Problem Set 11 Solutions

Size: px
Start display at page:

Download "Problem Set 11 Solutions"

Transcription

1 Chemistry 62 Dr. Jean M. Standard Problem Set 11 Solutions 1. Use the Pauli and Aufbau principles, along with Hund's Rule of maximum multiplicity, to draw orbital energy diagrams for the ground states of the Si and P atoms. Classify the multiplicity of the ground states of the Si and P atoms as singlet, doublet, triplet, or quartet. Using the Pauli and Aufbau Principles, the electron configuration of Si is 1s 2 2s 2 2 p 6 s 2 p 2. The electron configuration of P is 1s 2 2s 2 2p 6 s 2 p. Orbital energy diagrams for Si and P are shown below. Note that using Hund's rule of maximum multiplicity, the electrons in the p orbitals are placed in different orbitals and have the same electron spin. Atomic Energy Levels of Si Atomic Energy Levels of P p p s s E 2p E 2p 2s 2s 1s 1s For Si, placing two electrons in the p set of orbitals leads to two unpaired electrons. Thus, the total spin of the two unpaired electrons is S=1, and therefore the multiplicity is 2S+1 = =. Therefore, the multiplicity of the ground state of Si is a triplet. For P, placing three electrons in the p set of orbitals leads to three unpaired electrons. Thus, the total spin of the three unpaired electrons is S=/2, and therefore the multiplicity is 2S+1 = 2 (/2)+1 = 4. Therefore, the multiplicity of the ground state of P is a quartet.

2 2 2. A researcher employs the following function to represent the spatial part of the ground state wavefunction of the Li atom, ψ( 1,2,) = χ 1s ( 1) χ 1s ( 2) χ 2s ( ). Here, χ 1s or χ 2s is shorthand notation used to refer to the spatial form of the atomic orbital; for example, χ 1s ( 1) = $ & % 1 πa o ' ) ( 1/ 2 e r 1 / a o. Does the form given above for the Li atom correspond to an acceptable spatial wavefunction? Explain. No, it is not an acceptable function. The electron configuration of the ground state of Li is 1s 2 2s 1, so the atomic orbitals used to construct the function are correct. However, for example, the function specifically places electron in the 2s orbital; thus, the function distinguishes between the electrons. An acceptable function would allow for electron1, 2, or being placed in the 2s orbital. Shown below is an example of an acceptable spatial wavefunction that does not distinguish between the electrons: ψ( 1,2,) = 1 [ χ 1s ( 2) χ 1s ( ) χ 2s ( 1) + χ 1s ( 1) χ 1s ( ) χ 2s ( 2) + χ 1s ( 1) χ 1s ( 2) χ 2s ( ) ]. This function places each of the three electrons in the 2s orbital, so it does not distinguish. This example spatial wavefunction happens to be symmetric with respect to interchange of electrons. When constructing the full wavefunction for Li, including spatial and spin components, this symmetric spatial wavefunction would have to be combined with an antisymmetric spin wavefunction so that the overall wavefunction was antisymmetric and satisfied the Pauli Principle.. Determine the possible atomic term symbols arising from a d 1 electron configuration. Since the d 1 electron configuration only involves one outer electron, the total orbital angular momentum quantum number L and total spin angular momentum quantum number S are identical to the orbital and spin angular momentum quantum numbers of the outer electron. Thus, S = s 1 = 1 2 and L = l 1 = 2. The multiplicity 2S+1 is therefore 2 (a doublet) and the term corresponds to a 2 D term. Then, all that is needed is to determine the total angular momentum quantum number J. The total angular momentum quantum number J ranges from L S to L + S. For the 2 D term, L=2 and S = 1 2 leads to J = 2, 5 2. Therefore, the possible term symbols for the d 1 electron configuration are 2 D / 2 and 2 D 5 / 2.

