On some classes of difference equations of infinite order


 Nathaniel Lynch
 1 years ago
 Views:
Transcription
1 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 DOI /s R E S E A R C H Open Access On some classes of difference equations of infinite order Alexander V Vasilyev 1 and Vladimir B Vasilyev 2* * Correspondence: 2 Chair of Pure Mathematics, Lipetsk State Technical University, Moskovskaya 30, Lipetsk, , Russia Full list of author information is available at the end of the article Abstract We consider a certain class of difference equations on an axis and a halfaxis, and we establish a correspondence between such equations and simpler kinds of operator equations. The last operator equations can be solved by a special method like the WienerHopf method. MSC: 39B32; 42A38 Keywords: difference equation; symbol; solvability 1 Introduction Difference equations of finite order arise very often in various problems in mathematics and applied sciences, for example in mathematical physics and biology. The theory for solving such equations is very full for equations with constant coefficients [1, 2], but fully incomplete for the case of variable coefficients. Some kinds of such equations were obtained by the second author by studying general boundary value problems for mode elliptic pseudo differential equations in canonical nonsmooth domains, but there is no solution algorithm for all situations [3 5]. There is a certain intermediate case between the two mentioned above, namely it is a difference equation with constant coefficients of infinite order. Here we will briefly describe these situations. The general form of the linear difference equation of order n is the following [1, 2]: n a k (x)u(x + k)=v(x), x M R, (1) k=0 where the functions a k (x), k = 1,...,n, v(x) aredefinedonm and given, and u(x) isan unknown function. Since n N is an arbitrary number and all points x, x +1,...,x + n, x M, should be in the set M,thissetM may be a ray from a certain point or the whole R. A more general type of difference equation of finite order is the equation n a k (x)u(x + β k )=v(x), x M R, (2) k=0 where {β k } n k=0 R. Further, such equations can be equations with a continuous variable or a discrete one, and this property separates such an equation on a class of properly difference equations 2015 Vasilyev and Vasilyev. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
2 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 2 of 9 and discrete equations. In this paper we will consider the case of a continuous variable x, and a solution on the righthand side will be considered in the space L 2 (R) for all equations. 1.1 Difference equation of a finite order with constant coefficients This is an equation of the type n a k u(x + β k )=v(x), x R, (3) k=0 and it easily can be solved by the Fourier transform: (Fu)(ξ) ũ(ξ)= e ix ξ u(x) dx. Indeed, applying the Fourier transform to (3)we obtain ũ(ξ) n a k e iβkξ = ṽ(ξ), k=0 or renaming ũ(ξ)p n (ξ)=ṽ(ξ). The function p n (ξ) is called a symbol of a difference operator on the lefthand side (3) (cf. [6]). If p n (ξ) 0, ξ R,then(3) can easily be solved, u(x)=f ξ x 1 ( p 1 n (ξ)ṽ(ξ)). 1.2 Difference equation of infinite order with constant coefficients The same arguments are applicable for the case of an unbounded sequence {β k } +.Then the difference operator with complex coefficients D : u(x) + has the following symbol: σ (ξ)= + a k e iβ kξ. a k u(x + β k ), x R, a k C, (4) Lemma 1 The operator D is a linear bounded operator L 2 (R) L 2 (R) if {a k } + l1. Proof The proof of this assertion can be obtained immediately. If we consider the operator (4)forx Z only D : u(x d ) + a k u(x d + β k ), x d Z, (5)
