On some classes of difference equations of infinite order


 Nathaniel Lynch
 1 years ago
 Views:
Transcription
1 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 DOI /s R E S E A R C H Open Access On some classes of difference equations of infinite order Alexander V Vasilyev 1 and Vladimir B Vasilyev 2* * Correspondence: 2 Chair of Pure Mathematics, Lipetsk State Technical University, Moskovskaya 30, Lipetsk, , Russia Full list of author information is available at the end of the article Abstract We consider a certain class of difference equations on an axis and a halfaxis, and we establish a correspondence between such equations and simpler kinds of operator equations. The last operator equations can be solved by a special method like the WienerHopf method. MSC: 39B32; 42A38 Keywords: difference equation; symbol; solvability 1 Introduction Difference equations of finite order arise very often in various problems in mathematics and applied sciences, for example in mathematical physics and biology. The theory for solving such equations is very full for equations with constant coefficients [1, 2], but fully incomplete for the case of variable coefficients. Some kinds of such equations were obtained by the second author by studying general boundary value problems for mode elliptic pseudo differential equations in canonical nonsmooth domains, but there is no solution algorithm for all situations [3 5]. There is a certain intermediate case between the two mentioned above, namely it is a difference equation with constant coefficients of infinite order. Here we will briefly describe these situations. The general form of the linear difference equation of order n is the following [1, 2]: n a k (x)u(x + k)=v(x), x M R, (1) k=0 where the functions a k (x), k = 1,...,n, v(x) aredefinedonm and given, and u(x) isan unknown function. Since n N is an arbitrary number and all points x, x +1,...,x + n, x M, should be in the set M,thissetM may be a ray from a certain point or the whole R. A more general type of difference equation of finite order is the equation n a k (x)u(x + β k )=v(x), x M R, (2) k=0 where {β k } n k=0 R. Further, such equations can be equations with a continuous variable or a discrete one, and this property separates such an equation on a class of properly difference equations 2015 Vasilyev and Vasilyev. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
2 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 2 of 9 and discrete equations. In this paper we will consider the case of a continuous variable x, and a solution on the righthand side will be considered in the space L 2 (R) for all equations. 1.1 Difference equation of a finite order with constant coefficients This is an equation of the type n a k u(x + β k )=v(x), x R, (3) k=0 and it easily can be solved by the Fourier transform: (Fu)(ξ) ũ(ξ)= e ix ξ u(x) dx. Indeed, applying the Fourier transform to (3)we obtain ũ(ξ) n a k e iβkξ = ṽ(ξ), k=0 or renaming ũ(ξ)p n (ξ)=ṽ(ξ). The function p n (ξ) is called a symbol of a difference operator on the lefthand side (3) (cf. [6]). If p n (ξ) 0, ξ R,then(3) can easily be solved, u(x)=f ξ x 1 ( p 1 n (ξ)ṽ(ξ)). 1.2 Difference equation of infinite order with constant coefficients The same arguments are applicable for the case of an unbounded sequence {β k } +.Then the difference operator with complex coefficients D : u(x) + has the following symbol: σ (ξ)= + a k e iβ kξ. a k u(x + β k ), x R, a k C, (4) Lemma 1 The operator D is a linear bounded operator L 2 (R) L 2 (R) if {a k } + l1. Proof The proof of this assertion can be obtained immediately. If we consider the operator (4)forx Z only D : u(x d ) + a k u(x d + β k ), x d Z, (5)