3 4. The following terms arise from a d 8 electron configuration: 1 S, 1 D, 1 G, P, F. Use the first two of Hund's rules to properly order these terms according to energy. Then, determine the term symbols arising from each term, and use the third Hund's rule to complete the energy ordering. Hund's Rules #1 and 2 allow us to order the terms according to increasing energy: F < P < 1 G < 1 D < 1 S. Hund's Rule #1 tells us that both the triplet terms ( P and F ) will be lower in energy than the singlet terms ( 1 S, 1 D, and 1 G ). Hund's Rule #2 tells us that among the triplets, the one with the highest L value will be lowest energy ( F < P ), and similarly among the singlets, the one with the highest L will have the lowest energy ( 1 G < 1 D < 1 S ). Next, the complete term symbols for each term may be determined: For F : L = and S = 1 leads to J = 2,, 4 and term symbols F 2, F, F 4. For P : L = 1 and S = 1 leads to J = 0, 1, 2 and term symbols P 0, P 1, P 2. For 1 G : L = 4 and S = 0 leads to J = 4 and the term symbol 1 G 4. For 1 D : L = 2 and S = 0 leads to J = 2 and the term symbol 1 D 2. For 1 S : L = 0 and S = 0 leads to J = 0 and the term symbol 1 S 0. Finally, Hund's Rule # may be used to order the term symbols with each term. Since the d 8 electron configuration corresponds to a shell that is greater than 1/2 filled, the term symbol with the highest J value will be lowest in energy. Therefore, for the F term, the energy ordering is F 4 < F < F 2, and for the P term, the energy ordering is P 2 < P 1 < P 0. To summarize, the overall energy ordering is therefore: F 4 < F < F 2 < P 2 < P 1 < P 0 < 1 G 4 < 1 D 2 < 1 S 0.

4 4 5. Determine the possible atomic term symbols arising from a 2s 1 2p 1 electron configuration. Give the degeneracy of each term symbol. Use Hund's rules to order the term symbols with respect to increasing energy. Show an energy diagram that includes splittings due to spin-orbit coupling. The spin angular momentum is calculated using s 1 = 1 2 and s 2 = 1 2. The total spin angular momentum S ranges from s 1 s 2 to s 1 + s 2 in steps of 1. Thus, S = ,, , or S = 0, 1. The multiplicity 2S+1 is therefore 1 or (singlet or triplet). The orbital angular momentum is calculated using l 1 = 0 and l 2 = 1. The total orbital angular momentum L ranges from l 1 l 2 to l 1 + l 2 in steps of 1. Therefore, L = 0 1,, 0 +1, or L=1. The state is therefore a P state, and the possible terms are 1 P and P. To complete the term symbols, the total angular momentum J must be determined. The total angular momentum J ranges from L S to L + S. For 1 P : L = 1 and S = 0 leads to J = 1. For P : L = 1 and S = 1 leads to J = 0, 1, 2. The possible term symbols (and their degeneracies) are therefore Term Symbol 1 P 1 P 0 P 1 P 2 Degeneracy (2J+1) 1 5

5 5 5. continued The terms for the 2s 1 2p 1 electron configuration are 1 P and P. Using Hund's rule 1, the P term is lower in energy because it has a higher multiplicity. Spin-orbit coupling will split the P 0, P 1, and P 2 term symbols by a small amount. A sketch of the energy level diagram is shown below. 1 P 1 P 1 E P P o, P 1, P 2 2s 1 2p 1 elec-elec repulsions spin-orbit coupling