3 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 3 of 9 then its symbol can be defined by the discrete Fourier transform [7, 8] σ d (ξ)= + a k e iβ kξ, ξ [ π, π]. 1.3 Difference and discrete equations Obviously there are some relations between difference and discrete equations. Particularly, if {β k } + = Z, then the operator (5) is a discrete convolution operator. For studying discrete operators in a halfspace the authors have developed a certain analytic technique [9 11]. Below we will try to enlarge this technique for more general situations. 2 General difference equations We consider the equation (Du)(x)=v(x), x R +, (6) where R + = {x R, x >0}. For studying this equation we will use methods of the theory of multidimensional singular integral and pseudo differential equations [3, 6, 12] which are nonusual in the theory of difference equations. Our next goal is to study multidimensional difference equations, and this onedimensional variant is a model for considering other complicated situations. This approach is based on the classical Riemann boundary value problem and the theory of onedimensional singular integral equations [13 15]. 2.1 Background The first step is the following. We will use the theory of socalled paired equations [15]of the type (ap + + bp )U = V (7) in the space L 2 (R), where a, b are convolution operators with corresponding functions a(x), b(x), x R, P ± are projectors on the halfaxis R ±.Moreprecisely, (ap + U)(x)= 0 a(x y)u(y) dy, 0 (bp U)(x)= b(x y)u(y) dy. Applying the Fourier transformto (7) we obtain[12] the following onedimensional singular integral equation [13 15]: ã(ξ)(pũ)(ξ)+ b(ξ)(qũ)(ξ)=ṽ (ξ), (8) where P, Q are two projectors related to the Hilbert transform (Hu)(x)=v.p. 1 + u(y) πi x y dy, P = 1 (I + H), 2 Q = 1 (I H). 2
4 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 4 of 9 Equation (8) is closely related to the Riemann boundary value problem [13, 14] forupper and lower halfplanes. We now recall the statement of the problem: finding a pair of functions ± (ξ) which admit an analytic continuation on upper (C + )andlower(c ) halfplanes in the complex plane C and of which their boundary values on R satisfy the following linear relation: + (ξ)=g(ξ) (ξ)+g(ξ), (9) where G(ξ), g(ξ)aregivenfunctionson R. There is a onetoone correspondence between the Riemann boundary value problem (9) and the singular integral equation (8), and G(ξ)=ã 1 (ξ) b(ξ), Ṽ (ξ)=ã 1 (ξ)g(ξ). 2.2 Topological barrier We suppose that the symbol G(ξ) is a continuous nonvanishing function on the compactification Ṙ (G(ξ) 0, ξ Ṙ)and Ind G 1 2π d arg G(t) = 0. (10) The last condition (10), is necessary and sufficient for the unique solvability of the problem (9) inthespacel 2 (R) [13, 14]. Moreover, the unique solution of the problem (9) can be constructed with a help of the Cauchy type integral + (t)=g + (t)p ( G 1 + (t)g(t)), (t)= G 1 (t)q( G 1 + (t)g(t)), where G ± are factors of a factorization for the G(t)(seebelow), G + (t)=exp ( P ( ln G(t) )), G (t)=exp ( Q ( ln G(t) )). 2.3 Difference equations on a halfaxis Equation (6) can easily be transformedinto (7) in thefollowingway. Since therighthand side in (6) isdefinedonr + only we will continue v(x) onthewholer so that this continuation lf L 2 (R). Further we will rename the unknown function u + (x) and define the function u (x)=(lf )(x) (Du + )(x). Thus, we have the following equation: (Du + )(x)+u (x)=(lf )(x), x R, (11) which holds for the whole space R. AftertheFouriertransformwehave σ (ξ)ũ + (ξ)+ũ (ξ)= lv(ξ), where σ (ξ) iscalledasymbol of the operator D.
