PLT 132 Plant Propagation Seeds part 2: Plant Breeding Principles D. W. Still

Size: px
Start display at page:

Download "PLT 132 Plant Propagation Seeds part 2: Plant Breeding Principles D. W. Still"

Transcription

1 PLT 132 Plant Propagation Seeds part 2: Plant Breeding Principles D. W. Still

2 Seeds Part 2 1. Virtually all agronomic and horticultural crops are produced by plant breeding. 2. Plant breeding defined: the application of techniques for exploiting the genetic potential of plants. 3. Domestication of plants and animals began about 13,000 ybp 4. Most plants and animals were domesticated thousands of years ago; very few have been domesticated today.

3 Malus sieversii Improving disease resistance of American domestic apples

4 Whole genome duplication Analysis of the apple genome suggests that a whole-genome duplication event in an ancestral genome, followed by loss of a single chromosome, led to the 17-chromosome karyotype of the cultivated apple. Expansion of particular gene families may have served as a reservoir for new gene functions, underlying the genetic basis of apple-specific traits.

5 Domesticated apple (Malus x domestica) originated in Central Asia

6

7

8 Seeds Part 2 What traits can we breed for? - almost anything - qualitative traits PP, Pp pp

9 Seeds Part 2 What traits can we breed for? - quantitative traits Yield Skin color

10 Seeds Part 2 Terms: 1. Heterogeneous 2. Homogeneous 3. Homozygous 4. Heterozygous Heterogeneous mixed phenotypes / genotypes Homogeneous identical phenotypes / genotypes Homozygous Fixed alleles / genotypes Heterozygous mixed alleles / genotypes

11 Seeds Part 2 What traits can we breed for? However, it is not always clear how many genes control a trait

12 What were the targets of selection? 1. Assemble genetic materials 2. Obtain phenotype 3. Obtain genotype 4. Determine associations b/t 2 and 3 5. Identify quantitative trait loci (QTL)

13 Step 2: Obtain phenotype

14 Step 5: Determine associations between phenotype and genotype Association of SNP haplotype to skeletal size (chromosome 15) IGF1 SNP controls growth (insulin-like growth factor 1) common to all small breeds and nearly absent from giant breeds Sutter et al. 2007, Science

15 Step 5: Determine associations between phenotype and genotype Association of SNP haplotype to skeletal size (chromosome 15) Few genes, large effects Sutter et al. 2007, Science

16 Genetic consequences of domestication / breeding 1. Genetic bottlenecks 2. Founder effects 3. Genetic drift 4. Inbreeding depression 5. Loss of allelic diversity 6. Improved performance!

17 Seeds Part 2 1. Rice is a staple food for much of the world. 2. Two recent major changes: a) Increased harvest index b) heterosis by plant breeding 3. Challenges: a) Insect and disease pressure (~$1.5 billion loss) b) Fertilizer applications (~30% of N P use; ~10% arable land) c) Water shortage (Ag = 70% total water; rice = 70% of that) d) Quality e) Sustainability

18 Seeds Part 2 Modern breeding = Traditional breeding methods aided by molecular biology Fig. 1. Schematic representation of combinations of genes and approaches for the development of GSR Zhang, Qifa (2007) Proc. Natl. Acad. Sci. USA 104, Copyright 2007 by the National Academy of Sciences

19 Seeds Part 2 Fig. 2. Pest resistance of Minghui 63 individually harboring five different Bt genes Control Control Control Control Control Control Zhang, Qifa (2007) Proc. Natl. Acad. Sci. USA 104, Copyright 2007 by the National Academy of Sciences

20 Seeds Part 2 Breeding Systems A.) Self pollination Tomato Lettuce

21 Seeds Part 2 Breeding Systems B.) Cross pollination (outcrossing species) Sorghum Cactus Male whitish yellow; Female (male sterile red) photo Gary Odvody TAMU

22 Seeds Part 2 Terms: 6. Fixing of alleles 7. True-breeding 8. Effect of self pollination (Table 5-1) 9. Hybrid vigor = heterosis 10. Perfect flower

23 Effect of self-pollination (inbreeding) Within a population, the amount of heterozygous loci decreases by 50% each generation. Generation Self gen % homozygosity % heterozygosity Alleles become fixed F1 S F2 S F3 S F4 S F5 S F6 S F7 S F8 S F9 S