6 6 6. Determine the possible atomic term symbols arising from a s 1 d 1 electron configuration. Give the degeneracy of each term symbol. The spin angular momentum is calculated using s 1 = 1 2 and s 2 = 1 2. The total spin angular momentum S ranges from s 1 s 2 to s 1 + s 2 in steps of 1. Thus, S = ,, , or S = 0, 1. The multiplicity 2S+1 is therefore 1 or (singlet or triplet). The orbital angular momentum is calculated using l 1 = 0 and l 2 = 2. The total orbital angular momentum L ranges from l 1 l 2 to l 1 + l 2 in steps of 1. Therefore, L = 0 2,, 0 + 2, or L = 2. The state is therefore a D state, and the possible terms are 1 D and D. To complete the term symbols, the total angular momentum J must be determined. The total angular momentum J ranges from L S to L + S. For 1 D : L = 2 and S = 0 leads to J = 2. For D : L = 2 and S = 1 leads to J = 1, 2,. The possible term symbols (and their degeneracies) are therefore Term Symbol 1 D 2 D 1 D 2 D Degeneracy (2J+1) 5 5 7

7 7 7. Determine the possible atomic term symbols arising from a p 1 d 1 electron configuration. Give the degeneracy of each term symbol. The spin angular momentum is again calculated using s 1 = 1 2 and s 2 = 1 2. The total spin angular momentum S ranges from s 1 s 2 to s 1 + s 2 in steps of 1. Thus, S = ,, , or S = 0, 1. The multiplicity 2S+1 is therefore 1 or (singlet or triplet). The orbital angular momentum is calculated using l 1 = 1 and l 2 = 2. The total orbital angular momentum L ranges from l 1 l 2 to l 1 + l 2 in steps of 1. Therefore, L = 1 2,, 1+ 2, or L = 1, 2,. The states possible are therefore P, D, and F states, and the possible terms are 1 P, P, 1 D, D, 1 F, and F. To complete the term symbols, the total angular momentum J must be determined. The total angular momentum J ranges from L S to L + S. For 1 P : L = 1 and S = 0 leads to J = 1. For P : L = 1 and S = 1 leads to J = 0, 1, 2. For 1 D: L = 2 and S = 0 leads to J = 2. For D : L = 2 and S = 1 leads to J = 1, 2,. For 1 F : L = and S = 0 leads to J =. For F : L = and S = 1 leads to J = 2,, 4.

8 8 7. continued The possible term symbols (and their degeneracies) are therefore Term Symbol Degeneracy (2J+1) 1 P 1 P 0 1 P 1 P 2 1 D 2 D 1 D 2 D 1 F F 2 F F Classify the following atomic transitions as allowed or not. If a transition is not allowed, indicate which selection rule is violated. a.) P 2 1 D 2 Not allowed. This transition corresponds to ΔS= 1, which violates the ΔS=0 selection rule. Otherwise, it corresponds to ΔL=1 and ΔJ=0, which are both OK. b.) 2 P /2 2 S 1/2 Allowed. This transition has ΔS=0, ΔL= 1, and ΔJ= 1, which are all allowed by the selection rules. c.) D 2 F 2 Allowed. This transition has ΔS=0, ΔL=1, and ΔJ=0, which are all allowed by the selection rules.

CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW

CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW Quantum mechanics can account for the periodic structure of the elements, by any measure a major conceptual accomplishment for any theory. Although accurate

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital

More information

KEY. Honors Chemistry Assignment Sheet- Unit 3

KEY. Honors Chemistry Assignment Sheet- Unit 3 KEY Honors Chemistry Assignment Sheet- Unit 3 Extra Learning Objectives (beyond regular chem.): 1. Related to electron configurations: a. Be able to write orbital notations for s, p, & d block elements.

More information

electron configuration

electron configuration electron configuration Electron Configuration Knowing the arrangement of electrons in atoms will better help you understand chemical reactivity and predict an atom s reaction behavior. We know when n=1

More information

Atomic Structure Ron Robertson

Atomic Structure Ron Robertson Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2011 206 Introduction/Aims Symmetries play a central role in particle physics;

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num . ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

More information

Section 11.3 Atomic Orbitals Objectives

Section 11.3 Atomic Orbitals Objectives Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location

More information

Electron Arrangements

Electron Arrangements Section 3.4 Electron Arrangements Objectives Express the arrangement of electrons in atoms using electron configurations and Lewis valence electron dot structures New Vocabulary Heisenberg uncertainty

