares of the revolutionary periods for two planets is equal to the ratio of the cubes of their semimajor axes: Choosing subscript 1 for the Earth, the relation can be rewritten as: p 2 = a 3 with p = orbital period in years and a = average distance from Sun in AU Astro Lecture 8 10

11 Kepler s Third Law Kepler's Third Law implies that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit. More distant planets orbit the Sun more slowly than the ones that are closer - Mercury, the innermost planet, takes only 88 days to orbit the Sun - the outermost planet (Pluto) requires 248 years to do the same. Astro Lecture 8 11

12 Planets period Astro Lecture 8 12

13 Kepler s Third Law (Cont d) The only thing that affects the orbital period p of the planets is the semimajor axis a The mass, and orbital eccentricity, do not matter Astro Lecture 8 13

14 Kepler s Third Law Astro Lecture 8 14

15 Graphical version of Kepler s Third Law This graph shows that Kepler s 3 rd law hold true. The graph shows the planets that were known during Kepler s time This graph shows how the orbital speeds of the planets depend on their distances from the Sun: More distant planets orbit the Sun more slowly. Astro Lecture 8 15

16 Clicker Question An asteroid orbits the Sun at an average distance a = 4 AU. How long does it take to orbit the Sun? A. 4 years B. 8 years C. 16 years D. 64 years (Hint: Remember that p 2 = a 3.) Astro Lecture 8 16

17 An asteroid orbits the Sun at an average distance a = 4 AU. How long does it take to orbit the Sun? A. 4 years B. 8 years C. 16 years D. 64 years Clicker Question We need to find p so that p 2 = a 3. Since a = 4, a 3 = 4 3 = 64. Therefore p = 8, p 2 = 8 2 = 64. Astro Lecture 8 17

18 Clicker question: Planetary orbits When we say that a planet has a highly eccentric orbit, we mean that: 1. it is spiraling in toward the Sun. 2. its orbit is an ellipse with the Sun at one focus. 3. in some parts of its orbit it is much closer to the Sun than in other parts. Astro Lecture 8 18

19 Clicker question: Planetary orbits When we say that a planet has a highly eccentric orbit, we mean that: 1. it is spiraling in toward the Sun. 2. its orbit is an ellipse with the Sun at one focus. 3. in some parts of its orbit it is much closer to the Sun than in other parts. Astro Lecture 8 19

20 Clicker question: Comets Suppose a comet orbits the Sun on a highly eccentric orbit with an average (semimajor axis) distance of 1 AU. How long does it take to complete each orbit, and how do we know? 1. It depends on the eccentricity of the orbit, as described by Kepler's second law year, which we know from Kepler's third law. 3. Each orbit should take about 2 years, because the eccentricity is so large. 4. It depends on the eccentricity of the orbit, as described by Kepler's first law. Astro Lecture 8 20

21 Clicker question: Comets Suppose a comet orbits the Sun on a highly eccentric orbit with an average (semimajor axis) distance of 1 AU. How long does it take to complete each orbit, and how do we know? 1. It depends on the eccentricity of the orbit, as described by Kepler's second law year, which we know from Kepler's third law. 3. Each orbit should take about 2 years, because the eccentricity is so large. 4. It depends on the eccentricity of the orbit, as described by Kepler's first law. Astro Lecture 8 21

22 Problem 1 The recently discovered object Eris, which is slightly larger than Pluto, orbits the Sun every 560 years. What is its average distance (or semimajor axis) from the Sun? Astro Lecture 8 22

23 Problem 1: solution Use Kepler s 3 rd law to find the period: p 2 = a 3 Solve for a: a = p 2/3 Take p = 560 yr a = 67.9 AU Astro Lecture 8 23

24 Problem 2 Halley s comet orbits the Sun every 76 years and has an orbital eccentricity of 0.97 Find its average distance to the Sun (i.e. its semimajor axis) Astro Lecture 8 24

25 Problem 2: solution Use Kepler s 3 rd law to find the period: p 2 = a 3 Solve for a: a = p 2/3 Take p = 76 yr a = 17.9 AU Astro Lecture 8 25