24 Seeds Part 2 Terms: 11. Perfect Flower 12. Monoecious (maize, cucurbits) 13. Dioecious (asparagus, pistacio) 14. Self incompatibility a) Sporophytic incompatibility b) Gametophytic incompatibility Perfect flower - Flower possessing both stamens and pistils Monoecious flower - Plant possessing both male and female flowers on the same plant Dioecious unisex flowers on different plants

25 Terms: 11. Perfect Flower 12. Monoecious (maize, cucurbits) 13. Dioecious (asparagus, pistacio) 14. Self incompatibility a) Sporophytic incompatibility b) Gametophytic incompatibility Seeds Part 2

26 Seeds Part 2 Pollen is distinct - the shape of each species is unique and chemically distinct Electron micrographs of pollen

27 Seeds Part 2 Mature pollen grains Determinants of compatibility are located on the outside layer, called exine

28 Mature pollen grain germination

29 Scanning electron micrograph of a pollinated stigma showing two interacting cell types, papillar cells (P) and pollen grains (Po). Nasrallah and Nasrallah, Plant Cell 5:

30 Gametophytic Self Incompatibility (GSI) Pollen is S1S3 or S3S4 Stigma/style is S1S2 The incompatibility of pollen is determined by the haploid (n) pollen genotype at the S locus. (rejection sites are on stigma and style) (Solonaceae, Rosacea, Fabaceae, Poaceae, Onagracea)

31 Sporophytic Self Incompatibility (SSI) Pollen is S1S3 or S3S4 S1 & S3 or S3 & S4 exine on pollen grains Stigma/style is S1S2 The incompatibility of pollen is determined by the dipoloid (2n) S genotype of the parent plant. (rejection sites are on papillar surface) (Brassicaceae, Asteraceae, Convolvulacea, Betulaceae, etc.)

32 Seeds Part 2 Terms: 15. Breeding line 16. Inbred line 17. Hybrid 18. Transgenic line 19. Landrace 20. Variety, cultivar 21. Specific epithet 22. Ecotype 23. Cline 24. Clone 25. Provenance Woody plant propagation 15. Breeding line maintained for use in a breeding program 16.Inbred line created by repeated selfing 17.Hybrid offspring from genetically distinct parents 18. Transgenic line developed from plants with recombinant DNA 19. Landrace primitive varieties (before breeding) 20. Variety lowest recognized taxonomic level (similar phenotypes) 21. Specific epithet Genus + species; e.g., Lactuca sativa 22. Ecotype population adapted to a geographic area 23. Cline continuous variation across geographic area 24. Clone genetically identical; vegetative, apomitic 25. Provenance climatic / geographic area from which seed originated

33 Examples

34 Plant breeding can be facilitated by using marker-assisted selection (MAS)

35 Marker assisted selection 1. Identify polymorphism between parents 2. Obtain genotype from parents and progeny 3. Obtain phenotype from parents and progeny 4. Establish association between genotype and phenotype 5. Future selections can be based on DNA-based markers

36 Confirmation of hybrids using polymorphic DNA markers P1 Polymorphic P2 F 2 F 2

37 Ecotypes, clines, and provenances 1. Adaptation to environment has a genetic basis. 2. Revegetation / reclamation work may require local sourcing of seeds for this reason. 3. Example: Echinacea angustifolia collected along a 1300 mile N-S climatic gradient. 4. Methods: Collect samples, extract DNA, compare DNA among populations, correlate to environmental variables (heat, cold, ppt) Photo by D.W. Still

38 Geographic & Climatic Cline Collection of Echinacea species along a 1500 km cline Still et al., 2006 Annals Bot

39 Geographic & Climatic Cline 1. ND 2. ND 3. SD 4. NE 5. NE 6. NE 7. KS 8. KS 9. OK 10. OK 11. LA CDD cooling degree days HDD heating degree days FFD freeze-free days Still et al., 2006 Annals Bot

40 Still et al., 2006 Annals Bot

41 Geographic & Climatic Cline results in genetic / phenotype cline ND/SD OK Still et al., 2006 Annals Bot

42 Seeds Part 2 Terms: Maintenance of genetic lines / seed trade 1. Genetic drift 2. Roguing 3. Selection by genotype or phenotype 4. Heritability 5. Genotype x environment interaction 6. Qualitative trait 7. Quantitative trait

PLANT BREEDING: CAN METABOLOMICS HELP?