More information

Ch. 9 - Electron Organization. The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7]

Ch. 9 - Electron Organization. The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7] Ch. 9 - Electron Organization The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7] Predicting ion charges from electron configurations. CHEM 100 F07 1 Organization of Electrons

More information

Lesson 3. Chemical Bonding. Molecular Orbital Theory

Lesson 3. Chemical Bonding. Molecular Orbital Theory Lesson 3 Chemical Bonding Molecular Orbital Theory 1 Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system is lowered when the two atoms approach

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

Lecture 12 Atomic structure

Lecture 12 Atomic structure Lecture 12 Atomic structure Atomic structure: background Our studies of hydrogen-like atoms revealed that the spectrum of the Hamiltonian, Ĥ 0 = ˆp2 2m 1 Ze 2 4πɛ 0 r is characterized by large n 2 -fold

More information

Multi-electron atoms

Multi-electron atoms Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

LCAO-MO Correlation Diagrams

LCAO-MO Correlation Diagrams LCAO-MO Correlation Diagrams (Linear Combination of Atomic Orbitals to yield Molecular Orbitals) For (Second Row) Homonuclear Diatomic Molecules (X 2 ) - the following LCAO-MO s are generated: LCAO MO

More information

Chapter 10 Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular Momentum and Point Group Symmetries

Chapter 10 Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular Momentum and Point Group Symmetries Chapter 10 Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular Momentum and Point Group Symmetries I. Angular Momentum Symmetry and Strategies for Angular Momentum Coupling

More information

Part I: Principal Energy Levels and Sublevels

Part I: Principal Energy Levels and Sublevels Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found

More information

Section 5 Molecular Electronic Spectroscopy (lecture 9 ish)

Section 5 Molecular Electronic Spectroscopy (lecture 9 ish) Section 5 Molecular Electronic Spectroscopy (lecture 9 ish) Previously: Quantum theory of atoms / molecules Quantum Mechanics Vl Valence Molecular Electronic Spectroscopy Classification of electronic states

More information

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3 Chapter 16 Constituent Quark Model Quarks are fundamental spin- 1 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an anti-quark. There

More information

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

More information

Molecular Models & Lewis Dot Structures

Molecular Models & Lewis Dot Structures Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Exploring spin-orbital models with cold gases loaded in p-bands of zig-zag optical lattice

Exploring spin-orbital models with cold gases loaded in p-bands of zig-zag optical lattice Exploring spin-orbital models with cold gases loaded in p-bands of zig-zag optical lattice Temo Vekua Institut für Theoretische Physik Leibniz Universität Hannover in collaboration with: G. Sun, G. Jackeli

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM 5.6 Physical Chemistry 5 Helium Atom page HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next simplest system: the Helium atom. In this situation,

More information

Department of Physics and Geology The Elements and the Periodic Table

Department of Physics and Geology The Elements and the Periodic Table Department of Physics and Geology The Elements and the Periodic Table Physical Science 1422 Equipment Needed Qty Periodic Table 1 Part 1: Background In 1869 a Russian chemistry professor named Dmitri Mendeleev

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

Question: Do all electrons in the same level have the same energy?

Question: Do all electrons in the same level have the same energy? Question: Do all electrons in the same level have the same energy? From the Shells Activity, one important conclusion we reached based on the first ionization energy experimental data is that electrons

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

ELECTRONIC SPECTROSCOPY Term Symbols: d-count L S J Term

ELECTRONIC SPECTROSCOPY Term Symbols: d-count L S J Term - 1 - ELECTRONIC SPECTROSCOPY Term Symbols: d-count L S J Term d 0 0 0 0 1 S 0 d 1 2 1/2 3/2 2 D 3/2 d 2 3 1 2 3 F 2 d 3 3 3/2 3/2 4 F 3/2 d 4 2 2 0 5 D 0 d 5 0 5/2 0 6 S 0 d 6 2 2 4 5 D 4 d 7 3 3/2 9/2

More information

It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers.