5 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 5 of 9 To describe a solving technique for (11)we recall the following (cf. [13, 14]). Definition A factorization for an elliptic symbol is called its representation if it is in the form σ (ξ)=σ + (ξ) σ (ξ), where the factors σ +, σ admit an analytic continuation into the upper and lower complex halfplanes C ±,andσ ±1 ± L (R). Example 1 Let us consider the Cauchy type integral 1 + u(t) dt (z), 2πi z t z = x ± iy. It is well known this construction plays a crucial role for a decomposition L 2 (R)ontwo orthogonal subspaces, namely L 2 (R)=A + (R) A (R), where A ± (R) consists of functions admitting an analytic continuation onto C ±. The boundary values of the integral (z) satisfy the PlemeljSokhotskii formulas [13, 14], and thus the projectors P and Q are corresponding projectors on the spaces of analytic functions [15]. Thesimpleexampleweneedis exp(u) =exp(pu) exp(qu). Theorem 2 Let σ (ξ) C(Ṙ), Ind σ =0.Then (6) has unique solution in the space L 2 (R + ) for arbitrary righthand side v L 2 (R + ), and its Fourier transform is given by the formula ũ(ξ)= 1 2 σ 1 (ξ) lv(ξ)+ σ + 1(ξ) σ 1 v.p. (η) lv(η) dη. 2πi ξ η Proof We have σ + (ξ)ũ + (ξ)+σ 1 (ξ)ũ (ξ)=σ 1 (ξ) lv(ξ). Further, since σ 1(ξ) lv(ξ) L 2 (R) we decompose it into two summands σ 1 (ξ) lv(ξ)=p ( σ 1 (ξ) lv(ξ) ) + Q ( σ 1 (ξ) lv(ξ) ) and write σ + (ξ)ũ + (ξ) P ( σ 1 (ξ) lv(ξ) ) = Q ( σ 1 (ξ) lv(ξ) ) σ 1 (ξ)ũ (ξ). The lefthand side of the last quality belongs to the space A + (R), but the righthand side belongs to A (R), consequently these are zeros. Thus, σ + (ξ)ũ + (ξ) P ( σ 1 (ξ) lv(ξ) ) =0
6 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 6 of 9 and ũ + (ξ)=σ 1 + (ξ)p( σ 1 (ξ) lv(ξ) ), (12) or in the complete form ũ + (ξ)= 1 2 σ 1 (ξ) lv(ξ)+ σ + 1(ξ) σ 1 v.p. (η) lv(η) dη. 2πi ξ η Remark 1 This result does not depend on the continuation lv. LetusdenotebyM ± (x) the inverse Fourier images of the functions σ ± 1 (ξ). Indeed, (12) leads to the following construction: u + (x)= = ( ) M + (x y) M (y t)(lv)(t) dt dy M + (x y) 0 ( 0 ) M (y t)v(t) dt dy. Remark 2 The condition σ (ξ) C(Ṙ) is not a strong restriction. Such symbols exist for example in the case that σ (ξ) isrepresentedbyafinitesum,andβ k Q. Thenσ (ξ) isa continuous periodic function. 3 General solution Since σ (ξ) C(Ṙ), and Ind σ is an integer, we consider the case æ Ind σ N in this section. Theorem 3 Let Ind σ N. Then a general solution of (6) in the Fourier image can be written in the form ũ + (ξ)=σ 1 + (ξ)ω æ (ξ)p ( σ 1 (ξ) lv(ξ) ) +(ξ i) æ σ 1 + (ξ)p æ 1(ξ), and it depends on æ arbitrary constants. Proof The function ω(ξ)= ξ i ξ + i has the index 1 [13 15], thus the function ω æ (ξ)σ (ξ)= ( ) ξ i æ σ (ξ) ξ + i has the index 0, and we can factorize this function ω æ (ξ)σ (ξ)=σ + (ξ)σ (ξ). Further, we write after (11) ω æ (ξ)ω æ (ξ)σ (ξ)ũ + (ξ)+ũ (ξ)= lv(ξ),