PLANT BREEDING: CAN METABOLOMICS HELP? PLANT BREEDING: CAN METABOLOMICS HELP? Carlos Muñoz Schick Ingeniero Agrónomo, M.S., Ph.D. UNIVERSIDAD DE CHILE Facultad de Ciencias Agronómicas OUTLINE OF THE PRESENTATION Origin of Plant Breeding Domestication

More information

Marker-Assisted Backcrossing. Marker-Assisted Selection. 1. Select donor alleles at markers flanking target gene. Losing the target allele

Marker-Assisted Backcrossing. Marker-Assisted Selection. 1. Select donor alleles at markers flanking target gene. Losing the target allele Marker-Assisted Backcrossing Marker-Assisted Selection CS74 009 Jim Holland Target gene = Recurrent parent allele = Donor parent allele. Select donor allele at markers linked to target gene.. Select recurrent

More information

PIONEER HI-BRED INTERNATIONAL, INC.

PIONEER HI-BRED INTERNATIONAL, INC. D E V E L O P I N G A S U P E R I O R M A I Z E H Y B R I D PIONEER HI-BRED INTERNATIONAL, INC. A HISTORY OF INNOVATION When commercial hybrid maize was first introduced, few people realized its potential

More information

TEXAS A&M PLANT BREEDING BULLETIN

TEXAS A&M PLANT BREEDING BULLETIN TEXAS A&M PLANT BREEDING BULLETIN October 2015 Our Mission: Educate and develop Plant Breeders worldwide Our Vision: Alleviate hunger and poverty through genetic improvement of plants A group of 54 graduate

More information

"Fingerprinting" Vegetables DNA-based Marker Assisted Selection

Fingerprinting Vegetables DNA-based Marker Assisted Selection "Fingerprinting" Vegetables DNA-based Marker Assisted Selection Faster, Cheaper, More Reliable; These are some of the goals that vegetable breeders at seed companies and public institutions desire for

More information

(1) Hybrid Cucumber Seed Production. Samuel Contreras Departamento de Ciencias Vegetales Pontificia Universidad Católica de Chile Santiago, Chile

(1) Hybrid Cucumber Seed Production. Samuel Contreras Departamento de Ciencias Vegetales Pontificia Universidad Católica de Chile Santiago, Chile (1) Hybrid Cucumber Seed Production Samuel Contreras Departamento de Ciencias Vegetales Pontificia Universidad Católica de Chile Santiago, Chile (2) Introduction Cucurbitaceae family The Cucurbitaceae

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

TARGETED INTROGRESSION OF COTTON FIBER QUALITY QTLs USING MOLECULAR MARKERS

TARGETED INTROGRESSION OF COTTON FIBER QUALITY QTLs USING MOLECULAR MARKERS TARGETED INTROGRESSION OF COTTON FIBER QUALITY QTLs USING MOLECULAR MARKERS J.-M. Lacape, T.-B. Nguyen, B. Hau, and M. Giband CIRAD-CA, Programme Coton, TA 70/03, Avenue Agropolis, 34398 Montpellier Cede

More information

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

Basic Principles of Forensic Molecular Biology and Genetics. Population Genetics

Basic Principles of Forensic Molecular Biology and Genetics. Population Genetics Basic Principles of Forensic Molecular Biology and Genetics Population Genetics Significance of a Match What is the significance of: a fiber match? a hair match? a glass match? a DNA match? Meaning of

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

Research Roadmap for the Future. National Grape and Wine Initiative March 2013

Research Roadmap for the Future. National Grape and Wine Initiative March 2013 Research Roadmap for the Future National Grape and Wine Initiative March 2013 Objective of Today s Meeting Our mission drives the roadmap Our Mission Drive research to maximize productivity, sustainability

More information

PLANT EVOLUTION DISPLAY Handout

PLANT EVOLUTION DISPLAY Handout PLANT EVOLUTION DISPLAY Handout Name: TA and Section time Welcome to UCSC Greenhouses. This sheet explains a few botanical facts about plant reproduction that will help you through the display and handout.