3 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 3 of 9 then its symbol can be defined by the discrete Fourier transform [7, 8] σ d (ξ)= + a k e iβ kξ, ξ [ π, π]. 1.3 Difference and discrete equations Obviously there are some relations between difference and discrete equations. Particularly, if {β k } + = Z, then the operator (5) is a discrete convolution operator. For studying discrete operators in a halfspace the authors have developed a certain analytic technique [9 11]. Below we will try to enlarge this technique for more general situations. 2 General difference equations We consider the equation (Du)(x)=v(x), x R +, (6) where R + = {x R, x >0}. For studying this equation we will use methods of the theory of multidimensional singular integral and pseudo differential equations [3, 6, 12] which are nonusual in the theory of difference equations. Our next goal is to study multidimensional difference equations, and this onedimensional variant is a model for considering other complicated situations. This approach is based on the classical Riemann boundary value problem and the theory of onedimensional singular integral equations [13 15]. 2.1 Background The first step is the following. We will use the theory of socalled paired equations [15]of the type (ap + + bp )U = V (7) in the space L 2 (R), where a, b are convolution operators with corresponding functions a(x), b(x), x R, P ± are projectors on the halfaxis R ±.Moreprecisely, (ap + U)(x)= 0 a(x y)u(y) dy, 0 (bp U)(x)= b(x y)u(y) dy. Applying the Fourier transformto (7) we obtain[12] the following onedimensional singular integral equation [13 15]: ã(ξ)(pũ)(ξ)+ b(ξ)(qũ)(ξ)=ṽ (ξ), (8) where P, Q are two projectors related to the Hilbert transform (Hu)(x)=v.p. 1 + u(y) πi x y dy, P = 1 (I + H), 2 Q = 1 (I H). 2
4 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 4 of 9 Equation (8) is closely related to the Riemann boundary value problem [13, 14] forupper and lower halfplanes. We now recall the statement of the problem: finding a pair of functions ± (ξ) which admit an analytic continuation on upper (C + )andlower(c ) halfplanes in the complex plane C and of which their boundary values on R satisfy the following linear relation: + (ξ)=g(ξ) (ξ)+g(ξ), (9) where G(ξ), g(ξ)aregivenfunctionson R. There is a onetoone correspondence between the Riemann boundary value problem (9) and the singular integral equation (8), and G(ξ)=ã 1 (ξ) b(ξ), Ṽ (ξ)=ã 1 (ξ)g(ξ). 2.2 Topological barrier We suppose that the symbol G(ξ) is a continuous nonvanishing function on the compactification Ṙ (G(ξ) 0, ξ Ṙ)and Ind G 1 2π d arg G(t) = 0. (10) The last condition (10), is necessary and sufficient for the unique solvability of the problem (9) inthespacel 2 (R) [13, 14]. Moreover, the unique solution of the problem (9) can be constructed with a help of the Cauchy type integral + (t)=g + (t)p ( G 1 + (t)g(t)), (t)= G 1 (t)q( G 1 + (t)g(t)), where G ± are factors of a factorization for the G(t)(seebelow), G + (t)=exp ( P ( ln G(t) )), G (t)=exp ( Q ( ln G(t) )). 2.3 Difference equations on a halfaxis Equation (6) can easily be transformedinto (7) in thefollowingway. Since therighthand side in (6) isdefinedonr + only we will continue v(x) onthewholer so that this continuation lf L 2 (R). Further we will rename the unknown function u + (x) and define the function u (x)=(lf )(x) (Du + )(x). Thus, we have the following equation: (Du + )(x)+u (x)=(lf )(x), x R, (11) which holds for the whole space R. AftertheFouriertransformwehave σ (ξ)ũ + (ξ)+ũ (ξ)= lv(ξ), where σ (ξ) iscalledasymbol of the operator D.