It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers. So, quantum mechanics does not define the path that the electron follows; rather, quantum mechanics works by determining the energy of the electron. Once the energy of an electron is known, the probability

More information

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a.

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a. Assessment Chapter Test A Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a 13. c 14. d 15. c 16. b 17. d 18. a 19. d 20. c 21. d 22. a

More information

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1 AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

More information

Classical Angular Momentum. The Physics of Rotational Motion.

Classical Angular Momentum. The Physics of Rotational Motion. 3. Angular Momentum States. We now employ the vector model to enumerate the possible number of spin angular momentum states for several commonly encountered situations in photochemistry. We shall give

More information

Unit 1, Lesson 03: Answers to Homework 1, 0, +1 2, 1, 0, +1, +2 1, 0, +1 2, 1, 0, +1, +2 3, 2, 1, 0, +1, +2, +3. n = 3 l = 2 m l = -2 m s = -½

Unit 1, Lesson 03: Answers to Homework 1, 0, +1 2, 1, 0, +1, +2 1, 0, +1 2, 1, 0, +1, +2 3, 2, 1, 0, +1, +2, +3. n = 3 l = 2 m l = -2 m s = -½ Unit, Lesson : Answers to Homework Summary: The allowed values for quantum numbers for each principal quantum level n : n l m l m s corresponding sub-level number of orbitals in this sub-level n = s n

More information

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2 Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

More information

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Theory behind NMR: In the late 1940 s, physical chemists originally developed NMR spectroscopy to study different properties of atomic nuclei,

More information

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction

More information

Atomic structure. Chapter 9

Atomic structure. Chapter 9 Chapter 9 Atomic structure Previously, we have seen that the quantum mechanics of atomic hydrogen, and hydrogen-like atoms is characterized by a large degeneracy with eigenvalues separating into multiplets

More information

IONISATION ENERGY CONTENTS

IONISATION ENERGY CONTENTS IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

More information

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson Chemistry - Elements Electron Configurations The Periodic Table Ron Robertson History of Chemistry Before 16 th Century Alchemy Attempts (scientific or otherwise) to change cheap metals into gold no real

More information

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole

More information

Ernest Rutherford Atomic Model 1911. Plum Pudding Model J.J. Thomson 1897

Ernest Rutherford Atomic Model 1911. Plum Pudding Model J.J. Thomson 1897 1 The arrangement of electrons in an atom determine most of the chemical properties of that atom. Electrons are what actually do the reacting. Plum Pudding Model J.J. Thomson 1897 Ernest Rutherford Atomic

More information

Student Exploration: Electron Configuration

Student Exploration: Electron Configuration www.explorelearning.com Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund

More information

Fluorescence for high school students

Fluorescence for high school students Fluorescence for high school students Niek G Schultheiss 1,2 and Tom W Kool 3 1 Nikhef, Amsterdam, the Netherlands 2 Zaanlands Lyceum, Zaandam, the Netherlands 3 Van t Hoff Institute for Molecular Sciences,

More information

An Introduction to Hartree-Fock Molecular Orbital Theory

An Introduction to Hartree-Fock Molecular Orbital Theory An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental

More information

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Copyrighted by Gabriel Tang B.Ed., B.Sc. Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested

More information

Student Exploration: Electron Configuration

Student Exploration: Electron Configuration Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund s rule, orbital, Pauli exclusion

More information

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

Name: Worksheet: Electron Configurations. I Heart Chemistry!