More information

Plant Reproduction. 2. Evolutionarily, floral parts are modified A. stems B. leaves C. roots D. stolons E. suberins

Plant Reproduction. 2. Evolutionarily, floral parts are modified A. stems B. leaves C. roots D. stolons E. suberins Plant Reproduction 1. Angiosperms use temporary reproductive structures that are not present in any other group of plants. These structures are called A. cones B. carpels C. receptacles D. flowers E. seeds

More information

MOLECULAR MARKERS AND THEIR APPLICATIONS IN CEREALS BREEDING

MOLECULAR MARKERS AND THEIR APPLICATIONS IN CEREALS BREEDING MOLECULAR MARKERS AND THEIR APPLICATIONS IN CEREALS BREEDING Viktor Korzun Lochow-Petkus GmbH, Grimsehlstr.24, 37574 Einbeck, Germany korzun@lochow-petkus.de Summary The development of molecular techniques

More information

GENOMIC SELECTION: THE FUTURE OF MARKER ASSISTED SELECTION AND ANIMAL BREEDING

GENOMIC SELECTION: THE FUTURE OF MARKER ASSISTED SELECTION AND ANIMAL BREEDING GENOMIC SELECTION: THE FUTURE OF MARKER ASSISTED SELECTION AND ANIMAL BREEDING Theo Meuwissen Institute for Animal Science and Aquaculture, Box 5025, 1432 Ås, Norway, theo.meuwissen@ihf.nlh.no Summary

More information

Genetics for the Novice

Genetics for the Novice Genetics for the Novice by Carol Barbee Wait! Don't leave yet. I know that for many breeders any article with the word genetics in the title causes an immediate negative reaction. Either they quickly turn

More information

Basics of Marker Assisted Selection

Basics of Marker Assisted Selection asics of Marker ssisted Selection Chapter 15 asics of Marker ssisted Selection Julius van der Werf, Department of nimal Science rian Kinghorn, Twynam Chair of nimal reeding Technologies University of New

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Section 24 1 Reproduction With Cones and Flowers (pages 609 616)

Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Chapter 24 Reproduction of Seed Plants Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Key Concepts What are the reproductive structures of gymnosperms and angiosperms? How does pollination

More information

Chapter 38: Angiosperm Reproduction and Biotechnology

Chapter 38: Angiosperm Reproduction and Biotechnology Name Period Concept 38.1 Flowers, double fertilization, and fruits are unique features of the angiosperm life cycle This may be a good time for you to go back to Chapter 29 and review alternation of generation

More information

Biology 213 Angiosperms. Introduction

Biology 213 Angiosperms. Introduction Biology 213 Angiosperms Introduction The flowering plants, the angiosperms, are the most recent plants to evolve and quickly became the dominant plant life on this planet. They are also the most diverse

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

Introductory genetics for veterinary students

Introductory genetics for veterinary students Introductory genetics for veterinary students Michel Georges Introduction 1 References Genetics Analysis of Genes and Genomes 7 th edition. Hartl & Jones Molecular Biology of the Cell 5 th edition. Alberts

More information

4th GRADE MINIMUM CONTENTS-NATURAL SCIENCE UNIT 11: PLANTS

4th GRADE MINIMUM CONTENTS-NATURAL SCIENCE UNIT 11: PLANTS PLANT BITS 4th GRADE MINIMUM CONTENTS-NATURAL SCIENCE UNIT 11: PLANTS There are four main parts to a plant. They are the root, stem, leaf and flower. Each part has an important task to do in the life of

More information

Section 24 1 Reproduction With Cones and Flowers (pages 609 616)

Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Chapter 24 Reproduction of Seed Plants Section 24 1 Reproduction With Cones and Flowers (pages 609 616) This section describes the reproductive structures of gymnosperms and angiosperms. It also explains

More information

Dissect a Flower. Huntington Library, Art Collections, and Botanical Gardens

Dissect a Flower. Huntington Library, Art Collections, and Botanical Gardens Huntington Library, Art Collections, and Botanical Gardens Dissect a Flower Overview Students dissect an Alstroemeria or similar flower to familiarize themselves with the basic parts of a flower. They

More information

Lecture 10 Friday, March 20, 2009

Lecture 10 Friday, March 20, 2009 Lecture 10 Friday, March 20, 2009 Reproductive isolating mechanisms Prezygotic barriers: Anything that prevents mating and fertilization is a prezygotic mechanism. Habitat isolation, behavioral isolation,

More information

Evolution (18%) 11 Items Sample Test Prep Questions

Evolution (18%) 11 Items Sample Test Prep Questions Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

10B Plant Systems Guided Practice

10B Plant Systems Guided Practice 10B Plant Systems Guided Practice Reproduction Station 1 1. Observe Plant A. Locate the following parts of the flower: stamen, stigma, style, ovary. 2. Draw and label the parts of a flower (listed above)