5 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 5 of 9 To describe a solving technique for (11)we recall the following (cf. [13, 14]). Definition A factorization for an elliptic symbol is called its representation if it is in the form σ (ξ)=σ + (ξ) σ (ξ), where the factors σ +, σ admit an analytic continuation into the upper and lower complex halfplanes C ±,andσ ±1 ± L (R). Example 1 Let us consider the Cauchy type integral 1 + u(t) dt (z), 2πi z t z = x ± iy. It is well known this construction plays a crucial role for a decomposition L 2 (R)ontwo orthogonal subspaces, namely L 2 (R)=A + (R) A (R), where A ± (R) consists of functions admitting an analytic continuation onto C ±. The boundary values of the integral (z) satisfy the PlemeljSokhotskii formulas [13, 14], and thus the projectors P and Q are corresponding projectors on the spaces of analytic functions [15]. Thesimpleexampleweneedis exp(u) =exp(pu) exp(qu). Theorem 2 Let σ (ξ) C(Ṙ), Ind σ =0.Then (6) has unique solution in the space L 2 (R + ) for arbitrary righthand side v L 2 (R + ), and its Fourier transform is given by the formula ũ(ξ)= 1 2 σ 1 (ξ) lv(ξ)+ σ + 1(ξ) σ 1 v.p. (η) lv(η) dη. 2πi ξ η Proof We have σ + (ξ)ũ + (ξ)+σ 1 (ξ)ũ (ξ)=σ 1 (ξ) lv(ξ). Further, since σ 1(ξ) lv(ξ) L 2 (R) we decompose it into two summands σ 1 (ξ) lv(ξ)=p ( σ 1 (ξ) lv(ξ) ) + Q ( σ 1 (ξ) lv(ξ) ) and write σ + (ξ)ũ + (ξ) P ( σ 1 (ξ) lv(ξ) ) = Q ( σ 1 (ξ) lv(ξ) ) σ 1 (ξ)ũ (ξ). The lefthand side of the last quality belongs to the space A + (R), but the righthand side belongs to A (R), consequently these are zeros. Thus, σ + (ξ)ũ + (ξ) P ( σ 1 (ξ) lv(ξ) ) =0
6 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 6 of 9 and ũ + (ξ)=σ 1 + (ξ)p( σ 1 (ξ) lv(ξ) ), (12) or in the complete form ũ + (ξ)= 1 2 σ 1 (ξ) lv(ξ)+ σ + 1(ξ) σ 1 v.p. (η) lv(η) dη. 2πi ξ η Remark 1 This result does not depend on the continuation lv. LetusdenotebyM ± (x) the inverse Fourier images of the functions σ ± 1 (ξ). Indeed, (12) leads to the following construction: u + (x)= = ( ) M + (x y) M (y t)(lv)(t) dt dy M + (x y) 0 ( 0 ) M (y t)v(t) dt dy. Remark 2 The condition σ (ξ) C(Ṙ) is not a strong restriction. Such symbols exist for example in the case that σ (ξ) isrepresentedbyafinitesum,andβ k Q. Thenσ (ξ) isa continuous periodic function. 3 General solution Since σ (ξ) C(Ṙ), and Ind σ is an integer, we consider the case æ Ind σ N in this section. Theorem 3 Let Ind σ N. Then a general solution of (6) in the Fourier image can be written in the form ũ + (ξ)=σ 1 + (ξ)ω æ (ξ)p ( σ 1 (ξ) lv(ξ) ) +(ξ i) æ σ 1 + (ξ)p æ 1(ξ), and it depends on æ arbitrary constants. Proof The function ω(ξ)= ξ i ξ + i has the index 1 [13 15], thus the function ω æ (ξ)σ (ξ)= ( ) ξ i æ σ (ξ) ξ + i has the index 0, and we can factorize this function ω æ (ξ)σ (ξ)=σ + (ξ)σ (ξ). Further, we write after (11) ω æ (ξ)ω æ (ξ)σ (ξ)ũ + (ξ)+ũ (ξ)= lv(ξ),
7 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 7 of 9 factorize ω æ (ξ)σ (ξ), and rewrite ω æ (ξ)σ + (ξ)ũ + (ξ)+σ 1 (ξ)ũ (ξ)=σ 1 (ξ) lv(ξ). Taking into account our notations we have σ + (ξ)ũ + (ξ)+ω æ (ξ)σ 1 (ξ)ũ (ξ) = ω æ (ξ)p ( σ 1 (ξ) lv(ξ) ) + ω æ (ξ)q ( σ 1 (ξ) lv(ξ) ), (13) because σ 1 (ξ) lv(ξ)=p ( σ 1 (ξ) lv(ξ) ) + Q ( σ 1 (ξ) lv(ξ) ) and σ + (ξ)ũ + (ξ) ω æ (ξ)p ( σ 1 (ξ) lv(ξ) ) = ω æ (ξ)q ( σ 1 (ξ) lv(ξ) ) ω æ (ξ)σ 1 (ξ)ũ (ξ) (14) and we conclude from the last that the lefthand side and the righthand side also are a polynomial P æ 1 (ξ) oforderæ 1. It follows from the generalized Liouville theorem [13, 14] because the lefthand side has one pole of order æ in C in the point z = i.so,wehave ũ + (ξ)=σ 1 + (ξ)ω æ (ξ)p ( σ 1 (ξ) lv(ξ) ) +(ξ i) æ σ 1 + (ξ)p æ 1(ξ). Remark 3 This result does not depend on the choice of the continuation l. Corollary 4 Let v(x) 0, æ N. Then a general solution of the homogeneous equation (6) is given by the formula ũ + (ξ)=(ξ i) æ σ 1 + (ξ)p æ 1(ξ). 4 Solvability conditions Theorem 5 Let Ind σ N. Then (6) has a solution from L 2 (R + ) iff the following conditions hold: (ξ i) k 1 σ 1 (ξ) lv(ξ) dξ =0, k =1,2,..., æ. Proof We argue as above and use the equality (14); we write it as (ξ i) æ σ + (ξ)ũ + (ξ) (ξ + i) æ P ( σ 1 (ξ) lv(ξ) ) =(ξ + i) æ Q ( σ 1 (ξ) lv(ξ) ) (ξ + i) æ σ 1 (ξ)ũ (ξ). (15) Since we work with L 2 (R) both the lefthand side and the righthand side are equal to zero at infinity, hence these are zeros, and ( ) ξ i æ ũ + (ξ)=σ + 1 (ξ) P ( σ 1 ξ + i (ξ) lv(ξ) ).