26 Problem 3 Halley s orbit is very eccentric (stretchedout ellipse), so that at perihelion it is only about 90 million km from the Sun, compared to more than 5 billion km at aphelion. Does Halley s comet spend most of its time near its perihelion, aphelion, or halfway between? Astro Lecture 8 26

27 Problem 3: Solution Halley s comet spends most of its time far from the Sun near aphelion; since Kepler s second law says that bodies move faster when they are closer to the Sun than when they are farther away. Halley s comet moves most slowly at aphelion. Since it is moving most slowly there, it spends more time in that part of the orbit Astro Lecture 8 27

28 Galileo Galilei ( ) The main objections of the Aristotle view to a Sun-centered Universe were: Earth could not be moving because objects in air (birds, clouds,..) would be left behind as Earth moved along its way Noncircular orbits are not perfect as heavens should be If Earth were really orbiting the Sun, we would detect stellar parallax Astro Lecture 8 28

29 Overcoming the first objection (nature of motion): Galileo s experiments with rolling balls and dropping objects from a height showed that objects in air would stay with a moving Earth. Aristotle thought that all objects naturally come to rest. Galileo showed that objects will stay in motion unless a force acts to slow them down (Newton s first law of motion). Astro Lecture 8 29

30 Overcoming the second objection (heavenly perfection) Tycho s observations of a comet and a supernova already challenged this idea. Using his telescope, Galileo saw: Sunspots on Sun ( imperfections ) Mountains and valleys on the Moon (proving it is not a perfect sphere) Astro Lecture 8 30

31 Overcoming the third objection (parallax) Tycho thought he had measured stellar distances, so lack of parallax seemed to rule out an orbiting Earth. Galileo used his telescope to see that the Milky Way is made of countless individual stars: showed that stars must be much farther than Tycho thought. If stars were much farther away, then lack of detectable parallax was no longer so troubling. Astro Lecture 8 31

32 The final nails in the coffin of the geocentric model Two of Galileo s earliest discoveries contributed to the demise of the geocentric model Astro Lecture 8 32

33 1. Galileo s discovery of four moons orbiting Jupiter Galileo thus proved that not all objects orbit Earth. Page from Galileo s notebook written in His sketches show four stars near Jupiter (the circle) but in different positions at different times (and sometimes hidden from view). Galileo soon realized that the stars were actually moons. Astro Lecture 8 33

34 2. Galileo s observations of phases of Venus proved that Venus orbits the Sun and not Earth. In the Ptolemaic model, Venus orbits Earth, moving around a smaller circle on its larger orbital circle; the center of the smaller circle lies on the Earth-Sun line. If this view were correct, Venus phases would range only from new to crescent In reality, Venus orbits the Sun, so from Earth we can see it in many different phases. This is just what Galileo observed, allowing him to prove that Venus orbits the Sun. Astro Lecture 8 34

35 Galileo Galileo observed all of the following. Which observation offered direct proof of a planet orbiting the Sun? 1. Phases of Venus 2. The Milky Way is composed of many individual stars 3. Four moons of Jupiter 4. Patterns of shadow and sunlight near the dividing line between the light and dark portions of the Moon's face Astro Lecture 8 35

36 Galileo Galileo observed all of the following. Which observation offered direct proof of a planet orbiting the Sun? 1. Phases of Venus 2. The Milky Way is composed of many individual stars 3. Four moons of Jupiter 4. Patterns of shadow and sunlight near the dividing line between the light and dark portions of the Moon's face Astro Lecture 8 36

37 In 1633 the Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun. His book on the subject was removed from the Church s index of banned books in Galileo was formally vindicated by the Church in Astro Lecture 8 37

38 What have we learned? How did Copernicus, Tycho, and Kepler challenge the Earth-centered idea? Copernicus created a Sun-centered model; Tycho provided the data needed to improve this model; Kepler found a model that fit Tycho s data. What are Kepler s three laws of planetary motion? 1. The orbit of each planet is an ellipse with the Sun at one focus. 2. As a planet moves around its orbit it sweeps our equal areas in equal times. 3. More distant planets orbit the Sun at slower average speeds: p 2 = a 3. Astro Lecture 8 38