More information

Overview International course Plant Breeding

Overview International course Plant Breeding Overview International course Plant Breeding 2016-2018 The course and modules The international course Plant Breeding consists of 6 modules of 1 week in the period October 2016 until March 2018. In between

More information

(51) Int Cl.: C12N 15/82 (2006.01) A01H 5/08 (2006.01) (56) References cited:

(51) Int Cl.: C12N 15/82 (2006.01) A01H 5/08 (2006.01) (56) References cited: (19) TEPZZ _668 B_T (11) EP 2 166 833 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 14..1 Bulletin 1/42 (21) Application number: 087609.3 (22) Date

More information

Tech Prep Articulation

Tech Prep Articulation Tech Prep Articulation Agriculture & Natural Resources Tech Prep Education: Tech Prep education in Missouri is an articulated two-year secondary and two or more year post-secondary education program which:

More information

PRINCIPLES OF POPULATION GENETICS

PRINCIPLES OF POPULATION GENETICS PRINCIPLES OF POPULATION GENETICS FOURTH EDITION Daniel L. Hartl Harvard University Andrew G. Clark Cornell University UniversitSts- und Landesbibliothek Darmstadt Bibliothek Biologie Sinauer Associates,

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Seeds introduction and selection

Seeds introduction and selection Women in Agriculture Training manual for female extension educators Seeds introduction and selection Introduction Part of the fun of growing your own vegetables is choosing from the thousands of varieties

More information

Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth?

Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth? 1 Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth? File: F12-07_pollen Modified from E. Moctezuma & others for BSCI

More information

(1-p) 2. p(1-p) From the table, frequency of DpyUnc = ¼ (p^2) = #DpyUnc = p^2 = 0.0004 ¼(1-p)^2 + ½(1-p)p + ¼(p^2) #Dpy + #DpyUnc

(1-p) 2. p(1-p) From the table, frequency of DpyUnc = ¼ (p^2) = #DpyUnc = p^2 = 0.0004 ¼(1-p)^2 + ½(1-p)p + ¼(p^2) #Dpy + #DpyUnc Advanced genetics Kornfeld problem set_key 1A (5 points) Brenner employed 2-factor and 3-factor crosses with the mutants isolated from his screen, and visually assayed for recombination events between

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

I. Genes found on the same chromosome = linked genes

I. Genes found on the same chromosome = linked genes Genetic recombination in Eukaryotes: crossing over, part 1 I. Genes found on the same chromosome = linked genes II. III. Linkage and crossing over Crossing over & chromosome mapping I. Genes found on the

More information

DNA MARKERS FOR ASEASONALITY AND MILK PRODUCTION IN SHEEP. R. G. Mateescu and M.L. Thonney

DNA MARKERS FOR ASEASONALITY AND MILK PRODUCTION IN SHEEP. R. G. Mateescu and M.L. Thonney DNA MARKERS FOR ASEASONALITY AND MILK PRODUCTION IN SHEEP Introduction R. G. Mateescu and M.L. Thonney Department of Animal Science Cornell University Ithaca, New York Knowledge about genetic markers linked

More information

1 General introduction. 1.1 Cauliflower importance

1 General introduction. 1.1 Cauliflower importance 1 General introduction 1.1 Cauliflower importance Cauliflower (Brassica oleracea var. botrytis) is a cool season crop and a member of the Brassicaceae family. It is thought that cauliflower originated

More information

Practice Problems 4. (a) 19. (b) 36. (c) 17

Practice Problems 4. (a) 19. (b) 36. (c) 17 Chapter 10 Practice Problems Practice Problems 4 1. The diploid chromosome number in a variety of chrysanthemum is 18. What would you call varieties with the following chromosome numbers? (a) 19 (b) 36

More information

Plant and Soil Science I

Plant and Soil Science I Plant and Soil Science I Levels: Grades 9-12 Units of Credit: 1.00 CIP Code: 02.0411 Core Code: 30-02-00-00-080 Prerequisite: None Skill Test: # 140 COURSE DESCRIPTION Students will develop knowledge and

More information

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently. Name Section 7.014 Problem Set 5 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68-120 by 5:00pm on Friday

More information

Genomic Selection in. Applied Training Workshop, Sterling. Hans Daetwyler, The Roslin Institute and R(D)SVS

Genomic Selection in. Applied Training Workshop, Sterling. Hans Daetwyler, The Roslin Institute and R(D)SVS Genomic Selection in Dairy Cattle AQUAGENOME Applied Training Workshop, Sterling Hans Daetwyler, The Roslin Institute and R(D)SVS Dairy introduction Overview Traditional breeding Genomic selection Advantages

More information

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B.