8 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 8 of 9 But there is some inaccuracy. Indeed, this solution belongs to the space A + (R), but more exactly it belongs to its subspace A k + (R). This subspace consists of functions analytic in C + with zeros of the order æ in the point z = i. To obtain a solution from L 2 (R + ) we need some corrections in the last formula. Since the operator P is related to the Cauchy type integral we will use certain decomposition formulas for this integral (see also [12 14]). Let us denote σ 1(ξ) lv(ξ) g(ξ) and consider the following integral: g(η) dη, z = ξ + iτ C. z η Using a simple formula for a kernel 1 z η = æ k=1 (η i) k 1 (z i) k + (η i) æ (z i) æ (z η) we obtain the following decomposition: g(η) dη z η = æ k=1 (z i) k So, we have a following property. If the conditions (η i) k 1 (η i) æ g(η) dη g(η) dη + (z i) æ (z η). (η i) k 1 g(η) dη =0, k =1,2,..., æ, hold, then we obtain g(η) dη z η =(z i)æ (η i) æ g(η) dη. z η Hence the boundary values on R for the lefthand side and the righthand one are equal, and thus P ( g(ξ) ) =(ξ i) æ P ( (ξ i) æ g(ξ) ). Substituting the last formula into the solution formula we write ũ + (ξ)=σ 1 + (ξ)(ξ + i)æ P ( (ξ i) æ σ 1 (ξ) lv(ξ) ). 5 Conclusion It seems this approach to difference equations may be useful for studying the case that the variable x is a discrete one.we have some experience in the theory of discrete equations [9 11], and we hope that we can be successful in this situation also. Moreover, in our opinion the developed methods might be applicable for multidimensional difference equations. Competing interests The authors declare that they have no competing interests.
9 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 9 of 9 Authors contributions All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript. Author details 1 Department of Mathematical Analysis, National Research Belgorod State University, Studencheskaya 14/1, Belgorod, , Russia. 2 Chair of Pure Mathematics, Lipetsk State Technical University, Moskovskaya 30, Lipetsk, , Russia. Acknowledgements The authors are very grateful to the anonymous referees for their valuable suggestions. This work is supported by Russian Fund of Basic Research and government of Lipetsk region of Russia, project No a. Received: 4 March 2015 Accepted: 17 June 2015 References 1. MilneThomson, LM: The Calculus of Finite Differences. Chelsea, New York (1981) 2. Jordan, C: Calculus of Finite Differences. Chelsea, New York (1950) 3. Vasil ev, VB: Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Boundary Value Problems in NonSmooth Domains. Kluwer Academic, Dordrecht (2000) 4. Vasilyev, VB: General boundary value problems for pseudo differential equations and related difference equations. Adv. Differ. Equ. 2013, 289 (2013) 5. Vasilyev, VB: On some difference equations of first order. Tatra Mt. Math. Publ. 54, (2013) 6. Mikhlin, SG, Prößdorf, S: Singular Integral Operators. Akademie Verlag, Berlin (1986) 7. Sobolev, SL: Cubature Formulas and Modern Analysis: An Introduction. Gordon & Breach, Montreux (1992) 8. Dudgeon, DE, Mersereau, RM: Multidimensional Digital Signal Processing. Prentice Hall, Englewood Cliffs (1984) 9. Vasilyev, AV, Vasilyev, VB: Discrete singular operators and equations in a halfspace. Azerb. J. Math. 3(1), (2013) 10. Vasilyev, AV, Vasilyev, VB: Discrete singular integrals in a halfspace. In: Current Trends in Analysis and Its Applications, Proc. 9th Congress, Krakow, Poland, August 2013, pp Birkhäuser, Basel (2015) 11. Vasilyev, AV, Vasilyev, VB: Periodic Riemann problem and discrete convolution equations. Differ. Equ. 51(5), (2015) 12. Eskin, G: Boundary Value Problems for Elliptic Pseudodifferential Equations. Am. Math. Soc., Providence (1981) 13. Gakhov, FD: Boundary Value Problems. Dover, New York (1981) 14. Muskhelishvili, NI: Singular Integral Equations. NorthHolland, Amsterdam (1976) 15. Gokhberg, I, Krupnik, N: Introduction to the Theory of OneDimensional Singular Integral Equations. Birkhäuser, Basel (2010)
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationMICROLOCAL ANALYSIS OF THE BOCHNERMARTINELLI INTEGRAL
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 00029939(XX)00000 MICROLOCAL ANALYSIS OF THE BOCHNERMARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More informationFACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationMATH 590: Meshfree Methods
MATH 590: Meshfree Methods Chapter 7: Conditionally Positive Definite Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationChapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
More informationFRACTIONAL INTEGRALS AND DERIVATIVES. Theory and Applications
FRACTIONAL INTEGRALS AND DERIVATIVES Theory and Applications Stefan G. Samko Rostov State University, Russia Anatoly A. Kilbas Belorussian State University, Minsk, Belarus Oleg I. Marichev Belorussian
More informationWHICH LINEARFRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE?