Name: Worksheet: Electron Configurations. I Heart Chemistry! 1. Which electron configuration represents an atom in an excited state? 1s 2 2s 2 2p 6 3p 1 1s 2 2s 2 2p 6 3s 2 3p 2 1s 2 2s 2 2p 6 3s 2 3p 1 1s 2 2s 2 2p 6 3s 2 Worksheet: Electron Configurations Name:

More information

Section 3: Crystal Binding

Section 3: Crystal Binding Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding

Unit 3: Quantum Theory, Periodicity and Chemical Bonding Selected Honour Chemistry Assignment Answers pg. 9 Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 7: The Electronic Structure of Atoms (pg. 240 to 241) 48. The shape of an s-orbital is

More information

Inorganic Chemistry review sheet Exam #1

Inorganic Chemistry review sheet Exam #1 Inorganic hemistry review sheet Exam #1 h. 1 General hemistry review reaction types: A/B, redox., single displacement, elimination, addition, rearrangement and solvolysis types of substances: elements,

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel

More information

APS Science Curriculum Unit Planner

APS Science Curriculum Unit Planner APS Science Curriculum Unit Planner Grade Level/Subject Chemistry Stage 1: Desired Results Enduring Understanding Topic 1: Elements and the Periodic Table: The placement of elements on the periodic table

More information

Unit 2: Chemical Bonding and Organic Chemistry

Unit 2: Chemical Bonding and Organic Chemistry Chemistry AP Unit : Chemical Bonding and Organic Chemistry Unit : Chemical Bonding and Organic Chemistry Chapter 7: Atomic Structure and Periodicity 7.1: Electromagnetic Radiation Electromagnetic (EM)

More information

Magnetism and Magnetic Materials K. Inomata

Magnetism and Magnetic Materials K. Inomata Magnetism and Magnetic Materials K. Inomata 1. Origin of magnetism 1.1 Magnetism of free atoms and ions 1.2 Magnetism for localized electrons 1.3 Itinerant electron magnetism 2. Magnetic properties of

More information

CHEMSITRY NOTES Chapter 13. Electrons in Atoms

CHEMSITRY NOTES Chapter 13. Electrons in Atoms CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.

More information

2. Spin Chemistry and the Vector Model

2. Spin Chemistry and the Vector Model 2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Syllabus for Chem 359: Atomic and Molecular Spectroscopy

Syllabus for Chem 359: Atomic and Molecular Spectroscopy Syllabus for Chem 359: Atomic and Molecular Spectroscopy Instructors: Dr. Reinhard Schweitzer- Stenner and Ms. Siobhan E. Toal Of#ice: Disque 605/Disque 306 Tel: (215) 895-2268 Email: rschweitzer- stenner@drexel.edu

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Most spinning nuclei behave like magnets. Nuclear Magnetic Resonance Spectroscopy asics owever, as opposed to the behavior of a classical magnet the nuclear spin magnetic moment does not always align with

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING A N I N T R O D U T I O N T O... NMR SPETROSOPY NULEAR MAGNETI RESONANE 4 3 1 0 δ Self-study booklet PUBLISING NMR Spectroscopy NULEAR MAGNETI RESONANE SPETROSOPY Origin of Spectra Theory All nuclei possess

More information

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment. Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory To date, we have looked at three different theories of molecular boning. They are the VSEPR Theory (with Lewis Dot Structures), the Valence Bond Theory (with hybridization) and

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy CHEM 334L Organic Chemistry Laboratory Revision 2.0 Proton Nuclear Magnetic Resonance Spectroscopy In this laboratory exercise we will learn how to use the Chemistry Department's Nuclear Magnetic Resonance

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

Chemical misconceptions 115. Ionisation energy. Ionisation energy, structure of the atom, intra-atomic forces.

Chemical misconceptions 115. Ionisation energy. Ionisation energy, structure of the atom, intra-atomic forces. Chemical misconceptions 115 Ionisation energy Target level Topics Rationale This is a diagnostic probe designed for post-16 students studying chemistry. Ionisation energy, structure of the atom, intra-atomic

More information

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.

More information

REVIEW QUESTIONS Chapter 8

REVIEW QUESTIONS Chapter 8 Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum

More information

Electron Configuration Worksheet (and Lots More!!)