7 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 7 of 9 factorize ω æ (ξ)σ (ξ), and rewrite ω æ (ξ)σ + (ξ)ũ + (ξ)+σ 1 (ξ)ũ (ξ)=σ 1 (ξ) lv(ξ). Taking into account our notations we have σ + (ξ)ũ + (ξ)+ω æ (ξ)σ 1 (ξ)ũ (ξ) = ω æ (ξ)p ( σ 1 (ξ) lv(ξ) ) + ω æ (ξ)q ( σ 1 (ξ) lv(ξ) ), (13) because σ 1 (ξ) lv(ξ)=p ( σ 1 (ξ) lv(ξ) ) + Q ( σ 1 (ξ) lv(ξ) ) and σ + (ξ)ũ + (ξ) ω æ (ξ)p ( σ 1 (ξ) lv(ξ) ) = ω æ (ξ)q ( σ 1 (ξ) lv(ξ) ) ω æ (ξ)σ 1 (ξ)ũ (ξ) (14) and we conclude from the last that the lefthand side and the righthand side also are a polynomial P æ 1 (ξ) oforderæ 1. It follows from the generalized Liouville theorem [13, 14] because the lefthand side has one pole of order æ in C in the point z = i.so,wehave ũ + (ξ)=σ 1 + (ξ)ω æ (ξ)p ( σ 1 (ξ) lv(ξ) ) +(ξ i) æ σ 1 + (ξ)p æ 1(ξ). Remark 3 This result does not depend on the choice of the continuation l. Corollary 4 Let v(x) 0, æ N. Then a general solution of the homogeneous equation (6) is given by the formula ũ + (ξ)=(ξ i) æ σ 1 + (ξ)p æ 1(ξ). 4 Solvability conditions Theorem 5 Let Ind σ N. Then (6) has a solution from L 2 (R + ) iff the following conditions hold: (ξ i) k 1 σ 1 (ξ) lv(ξ) dξ =0, k =1,2,..., æ. Proof We argue as above and use the equality (14); we write it as (ξ i) æ σ + (ξ)ũ + (ξ) (ξ + i) æ P ( σ 1 (ξ) lv(ξ) ) =(ξ + i) æ Q ( σ 1 (ξ) lv(ξ) ) (ξ + i) æ σ 1 (ξ)ũ (ξ). (15) Since we work with L 2 (R) both the lefthand side and the righthand side are equal to zero at infinity, hence these are zeros, and ( ) ξ i æ ũ + (ξ)=σ + 1 (ξ) P ( σ 1 ξ + i (ξ) lv(ξ) ).
8 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 8 of 9 But there is some inaccuracy. Indeed, this solution belongs to the space A + (R), but more exactly it belongs to its subspace A k + (R). This subspace consists of functions analytic in C + with zeros of the order æ in the point z = i. To obtain a solution from L 2 (R + ) we need some corrections in the last formula. Since the operator P is related to the Cauchy type integral we will use certain decomposition formulas for this integral (see also [12 14]). Let us denote σ 1(ξ) lv(ξ) g(ξ) and consider the following integral: g(η) dη, z = ξ + iτ C. z η Using a simple formula for a kernel 1 z η = æ k=1 (η i) k 1 (z i) k + (η i) æ (z i) æ (z η) we obtain the following decomposition: g(η) dη z η = æ k=1 (z i) k So, we have a following property. If the conditions (η i) k 1 (η i) æ g(η) dη g(η) dη + (z i) æ (z η). (η i) k 1 g(η) dη =0, k =1,2,..., æ, hold, then we obtain g(η) dη z η =(z i)æ (η i) æ g(η) dη. z η Hence the boundary values on R for the lefthand side and the righthand one are equal, and thus P ( g(ξ) ) =(ξ i) æ P ( (ξ i) æ g(ξ) ). Substituting the last formula into the solution formula we write ũ + (ξ)=σ 1 + (ξ)(ξ + i)æ P ( (ξ i) æ σ 1 (ξ) lv(ξ) ). 5 Conclusion It seems this approach to difference equations may be useful for studying the case that the variable x is a discrete one.we have some experience in the theory of discrete equations [9 11], and we hope that we can be successful in this situation also. Moreover, in our opinion the developed methods might be applicable for multidimensional difference equations. Competing interests The authors declare that they have no competing interests.