39 What have we learned? What was Galileo s role in solidifying the Copernican revolution? His experiments and observations overcame the remaining objections to the Sun-centered solar system. Astro Lecture 8 39

Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar

More information

From Aristotle to Newton

From Aristotle to Newton From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers

More information

Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following: Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

More information

Lab 6: Kepler's Laws. Introduction. Section 1: First Law

Lab 6: Kepler's Laws. Introduction. Section 1: First Law Lab 6: Kepler's Laws Purpose: to learn that orbit shapes are ellipses, gravity and orbital velocity are related, and force of gravity and orbital period are related. Materials: 2 thumbtacks, 1 pencil,

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

Periods of Western Astronomy. Chapter 1. Prehistoric Astronomy. Prehistoric Astronomy. The Celestial Sphere. Stonehenge. History of Astronomy

Periods of Western Astronomy. Chapter 1. Prehistoric Astronomy. Prehistoric Astronomy. The Celestial Sphere. Stonehenge. History of Astronomy Periods of Western Astronomy Chapter 1 History of Astronomy Western astronomy divides into 4 periods Prehistoric (before 500 B.C.) Cyclical motions of Sun, Moon and stars observed Keeping time and determining

More information

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

More information

Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

AE554 Applied Orbital Mechanics. Hafta 1 Egemen Đmre

AE554 Applied Orbital Mechanics. Hafta 1 Egemen Đmre AE554 Applied Orbital Mechanics Hafta 1 Egemen Đmre A bit of history the beginning Astronomy: Science of heavens. (Ancient Greeks). Astronomy existed several thousand years BC Perfect universe (like circles

More information

Planetary Orbit Simulator Student Guide

Planetary Orbit Simulator Student Guide Name: Planetary Orbit Simulator Student Guide Background Material Answer the following questions after reviewing the Kepler's Laws and Planetary Motion and Newton and Planetary Motion background pages.

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

Exercise: Estimating the Mass of Jupiter Difficulty: Medium

Exercise: Estimating the Mass of Jupiter Difficulty: Medium Exercise: Estimating the Mass of Jupiter Difficulty: Medium OBJECTIVE The July / August observing notes for 010 state that Jupiter rises at dusk. The great planet is now starting its grand showing for

More information

Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation 12.1 Newton s Law of Universal Gravitation SECTION Explain Kepler s laws. Describe Newton s law of universal gravitation. Apply Newton s law of universal gravitation quantitatively. KEY TERMS OUTCOMES

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

An Introduction to Astronomy and Cosmology. 1) Astronomy - an Observational Science

An Introduction to Astronomy and Cosmology. 1) Astronomy - an Observational Science An Introduction to Astronomy and Cosmology 1) Astronomy - an Observational Science Why study Astronomy 1 A fascinating subject in its own right. The origin and Evolution of the universe The Big Bang formation

More information

Unit 11: Gravity & the Solar System

Unit 11: Gravity & the Solar System Unit 11: Gravity & the Solar System Inquiry Physics www.inquiryphysics.org Historical development Kepler s Laws Newton s Universal Gravitation Next 11: Gravity & the Solar System Historical development

More information

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great. Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Vocabulary - Understanding Revolution in. our Solar System

Vocabulary - Understanding Revolution in. our Solar System Vocabulary - Understanding Revolution in Universe Galaxy Solar system Planet Moon Comet Asteroid Meteor(ite) Heliocentric Geocentric Satellite Terrestrial planets Jovian (gas) planets Gravity our Solar

More information

Are Those Sunspots Really on the Sun?