Electron Configuration Worksheet (and Lots More!!) Electron Configuration Worksheet (and Lots More!!) Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration

More information

Title: General Chemistry I. Department: Credits: 5 Lecture Hours:4 Lab/Studio Hours:3

Title: General Chemistry I. Department: Credits: 5 Lecture Hours:4 Lab/Studio Hours:3 Code: CHEM-101 Title: General Chemistry I Institute: STEM Department: Chemistry Course Description:The student will investigate the fundamental concepts of chemistry from a theoretical approach and participate

More information

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit: Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there? 1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It

More information

Covalent Bonding & Molecular Orbital Theory

Covalent Bonding & Molecular Orbital Theory Covalent Bonding & Molecular Orbital Theory Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #16 References - MO Theory Molecular orbital theory is covered in many places including most

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16. 129 Lewis Structures G. N. Lewis hypothesized that electron pair bonds between unlike elements in the second (and sometimes the third) row occurred in a way that electrons were shared such that each element

More information

Abstract. 1. Introduction

Abstract. 1. Introduction An Alternate Graphical Representation of Periodic table of Chemical Elements Mohd Abubakr 1, Microsoft India (R&D) Pvt. Ltd, Hyderabad, India. mohdabubakr@hotmail.com Abstract Periodic table of chemical

More information

Stephen Hill National High Magnetic Field Lab Florida State University, Physics. nationalmaglab.org

Stephen Hill National High Magnetic Field Lab Florida State University, Physics. nationalmaglab.org Stephen Hill National High Magnetic Field Lab Florida State University, Physics nationalmaglab.org Outline of talk: What is Electron Magnetic Resonance (EMR) Spin-spin interactions and structure measurements

More information

Fluctuating moments in one and two dimensional Mott insulators

Fluctuating moments in one and two dimensional Mott insulators Fluctuating moments in one and two dimensional Mott insulators PhD Thesis Miklós Lajkó PhD supervisor: Karlo Penc Budapest University of Technology and Economics 2013 Acknowledgements I thank my supervisor,

More information

Partition Function and Thermodynamic Quantities for the H 2 17 O and H 2 18 O Isotopologues of Water

Partition Function and Thermodynamic Quantities for the H 2 17 O and H 2 18 O Isotopologues of Water Partition Function and Thermodynamic Quantities for the H 2 17 O and H 2 18 O Isotopologues of Water By Daniel Underwood PHASM101 Msci Astrophysics Project Supervisor: Prof. Jonathan Tennyson 31 st March

More information

SAMPLE EXAM 2 FALL 2012 SOLUTIONS Chemistry 11, Fall 2007 Exam II November 15, 2007 7:30 PM 9:30 PM

SAMPLE EXAM 2 FALL 2012 SOLUTIONS Chemistry 11, Fall 2007 Exam II November 15, 2007 7:30 PM 9:30 PM Name: SOLUTIONS III, IV, and V Section (circle): 1 2 3 4 5 SAMPLE EXAM 2 FALL 2012 SOLUTIONS Chemistry 11, Fall 2007 Exam II November 15, 2007 7:30 PM 9:30 PM As always, full credit will not be given unless

More information

Chapter 8 Atomic Electronic Configurations and Periodicity

Chapter 8 Atomic Electronic Configurations and Periodicity Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from

More information

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Objectives After studying this lecture, you will be able to Calculate the bond lengths of diatomics from the value

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Questions - Chapter 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following represents an impossible set of

More information

XPS Spectra. The XPS technique is used to investigate the chemistry at the surface of a sample.

XPS Spectra. The XPS technique is used to investigate the chemistry at the surface of a sample. XPS Spectra The XPS technique is used to investigate the chemistry at the surface of a sample. Figure 1: Schematic of an XPS instrument. The basic mechanism behind an XPS instrument is illustrated in Figure

More information

ELECTRON SPIN RESONANCE Last Revised: July 2007

ELECTRON SPIN RESONANCE Last Revised: July 2007 QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron

More information