9 Vasilyev and Vasilyev Advances in Difference Equations (2015) 2015:211 Page 9 of 9 Authors contributions All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript. Author details 1 Department of Mathematical Analysis, National Research Belgorod State University, Studencheskaya 14/1, Belgorod, , Russia. 2 Chair of Pure Mathematics, Lipetsk State Technical University, Moskovskaya 30, Lipetsk, , Russia. Acknowledgements The authors are very grateful to the anonymous referees for their valuable suggestions. This work is supported by Russian Fund of Basic Research and government of Lipetsk region of Russia, project No a. Received: 4 March 2015 Accepted: 17 June 2015 References 1. MilneThomson, LM: The Calculus of Finite Differences. Chelsea, New York (1981) 2. Jordan, C: Calculus of Finite Differences. Chelsea, New York (1950) 3. Vasil ev, VB: Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Boundary Value Problems in NonSmooth Domains. Kluwer Academic, Dordrecht (2000) 4. Vasilyev, VB: General boundary value problems for pseudo differential equations and related difference equations. Adv. Differ. Equ. 2013, 289 (2013) 5. Vasilyev, VB: On some difference equations of first order. Tatra Mt. Math. Publ. 54, (2013) 6. Mikhlin, SG, Prößdorf, S: Singular Integral Operators. Akademie Verlag, Berlin (1986) 7. Sobolev, SL: Cubature Formulas and Modern Analysis: An Introduction. Gordon & Breach, Montreux (1992) 8. Dudgeon, DE, Mersereau, RM: Multidimensional Digital Signal Processing. Prentice Hall, Englewood Cliffs (1984) 9. Vasilyev, AV, Vasilyev, VB: Discrete singular operators and equations in a halfspace. Azerb. J. Math. 3(1), (2013) 10. Vasilyev, AV, Vasilyev, VB: Discrete singular integrals in a halfspace. In: Current Trends in Analysis and Its Applications, Proc. 9th Congress, Krakow, Poland, August 2013, pp Birkhäuser, Basel (2015) 11. Vasilyev, AV, Vasilyev, VB: Periodic Riemann problem and discrete convolution equations. Differ. Equ. 51(5), (2015) 12. Eskin, G: Boundary Value Problems for Elliptic Pseudodifferential Equations. Am. Math. Soc., Providence (1981) 13. Gakhov, FD: Boundary Value Problems. Dover, New York (1981) 14. Muskhelishvili, NI: Singular Integral Equations. NorthHolland, Amsterdam (1976) 15. Gokhberg, I, Krupnik, N: Introduction to the Theory of OneDimensional Singular Integral Equations. Birkhäuser, Basel (2010)
Calderón problem. Mikko Salo
Calderón problem Lecture notes, Spring 2008 Mikko Salo Department of Mathematics and Statistics University of Helsinki Contents Chapter 1. Introduction 1 Chapter 2. Multiple Fourier series 5 2.1. Fourier
More informationA UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS. Dedicated to Constantine Dafermos on the occasion of his 70 th birthday
A UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS GIOVANNI ALBERTI, STEFANO BIANCHINI, AND GIANLUCA CRIPPA Dedicated to Constantine Dafermos on the occasion of his 7 th birthday Abstract.
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationChapter 5. Banach Spaces
9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on
More informationControllability and Observability of Partial Differential Equations: Some results and open problems
Controllability and Observability of Partial Differential Equations: Some results and open problems Enrique ZUAZUA Departamento de Matemáticas Universidad Autónoma 2849 Madrid. Spain. enrique.zuazua@uam.es
More informationSampling 50 Years After Shannon
Sampling 50 Years After Shannon MICHAEL UNSER, FELLOW, IEEE This paper presents an account of the current state of sampling, 50 years after Shannon s formulation of the sampling theorem. The emphasis is
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationSampling Signals With Finite Rate of Innovation
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 50, NO 6, JUNE 2002 1417 Sampling Signals With Finite Rate of Innovation Martin Vetterli, Fellow, IEEE, Pina Marziliano, and Thierry Blu, Member, IEEE Abstract
More informationAn Introduction to the NavierStokes InitialBoundary Value Problem
An Introduction to the NavierStokes InitialBoundary Value Problem Giovanni P. Galdi Department of Mechanical Engineering University of Pittsburgh, USA Rechts auf zwei hohen Felsen befinden sich Schlösser,
More informationTHE KADISONSINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT
THE ADISONSINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT PETER G. CASAZZA, MATTHEW FICUS, JANET C. TREMAIN, ERIC WEBER Abstract. We will show that the famous, intractible 1959 adisonsinger
More informationMatthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka
Matthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka Version.5 Matthias Beck A First Course in Complex Analysis Version.5 Gerald Marchesi Department of Mathematics Department of Mathematical Sciences
More informationDecoding by Linear Programming
Decoding by Linear Programming Emmanuel Candes and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics, University of California, Los Angeles, CA 90095
More informationLevel sets and extrema of random processes and fields. JeanMarc Azaïs Mario Wschebor
Level sets and extrema of random processes and fields. JeanMarc Azaïs Mario Wschebor Université de Toulouse UPS CNRS : Institut de Mathématiques Laboratoire de Statistiques et Probabilités 118 Route de
More informationHow many numbers there are?