Are Those Sunspots Really on the Sun? Are Those Sunspots Really on the Sun? Summary of Activity: Students will acquire solar images (or draw sunspots), and record coordinates of sunspots. They will calculate and plot their apparent movement

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass

More information

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers

More information

Study Guide due Friday, 1/29

Study Guide due Friday, 1/29 NAME: Astronomy Study Guide asteroid chromosphere comet corona ellipse Galilean moons VOCABULARY WORDS TO KNOW geocentric system meteor gravity meteorite greenhouse effect meteoroid heliocentric system

More information

Newton s Law of Gravity

Newton s Law of Gravity Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

More information

4. Discuss the information as a class (transparency key)

4. Discuss the information as a class (transparency key) Teacher: Sherry Tipps-Holder Grade: 8 Subject: World History/ Lesson designed for inclusion in unit on Scientific Revolution Essential Question: What were the major contributions/innovations of the who

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

Newton s derivation of Kepler s laws (outline)

Newton s derivation of Kepler s laws (outline) Newton s derivation of Kepler s laws (outline) 1. Brief history. The first known proposal for a heliocentric solar system is due to Aristarchus of Samos (ancient Greece, c. 270 BC). Following a long period

More information

The University of Texas at Austin. Gravity and Orbits

The University of Texas at Austin. Gravity and Orbits UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

The Solar System. I. Introduction. S. Gavin and S. P. Karrer Physics Department, Wayne State University, Detroit, MI, 48201 sean@physics.wayne.

The Solar System. I. Introduction. S. Gavin and S. P. Karrer Physics Department, Wayne State University, Detroit, MI, 48201 sean@physics.wayne. The Solar System S. Gavin and S. P. Karrer Physics Department, Wayne State University, Detroit, MI, 48201 sean@physics.wayne.edu I. Introduction As children we all learned that the Earth is one of many

More information

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12 2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

More information

Barycenter of Solar System Earth-Moon barycenter? Moon orbits what?

Barycenter of Solar System Earth-Moon barycenter? Moon orbits what? Barycenter of Solar System Earth-Moon barycenter? Moon orbits what? Dr. Scott Schneider Friday Feb 24 th, 2006 Sponsored by the Society of Physics Students (SPS) Webpage : http://qbx6.ltu.edu/s_schneider/astro/astroweek_2006.shtml

More information

Chapter 1 Our Place in the Universe

Chapter 1 Our Place in the Universe Chapter 1 Our Place in the Universe Syllabus 4 tests: June 18, June 30, July 10, July 21 Comprehensive Final - check schedule Website link on blackboard 1.1 Our Modern View of the Universe Our goals for

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the

More information

Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

More information

Background Information

Background Information Background Information The Second Law of Motion and The Law of Gravitation Student Activities 1. Round and Round They Go! 2. onic Sections - Movement in Newton s Gravitational orce Notes to Teachers Teacher

More information

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley Chapter 1: Our Place in the Universe Topics Our modern view of the universe The scale of the universe Cinema graphic tour of the local universe Spaceship earth 1.1 A Modern View of the Universe Our goals

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Astronomical Units and The Solar System Grade Level and Course: 8th grade Physical Science Materials: Visual introduction for solar system (slides, video, posters,

More information

How To Understand The Theory Of Gravity

How To Understand The Theory Of Gravity Newton s Law of Gravity and Kepler s Laws Michael Fowler Phys 142E Lec 9 2/6/09. These notes are partly adapted from my Physics 152 lectures, where more mathematical details can be found. The Universal

More information

WORLD HISTORY: SCIENTIFIC REVOLUTION AND ENLIGHTENMENT. Jeopardy Version Watch out Alex Trebek

WORLD HISTORY: SCIENTIFIC REVOLUTION AND ENLIGHTENMENT. Jeopardy Version Watch out Alex Trebek WORLD HISTORY: SCIENTIFIC REVOLUTION AND ENLIGHTENMENT Jeopardy Version Watch out Alex Trebek Scientists Philosophes Enlightenment Spreads Terms Thnkers 100 100 100 100 100 200 200 200 200 200 300 300

More information

5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky 5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10 Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

More information

Explain the Big Bang Theory and give two pieces of evidence which support it.

Explain the Big Bang Theory and give two pieces of evidence which support it. Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

Week 1-2: Overview of the Universe & the View from the Earth

Week 1-2: Overview of the Universe & the View from the Earth Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf (hyesuf@ucsc.edu) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made

More information

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

More information

The scale of the Universe, and an inventory

The scale of the Universe, and an inventory The scale of the Universe, and an inventory Space is big. You just won t believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it s a long way down the road to the chemist s, but

More information

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY Due Date: start of class 2/6/2007 5 pts extra credit if turned in before 9:00AM (early!) (To get the extra credit, the assignment must

More information

Astromechanics Two-Body Problem (Cont)

Astromechanics Two-Body Problem (Cont) 5. Orbit Characteristics Astromechanics Two-Body Problem (Cont) We have shown that the in the two-body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

Page. ASTRONOMICAL OBJECTS (Page 4).