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B. ch04 Student: 1. Which of the following does not inactivate an X chromosome? A. Mammals B. Drosophila C. C. elegans D. Humans 2. Who originally identified a highly condensed structure in the interphase

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

Practice Questions 1: Evolution

Practice Questions 1: Evolution Practice Questions 1: Evolution 1. Which concept is best illustrated in the flowchart below? A. natural selection B. genetic manipulation C. dynamic equilibrium D. material cycles 2. The diagram below

More information

Population Genetics and Multifactorial Inheritance 2002

Population Genetics and Multifactorial Inheritance 2002 Population Genetics and Multifactorial Inheritance 2002 Consanguinity Genetic drift Founder effect Selection Mutation rate Polymorphism Balanced polymorphism Hardy-Weinberg Equilibrium Hardy-Weinberg Equilibrium

More information

UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES Ex parte XAVIER DELANNAY, DENNIS J. DUNPHY, FERNANDO GAITAIN-GAITAIN, and THOMAS P. JURY Appeal 2010-002236

More information

FAQs: Gene drives - - What is a gene drive?

FAQs: Gene drives - - What is a gene drive? FAQs: Gene drives - - What is a gene drive? During normal sexual reproduction, each of the two versions of a given gene has a 50 percent chance of being inherited by a particular offspring (Fig 1A). Gene

More information

Genetics Test Biology I

Genetics Test Biology I Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.

More information

Appendix J. Genetic Implications of Recent Biotechnologies. Appendix Contents. Introduction

Appendix J. Genetic Implications of Recent Biotechnologies. Appendix Contents. Introduction Genetic Improvement and Crossbreeding in Meat Goats Lessons in Animal Breeding for Goats Bred and Raised for Meat Will R. Getz Fort Valley State University Appendix J. Genetic Implications of Recent Biotechnologies

More information

An example of bioinformatics application on plant breeding projects in Rijk Zwaan

An example of bioinformatics application on plant breeding projects in Rijk Zwaan An example of bioinformatics application on plant breeding projects in Rijk Zwaan Xiangyu Rao 17-08-2012 Introduction of RZ Rijk Zwaan is active worldwide as a vegetable breeding company that focuses on

More information

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3): Unit B: Understanding Animal Reproduction Lesson 4: Understanding Genetics Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives: 1. Explain

More information

Developing capabilities in the seed industry: which direction to follow? Anabel Marin, Lilia Stubrin and Patrick Van Zwanenberg CENIT - Argentina

Developing capabilities in the seed industry: which direction to follow? Anabel Marin, Lilia Stubrin and Patrick Van Zwanenberg CENIT - Argentina Developing capabilities in the seed industry: which direction to follow? Anabel Marin, Lilia Stubrin and Patrick Van Zwanenberg CENIT - Argentina Background Argentina is a world leader in agricultural

More information

Genetic approaches for mobilizing gene bank variation. Prashant Vikram CRP Wheat Representative CIMMYT

Genetic approaches for mobilizing gene bank variation. Prashant Vikram CRP Wheat Representative CIMMYT Genetic approaches for mobilizing gene bank variation Prashant Vikram CRP Wheat Representative CIMMYT Why we need gene bank? Rht1 & 2: Japanese dwarf landrace wheat Daruma Rht 8 : Japanese landrace Akakomugi

More information

Flower Model: Teacher Instructions Sepals Anther Stamens (male) Filament Stigma Pistil Style (female) Ovary Petals sepals petals stamens pistil

Flower Model: Teacher Instructions Sepals Anther Stamens (male) Filament Stigma Pistil Style (female) Ovary Petals sepals petals stamens pistil Flower Model: Teacher Instructions In order to better understand the reproductive cycle of a flower, take a look at some flowers and note the male and female parts. Most flowers are different; some have

More information

Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University

Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University Introduction All functions of an animal are controlled by the enzymes (and other

More information

A Primer of Genome Science THIRD

A Primer of Genome Science THIRD A Primer of Genome Science THIRD EDITION GREG GIBSON-SPENCER V. MUSE North Carolina State University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts USA Contents Preface xi 1 Genome Projects:

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

Deletion in a gene associated with grain size increased yields during rice domestication