WHICH LINEARFRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE? JOEL H. SHAPIRO Abstract. These notes supplement the discussion of linear fractional mappings presented in a beginning graduate course
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationUnderstanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
More informationIntroduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
More informationThe Convolution Operation
The Convolution Operation Convolution is a very natural mathematical operation which occurs in both discrete and continuous modes of various kinds. We often encounter it in the course of doing other operations
More information1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form
1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and
More informationORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationInternational Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013
FACTORING CRYPTOSYSTEM MODULI WHEN THE COFACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II MohammediaCasablanca,
More informationEssential spectrum of the Cariñena operator
Theoretical Mathematics & Applications, vol.2, no.3, 2012, 3945 ISSN: 17929687 (print), 17929709 (online) Scienpress Ltd, 2012 Essential spectrum of the Cariñena operator Y. Mensah 1 and M.N. Hounkonnou
More information4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complexvalued function of a real variable
4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complexvalued function of a real variable Consider a complex valued function f(t) of a real variable
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationMATH1231 Algebra, 2015 Chapter 7: Linear maps
MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationComputing divisors and common multiples of quasilinear ordinary differential equations
Computing divisors and common multiples of quasilinear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France Dmitry.Grigoryev@math.univlille1.fr
More informationOn the representability of the biuniform matroid
On the representability of the biuniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every biuniform matroid is representable over all sufficiently large
More information2 Complex Functions and the CauchyRiemann Equations
2 Complex Functions and the CauchyRiemann Equations 2.1 Complex functions In onevariable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)
More informationRecall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:
Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationJUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
More informationON FIBER DIAMETERS OF CONTINUOUS MAPS
ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there
More informationCONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
More informationDegree Hypergroupoids Associated with Hypergraphs
Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated
More informationRelatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations
Wang and Agarwal Advances in Difference Equations (2015) 2015:312 DOI 10.1186/s1366201506500 R E S E A R C H Open Access Relatively dense sets, corrected uniformly almost periodic functions on time
More informationA simple criterion on degree sequences of graphs
Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree
More informationG(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).
Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,
More informationSolving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
More informationVector Spaces II: Finite Dimensional Linear Algebra 1
John Nachbar September 2, 2014 Vector Spaces II: Finite Dimensional Linear Algebra 1 1 Definitions and Basic Theorems. For basic properties and notation for R N, see the notes Vector Spaces I. Definition
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationEXISTENCE AND NONEXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION
Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7669. UL: http://ejde.math.txstate.edu
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More information5 Numerical Differentiation
D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives
More informationCONSTANTSIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE plaplacian. Pasquale Candito and Giuseppina D Aguí
Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANTSIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE plaplacian Pasquale
More informationAsian Option Pricing Formula for Uncertain Financial Market
Sun and Chen Journal of Uncertainty Analysis and Applications (215) 3:11 DOI 1.1186/s446715357 RESEARCH Open Access Asian Option Pricing Formula for Uncertain Financial Market Jiajun Sun 1 and Xiaowei
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More informationTaylor Series and Asymptotic Expansions
Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More information8.1 Examples, definitions, and basic properties
8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A kform ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)form σ Ω k 1 (M) such that dσ = ω.