Page. ASTRONOMICAL OBJECTS (Page 4). Star: ASTRONOMICAL OBJECTS ( 4). Ball of gas that generates energy by nuclear fusion in its includes white dwarfs, protostars, neutron stars. Planet: Object (solid or gaseous) that orbits a star. Radius

More information

Planets beyond the solar system

Planets beyond the solar system Planets beyond the solar system Review of our solar system Why search How to search Eclipses Motion of parent star Doppler Effect Extrasolar planet discoveries A star is 5 parsecs away, what is its parallax?

More information

The Cosmic Perspective 3e Media Update

The Cosmic Perspective 3e Media Update Chapter 1: Our Place in the Universe LEARNING GOALS 1.1 A Modern View of the Universe What is our physical place in the universe? What are our cosmic origins and why do we say that we are made of star

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons? Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

The Solar System. Olivia Paquette

The Solar System. Olivia Paquette The Solar System Olivia Paquette Table of Contents The Sun 1 Mercury 2,3 Venus 4,5 Earth 6,7 Mars 8,9 Jupiter 10,11 Saturn 12 Uranus 13 Neptune Pluto 14 15 Glossary. 16 The Sun Although it may seem like

More information

Beginning of the Universe Classwork 6 th Grade PSI Science

Beginning of the Universe Classwork 6 th Grade PSI Science Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All

More information

Solar System Formation

Solar System Formation Solar System Formation Background Information System: Many pieces that make up a whole Solar System: Anything that orbits the Sun Just like in the formation of of stars.. Gravity plays a major role. Gravitational

More information

The Gravitational Field

The Gravitational Field The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

Kepler s Laws, Newton s Laws, and the Search for New Planets

Kepler s Laws, Newton s Laws, and the Search for New Planets Integre Technical Publishing Co., Inc. American Mathematical Monthly 108:9 July 12, 2001 2:22 p.m. osserman.tex page 813 Kepler s Laws, Newton s Laws, and the Search for New Planets Robert Osserman Introduction.

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Unit One Organizer: The Stars and Our Solar System (Approximate Time: 7 Weeks)

Unit One Organizer: The Stars and Our Solar System (Approximate Time: 7 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES

KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF KINDERGARTEN UNIVERSE WEEK 1. PRE: Discovering misconceptions of the Universe. LAB: Comparing size and distances in space. POST:

More information

Science Focus 9 Space Exploration Topic Test

Science Focus 9 Space Exploration Topic Test SPACE EXPLORATION UNIT TEST ASSESSMENT Student Name Class 1. The axis for the frame of reference to identify locations on the earth are A. Equinox and Solstice B. Ecuador and Madagascar C. Equator and

More information

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe Football Review- Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,

More information

Planets and Dwarf Planets by Shauna Hutton

Planets and Dwarf Planets by Shauna Hutton Name: Wow! Technology has improved so well in the last several years that we keep finding more and more objects in our solar system! Because of this, scientists have had to come up with new categories

More information

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Voyage: A Journey through our Solar System. Grades 5-8. Lesson 5: Round and Round We Go Exploring Orbits in the Solar System

Voyage: A Journey through our Solar System. Grades 5-8. Lesson 5: Round and Round We Go Exploring Orbits in the Solar System Voyage: A Journey through our Solar System Grades 5-8 Lesson 5: Round and Round We Go Exploring Orbits in the Solar System On a visit to the National Mall in Washington, DC, one can see monuments of a

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major

More information

HONEY, I SHRUNK THE SOLAR SYSTEM

HONEY, I SHRUNK THE SOLAR SYSTEM OVERVIEW HONEY, I SHRUNK THE SOLAR SYSTEM MODIFIED VERSION OF A SOLAR SYSTEM SCALE MODEL ACTIVITY FROM UNDERSTANDING SCIENCE LESSONS Students will construct a scale model of the solar system using a fitness

More information

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

THE SOLAR SYSTEM. Worksheets UNIT 1. Raül Martínez Verdún

THE SOLAR SYSTEM. Worksheets UNIT 1. Raül Martínez Verdún Worksheets UNIT 1 October-December 2009 NAME: DATE: Worksheet 1A Cut out these 9 circles and then order them from the smallest to the biggest. NAME: DATE: Worksheet 1B NAME: DATE: Worksheet 2 Read the

More information

Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points.

Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points. HOMEWORK #1 Solar System Exploration Due Tuesday, January 27th IN CLASS Answers to the questions must be given in complete sentences (except where indicated), using correct grammar and spelling. Please

More information

RETURN TO THE MOON. Lesson Plan

RETURN TO THE MOON. Lesson Plan RETURN TO THE MOON Lesson Plan INSTRUCTIONS FOR TEACHERS Grade Level: 9-12 Curriculum Links: Earth and Space (SNC 1D: D2.1, D2.2, D2.3, D2.4) Group Size: Groups of 2-4 students Preparation time: 1 hour

More information

4 HOW OUR SOLAR SYSTEM FORMED 750L

4 HOW OUR SOLAR SYSTEM FORMED 750L 4 HOW OUR SOLAR SYSTEM FORMED 750L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets come from the clouds of gas and dust that

More information

7 Scale Model of the Solar System

7 Scale Model of the Solar System Name: Date: 7 Scale Model of the Solar System 7.1 Introduction The Solar System is large, at least when compared to distances we are familiar with on a day-to-day basis. Consider that for those of you

More information

The Solar System: Cosmic encounter with Pluto

The Solar System: Cosmic encounter with Pluto Earth and Space Sciences The Solar System: Cosmic encounter with Pluto The size and nature of our Solar System is truly awe inspiring, and things are going to get even more exciting once the New Horizons

More information

Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide. (Test Date: ) Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

More information

Physics 53. Gravity. Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope

Physics 53. Gravity. Nature and Nature's law lay hid in night: God said, Let Newton be! and all was light. Alexander Pope Physics 53 Gravity Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope Kepler s laws Explanations of the motion of the celestial bodies sun, moon, planets

More information

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science DESCRIPTION Host Tom Selleck conducts a stellar tour of Jupiter, Saturn, Uranus, Neptune, and Pluto--the outer planets of Earth's solar system. Information from the Voyager space probes plus computer models

More information

Lab 7: Gravity and Jupiter's Moons

Lab 7: Gravity and Jupiter's Moons Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in

More information

Astronomy Club of Asheville October 2015 Sky Events

Astronomy Club of Asheville October 2015 Sky Events October 2015 Sky Events The Planets this Month - page 2 Planet Highlights - page 10 Moon Phases - page 13 Orionid Meteor Shower Peaks Oct. 22 nd - page 14 Observe the Zodiacal Light - page 15 2 Bright

More information

Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

More information

Observing the Constellations of the Zodiac

Observing the Constellations of the Zodiac Observing the Constellations of the Zodiac Activity UCIObs 3 Grade Level: 8 12 Source: Copyright (2009) by Tammy Smecker Hane. Contact tsmecker@uci.edu with any questions. Standards:This activity addresses

More information

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc.

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc. Our Planetary System Earth, as viewed by the Voyager spacecraft 7.1 Studying the Solar System Our goals for learning: What does the solar system look like? What can we learn by comparing the planets to

More information

The Stars Tonight LIVE Planetarium Show

The Stars Tonight LIVE Planetarium Show The Stars Tonight LIVE Planetarium Show Theme: The Stars Tonight Program is built around a realistic simulation of the night sky, something fewer and fewer visitors get to experience firsthand The educational

More information

Fall Semester Astronomy Review. 3. Directly above the Earth's equator lies the in the sky.

Fall Semester Astronomy Review. 3. Directly above the Earth's equator lies the in the sky. Fall Semester Astronomy Review 1. After a full moon, about how long is it until the next new moon? A. A month B. Two weeks C. A week D. Six hours 3. Directly above the Earth's equator lies the in the sky.

More information