How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz Contents 1 What are numbers 2 1.1 Natural
More informationArithmetics on number systems with irrational bases
Arithmetics on number systems with irrational bases P. Ambrož C. Frougny Z. Masáková E. Pelantová Abstract For irrational β > 1 we consider the set Fin(β) of real numbers for which x has a finite number
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationONEDIMENSIONAL RANDOM WALKS 1. SIMPLE RANDOM WALK
ONEDIMENSIONAL RANDOM WALKS 1. SIMPLE RANDOM WALK Definition 1. A random walk on the integers with step distribution F and initial state x is a sequence S n of random variables whose increments are independent,
More informationScattered Node Compact Finite DifferenceType Formulas Generated from Radial Basis Functions
Scattered Node Compact Finite DifferenceType Formulas Generated from Radial Basis Functions Grady B. Wright a,,, Bengt Fornberg b,2 a Department of Mathematics, University of Utah, Salt Lake City, UT
More informationLecture notes on the Stefan problem
Lecture notes on the Stefan problem Daniele Andreucci Dipartimento di Metodi e Modelli Matematici Università di Roma La Sapienza via Antonio Scarpa 16 161 Roma, Italy andreucci@dmmm.uniroma1.it Introduction
More informationLectures on Cauchy Problem
Lectures on Cauchy Problem By Sigeru Mizohata Notes by M.K. Venkatesha Murthy and B.V. Singbal No part of this book may be reproduced in any form by print, microfilm or any other means without written
More informationHyperbolic Groups Lecture Notes
Hyperbolic Groups Lecture Notes James Howie HeriotWatt University, Edinburgh EH14 4AS Scotland J.Howie@ma.hw.ac.uk Introduction This is a revised and slightly expanded set of notes based on a course of
More informationBoundary value problems in complex analysis I
Boletín de la Asociación Matemática Venezolana, Vol. XII, No. (2005) 65 Boundary value problems in complex analysis I Heinrich Begehr Abstract A systematic investigation of basic boundary value problems
More informationOrthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
More informationSpaceTime Approach to NonRelativistic Quantum Mechanics
R. P. Feynman, Rev. of Mod. Phys., 20, 367 1948 SpaceTime Approach to NonRelativistic Quantum Mechanics R.P. Feynman Cornell University, Ithaca, New York Reprinted in Quantum Electrodynamics, edited
More informationSupportVector Networks
Machine Learning, 20, 273297 (1995) 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. SupportVector Networks CORINNA CORTES VLADIMIR VAPNIK AT&T Bell Labs., Holmdel, NJ 07733,
More informationAn Introductory Course in Elementary Number Theory. Wissam Raji
An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory
More informationNUMBER RINGS. P. Stevenhagen
NUMBER RINGS P. Stevenhagen Universiteit Leiden 2012 Date of this online version: September 24, 2012 Please send any comments on this text to psh@math.leidenuniv.nl. Mail address of the author: P. Stevenhagen
More informationDerived categories of coherent sheaves and equivalences between them
Russian Math. Surveys 58:3 511 591 Uspekhi Mat. Nauk 58:3 89 172 c 2003 RAS(DoM) and LMS DOI 10.1070/RM2003v058n03ABEH000629 To the blessed memory of Andrei Nikolaevich Tyurin Derived categories of coherent
More informationControl and Nonlinearity
Control and Nonlinearity JeanMichel Coron American Mathematical Society Control and Nonlinearity Mathematical Surveys and Monographs Volume 136 Control and Nonlinearity JeanMichel Coron American Mathematical
More informationANALYTIC NUMBER THEORY LECTURE NOTES BASED ON DAVENPORT S BOOK
ANALYTIC NUMBER THEORY LECTURE NOTES BASED ON DAVENPORT S BOOK ANDREAS STRÖMBERGSSON These lecture notes follow to a large extent Davenport s book [5], but with things reordered and often expanded. The
More information