Deletion in a gene associated with grain size increased yields during rice domestication Deletion in a gene associated with grain size increased yields during rice domestication Ayahiko Shomura,, Takeshi Izawa 2,, Kaworu Ebana, Takeshi Ebitani 4, Hiromi Kanegae, Saeko Konishi 2 & Masahiro

More information

KENDRIYAVIDYALAYASANGATHAN.CHENNAI REGION CLASS XII COMMONPREBOARD EXAMINATION SUBJECT- BIOLOGY. Section - A

KENDRIYAVIDYALAYASANGATHAN.CHENNAI REGION CLASS XII COMMONPREBOARD EXAMINATION SUBJECT- BIOLOGY. Section - A KENDRIYAVIDYALAYASANGATHAN.CHENNAI REGION CLASS XII COMMONPREBOARD EXAMINATION SUBJECT- BIOLOGY TIMEALLOTED: 3HRS MAX.MARKS:70 General Instructions: All questions are compulsory. This question paper consists

More information

Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms

Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms Introduction Vascular seed-bearing plants, such as gymnosperms (cone-bearing plants) and angiosperms

More information

Plant Growth & Development. Growth Stages. Differences in the Developmental Mechanisms of Plants and Animals. Development

Plant Growth & Development. Growth Stages. Differences in the Developmental Mechanisms of Plants and Animals. Development Plant Growth & Development Plant body is unable to move. To survive and grow, plants must be able to alter its growth, development and physiology. Plants are able to produce complex, yet variable forms

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY GENE CLONING AND RECOMBINANT DNA TECHNOLOGY What is recombinant DNA? DNA from 2 different sources (often from 2 different species) are combined together in vitro. Recombinant DNA forms the basis of cloning.

More information

Determining the Use of Technology in World Food and Fiber Production

Determining the Use of Technology in World Food and Fiber Production Lesson A8 1 Determining the Use of Technology in World Food and Fiber Production Unit A. Mechanical Systems and Technology Problem Area 8. Technology Systems Lesson 1. Determining the Use of Technology

More information

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date Chapter 16 Summary Evolution of Populations 16 1 Genes and Variation Darwin s original ideas can now be understood in genetic terms. Beginning with variation, we now know that traits are controlled by

More information

5 GENETIC LINKAGE AND MAPPING

5 GENETIC LINKAGE AND MAPPING 5 GENETIC LINKAGE AND MAPPING 5.1 Genetic Linkage So far, we have considered traits that are affected by one or two genes, and if there are two genes, we have assumed that they assort independently. However,

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

EFFECT OF MOISTURE STRESS ON COMBINING ABILITY VARIATION FOR BIRD RESISTANCE TRAITS IN SUNFLOWER (HELIANTHUS ANNUUS L.)

EFFECT OF MOISTURE STRESS ON COMBINING ABILITY VARIATION FOR BIRD RESISTANCE TRAITS IN SUNFLOWER (HELIANTHUS ANNUUS L.) Pak. J. Bot., 40(3): 1319-1328, 2008. EFFECT OF MOISTURE STRESS ON COMBINING ABILITY VARIATION FOR BIRD RESISTANCE TRAITS IN SUNFLOWER (HELIANTHUS ANNUUS L.) SAEED RAUF 1*, H.A. SADAQAT 1 AND A. NAVEED

More information

Pedigree Based Analysis using FlexQTL TM software

Pedigree Based Analysis using FlexQTL TM software Pedigree Based Analysis using FlexQTL TM software Marco Bink Eric van de Weg Roeland Voorrips Hans Jansen Outline Current Status: QTL mapping in pedigreed populations IBD probability of founder alleles

More information

DID YOU KNOW that the plants most important to

DID YOU KNOW that the plants most important to Flower Anatomy DID YOU KNOW that the plants most important to agriculture all produce flowers? Every major food crop is a flowering plant. We do not think about the flowers of wheat, rice, corn, and soybeans.

More information

What's in a Flower. Ages: 8 to 12. Contributor: Susan Jaquette, Cornell Plantations volunteer

What's in a Flower. Ages: 8 to 12. Contributor: Susan Jaquette, Cornell Plantations volunteer Ages: 8 to 12 What's in a Flower Contributor: Susan Jauette, Cornell Plantations volunteer Main idea: Flowers are composed of several distinct parts, each of which plays an important role in nature. Objective:

More information

Vascular Plants Bryophytes. Seedless Plants

Vascular Plants Bryophytes. Seedless Plants plant reproduction The Plants Vascular Plants Bryophytes Liverworts, Hornworts, Mosses lack roots and specialized tissues grow in moist, shady areas All have sieve cells and tracheids Seedless Plants Ferns

More information

Project SO1.A5: Genetic improvement of cowpea to overcome biotic stress and drought constraints to grain productivity

Project SO1.A5: Genetic improvement of cowpea to overcome biotic stress and drought constraints to grain productivity Project SO1.A5: Genetic improvement of cowpea to overcome biotic stress and drought constraints to grain productivity 200mm 800mm Project Personnel: USA -- University of California, Riverside, CA-USA Phil

More information

DNA Determines Your Appearance!