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationIn memory of Lars Hörmander
ON HÖRMANDER S SOLUTION OF THE EQUATION. I HAAKAN HEDENMALM ABSTRAT. We explain how Hörmander s classical solution of the equation in the plane with a weight which permits growth near infinity carries
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationMinimize subject to. x S R
Chapter 12 Lagrangian Relaxation This chapter is mostly inspired by Chapter 16 of [1]. In the previous chapters, we have succeeded to find efficient algorithms to solve several important problems such
More informationDuality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More informationResearch Article On the Rank of Elliptic Curves in Elementary Cubic Extensions
Numbers Volume 2015, Article ID 501629, 4 pages http://dx.doi.org/10.1155/2015/501629 Research Article On the Rank of Elliptic Curves in Elementary Cubic Extensions Rintaro Kozuma College of International
More informationLet H and J be as in the above lemma. The result of the lemma shows that the integral
Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;
More informationMATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
More informationMATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
More informationHøgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver
Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin email: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider twopoint
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationSome remarks on PhragménLindelöf theorems for weak solutions of the stationary Schrödinger operator
Wan Boundary Value Problems (2015) 2015:239 DOI 10.1186/s1366101505080 R E S E A R C H Open Access Some remarks on PhragménLindelöf theorems for weak solutions of the stationary Schrödinger operator
More informationCITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
More informationRAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS PART A
RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:
More informationResearch Article The General Traveling Wave Solutions of the Fisher Equation with Degree Three
Advances in Mathematical Physics Volume 203, Article ID 65798, 5 pages http://dx.doi.org/0.55/203/65798 Research Article The General Traveling Wave Solutions of the Fisher Equation with Degree Three Wenjun
More informationMATH 425, HOMEWORK 7, SOLUTIONS
MATH 425, HOMEWORK 7, SOLUTIONS Each problem is worth 10 points. Exercise 1. (An alternative derivation of the mean value property in 3D) Suppose that u is a harmonic function on a domain Ω R 3 and suppose
More informationARBITRAGEFREE OPTION PRICING MODELS. Denis Bell. University of North Florida
ARBITRAGEFREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic
More informationMATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
More informationDiagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions
Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential
More informationDegrees that are not degrees of categoricity
Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College banderson@gordonstate.edu www.gordonstate.edu/faculty/banderson Barbara
More informationON GALOIS REALIZATIONS OF THE 2COVERABLE SYMMETRIC AND ALTERNATING GROUPS
ON GALOIS REALIZATIONS OF THE 2COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for
More informationFUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
More informationF. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)
Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p
More informationit is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
More informationClass Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES  CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
More informationCollege of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions
College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use
More informationthe points are called control points approximating curve
Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.
More informationSign changes of Hecke eigenvalues of Siegel cusp forms of degree 2
Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Ameya Pitale, Ralf Schmidt 2 Abstract Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree
More informationIrreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients
DOI: 10.2478/auom20140007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca
More informationMath 4310 Handout  Quotient Vector Spaces
Math 4310 Handout  Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
More informationON A GLOBALIZATION PROPERTY
APPLICATIONES MATHEMATICAE 22,1 (1993), pp. 69 73 S. ROLEWICZ (Warszawa) ON A GLOBALIZATION PROPERTY Abstract. Let (X, τ) be a topological space. Let Φ be a class of realvalued functions defined on X.
More information3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
More informationParabolic Equations. Chapter 5. Contents. 5.1.2 WellPosed InitialBoundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation
7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity
More informationCOMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS
Bull Austral Math Soc 77 (2008), 31 36 doi: 101017/S0004972708000038 COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V EROVENKO and B SURY (Received 12 April 2007) Abstract We compute
More informationSOME RESULTS ON HYPERCYCLICITY OF TUPLE OF OPERATORS. Abdelaziz Tajmouati Mohammed El berrag. 1. Introduction
italian journal of pure and applied mathematics n. 35 2015 (487 492) 487 SOME RESULTS ON HYPERCYCLICITY OF TUPLE OF OPERATORS Abdelaziz Tajmouati Mohammed El berrag Sidi Mohamed Ben Abdellah University
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More informationLecture Notes on Polynomials
Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex
More informationThe continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
More informationA matrix over a field F is a rectangular array of elements from F. The symbol
Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted
More informationElementary Differential Equations
Elementary Differential Equations EIGHTH EDITION Earl D. Rainville Late Professor of Mathematics University of Michigan Phillip E. Bedient Professor Emeritus of Mathematics Franklin and Marshall College
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More informationThe Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
More informationIntroduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More informationCHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
More informationSome facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)
Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the
More information