DNA Determines Your Appearance! DNA Determines Your Appearance! Summary DNA contains all the information needed to build your body. Did you know that your DNA determines things such as your eye color, hair color, height, and even the

More information

Site-Directed Nucleases and Cisgenesis Maria Fedorova, Ph.D.

Site-Directed Nucleases and Cisgenesis Maria Fedorova, Ph.D. Site-Directed Nucleases and Cisgenesis Maria Fedorova, Ph.D. Regulatory Strategy Lead Enabling Technologies DuPont-Pioneer, USA 1 New Plant Breeding Techniques 2007 New Techniques Working Group established

More information

Phillips McDougall. The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait

Phillips McDougall. The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait R&D Study Phillips McDougall The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait A Consultancy Study for Crop Life International September

More information

GeneCopoeia Genome Editing Tools for Safe Harbor Integration in. Mice and Humans. Ed Davis, Liuqing Qian, Ruiqing li, Junsheng Zhou, and Jinkuo Zhang

GeneCopoeia Genome Editing Tools for Safe Harbor Integration in. Mice and Humans. Ed Davis, Liuqing Qian, Ruiqing li, Junsheng Zhou, and Jinkuo Zhang G e n e C o p o eia TM Expressway to Discovery APPLICATION NOTE Introduction GeneCopoeia Genome Editing Tools for Safe Harbor Integration in Mice and Humans Ed Davis, Liuqing Qian, Ruiqing li, Junsheng

More information

Tomato and Pepper. Samuel Contreras Departamento de Ciencias Vegetales Pontificia Universidad Católica de Chile Santiago Chile scontree@uc.

Tomato and Pepper. Samuel Contreras Departamento de Ciencias Vegetales Pontificia Universidad Católica de Chile Santiago Chile scontree@uc. (1) Hybrid seed production in vegetables (2) Introduction Solanaceae Family Tomato and Pepper Samuel Contreras Departamento de Ciencias Vegetales Pontificia Universidad Católica de Chile Santiago Chile

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

MAGIC design. and other topics. Karl Broman. Biostatistics & Medical Informatics University of Wisconsin Madison

MAGIC design. and other topics. Karl Broman. Biostatistics & Medical Informatics University of Wisconsin Madison MAGIC design and other topics Karl Broman Biostatistics & Medical Informatics University of Wisconsin Madison biostat.wisc.edu/ kbroman github.com/kbroman kbroman.wordpress.com @kwbroman CC founders compgen.unc.edu

More information

Eric Zeldin 1, Jason Fishbach 2, Michael Demchik 3

Eric Zeldin 1, Jason Fishbach 2, Michael Demchik 3 The Application of Clonal Propagation to the Genetic Improvement of the American Hazelnut A Holistic Approach Presented at the 4th Annual Hazelnut Growers Conference, March 2nd, 2013, Eau Claire, WI Eric

More information

Research progress and prospects of kiwifruit breeding

Research progress and prospects of kiwifruit breeding Research progress and prospects of kiwifruit breeding Zhong Caihong Huang Hongwen * Wuhan Botanical Garden,the Chinese Academy of Sciences Sept. 2013 Outline Domestication history Actinidia germplasm resources

More information

Forensic DNA Testing Terminology

Forensic DNA Testing Terminology Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.

More information

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Genetic Technology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An application of using DNA technology to help environmental scientists

More information

CCR Biology - Chapter 9 Practice Test - Summer 2012

CCR Biology - Chapter 9 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible

More information

Patents on Seeds and Animals, Eggs & Bacon, Tomatoes and Melons

Patents on Seeds and Animals, Eggs & Bacon, Tomatoes and Melons Patents on Seeds and Animals, Eggs & Bacon, Tomatoes and Melons November 2011 Dr. Christoph Then www.no-patents-on-seeds.org Info@no-patents-on-seeds.org History of patent law English patent law of 17th

More information