Section 5 Molecular Electronic Spectroscopy (lecture 9 ish)

Size: px
Start display at page:

Download "Section 5 Molecular Electronic Spectroscopy (lecture 9 ish)"

Transcription

1 Section 5 Molecular Electronic Spectroscopy (lecture 9 ish) Previously: Quantum theory of atoms / molecules Quantum Mechanics Vl Valence Molecular Electronic Spectroscopy Classification of electronic states Molecular terms Electronic transitions: The Franck Condon Principle Franck Condon factors Vibrational structure: Birge Sponer extrapolation Rotational structure: Bandheads Introduction to photoelectron spectroscopy

2 Molecular Energy Levels i.e., typically ΔE el >> ΔE vib >> ΔE rot Different electronic states (electronic arrangements) ΔE x cm 1 Transitions at λ nm Vis UV 10 5 x 10 3 cm μm μm infrared GHz ( cm 1 ) 10 cm 1 mm microwave

3 5.1 A quick resume The Born Oppenheimer Approximation : Ψ ( r,q, θ ) = ψ ( r ) ψ ( Q ) ψ ( θ tot el vib ) But this assumes there is a single ψ el for a given electronic configuration. In fact, we should solve the electronic Hamiltonian at each nuclear configuration: Ĥ ψ ( r,r el el ) = Eel ( R) ψel ( r,r) Make orbital approximation for >1 electron: ψ φ ( 1) φ ( ) φ ( 3 el a b c ) = Ar HS Na HF V(R) In 1 dimension R AB Potential energy curves Potential energy surfaces

4 5. Classifying molecular electronic states Diatomic Term Symbols: Classify according to angular momentum around the internuclear axis, λ. λ is analogous to m l in atoms: e.g., a p orbital has l = 1, m l = 0, ±1 Two p orbital systems yield σ and π molecular orbitals; p z (m l =0) combine to yield σ, σ (λ=0) + p x,y (m l = ±1) combine to yield π, π (λ=±1) +

5 5. Molecular term symbols See Valence notes HT year Electronic terms are classified according to their overall angular momentum on the internuclear axis, Λ: i 1 3 i Λ = λ = λ + λ + λ + By analogy with atoms we use term symbols: Spin multiplicity = S+1 (S is the total spin quantum number for the molecule) Gives Λ,, according to: Σ for Λ = 0 Π for Λ = ±1 Δ for Λ = ± Π 3/ Π Spin orbit levels Ω = Λ + Σ Projection of S on internuclear axis

6 5.3 Additional Symmetry Labels For homonuclear diatomics (or symmetric linear molecules, eg e.g., CO ) it is convenient to label molecular orbitals and terms according to symmetry (g,u) with respect to inversion through the centre of symmetry. Ungerade: u Anti symmetric Gerade: g symmetric n.b.: g g = g u u = g g u = u g = u For Sigma terms we denote the symmetry (+/ ) with respect to reflection in a plane containing the internuclear axis. See Valence notes HT year

7 5.4 Example molecular term symbols I. N ground state (sσ g ) (sσ u ) (pπ u ) 4 (pσ g ) Λ= 0 therefore a Σ term S = 0 (all electrons paired), hence a singlet term 1 Σ + g II. NO ground state (sσ) (sσ ) (pσ) (pπ) 4 (pπ ) 1 n.b. No g, u symmetry because non symmetrical Λ= ±1 therefore a Π term S = 1/ (one unpaired electron), hence a doublet term Π Giving rise to Π and 1/ Π 3 / pσ pπ pπ pσ sσ sσ

8 5.5 Example molecular term symbols III. O ground state (sσ g ) (sσ u ) (pσ g ) (pπ u ) 4 (pπ g ) Λ= 0, or ± therefore Σ, Δ terms arise S = 0, or 1 singlets and triplets g g = g all terms gerade expect Σ Σ Σ Σ Δ Δ g g g g g g But this neglects the Pauli Principle. In singlet states, ψ spin is antisymmetric. Hence these can only be paired with symmetric ψ space, i.e., g, + states. Likewise triplet states must be paired with g, states. Σ Σ Δ allviolate Pauli andthusdonotexist do not g g g Σ Σ Δ Do exist, of which the triplet state is the lowest in energy g g g (spin correlation) Again, this is only a consideration for multiply occupied (but not full) orbitals

9 5.6 Molecular electronic states Σ, Δ and Σ states allarise arise g g g from the lowest electronic configuration... (pπ u ) 4 (pπ g ) Each is deeply bound and supports vibrational levels. Each can be modelled by a Morse potential energy function Other electronic configurations give rise to additional electronic states correlating with the same or different dissociation products. Transitions between different states are accompanied by vibrational band structure.

10 5.7 Electronic Spectroscopy R = ψ * μψ ˆ dτ = ψ μˆ ψ Consider our old friend fi dthe Transition Dipole Moment μ ˆ = q rˆ i i Within the B O approximation, Ψ tot = ψ el (r)ψ vib (R) = = ( ) ( ) ( ) ( ) R ψψ μψψ ˆ e ψ r ψ R rψ r ψ R d r dr 1 el vib el vib el vib el vib ( ) ( ) ( ) ( ) R e ψ r rψ r dr ψ R ψ R dr 1 el el vib vib = i Electronic transition moment Vibrational overlap Transition intensity ( ) ( ) ( ψ ψ ) ( ψ ( ) ψ ( ) ) R d d 1 r r r r R R R el el vib vib ΔΛ = 0, ±1 ΔS = 0andΔΣ = 0 g u (where g, u exist) + + ; (for Σ Σ transitions) Franck Condon factor (square of the vibrational overlap integral)

11 5.8 The Franck Condon Principle Assumption: electronic transitions take place on such a short timescale that the nuclei remain frozen (R unchanged) during the transition. We talk of vertical transitions between potential energy curves. There is no selection rule governing the allowed vibrational changes accompanying an electronic transition. Instead, the probability of undertaking a v v transition is governed by Franck Condon factors (the overlap of the two vibrational wavefunctions).

12 5.9 Vibrational Structure: Franck Condon factors The overlap ofthe vibrational wavefunctions is governed by the nature of the electronic states involved I. If the bonding character of the two states tt is similar: il II. If the bonding character of the two states is very different: V 0 R e R e R e R e Best overlap (v =0) (v =0) Short progression Best overlap (v > 0) (v =0) Long progression

13 5.10 Determining dissociation energies In some cases, Franck Condon overlap extends above the dissociation limit and excited state dissociation energies are measured directly. When this is not the case but several vibrational levels are excited it is possible to extrapolate to find the dissociation limit. Recall, Morse oscillator: G v = v ω v ω x e e e v = 013,,,, v ma x dg v dv 1 ( v ) = ω ω x + e e e Which, at the dissociation limit (v+½) max becomes zero dg v ω 1 e 1 = 0= ω ω x = G ( v + ) v = D = e e e max max dv ω x v max e 4 e e ω e e ω x e

14 5.11 Determining dissociation energies: Birge Sponer Extrapolation Alternatively, the experimental dissociation energy is the sum of all the vibrational energy level spacings, ΔG v+1/ : D =Δ G + Δ G + Δ G / 3/ 5/ Plot ΔG v+1/ as a function of (v+½) Areaundertheplotyields D 0 Most such plots deviate from linearity at high v asthemorsepotential functionbecomesan increasingly poor representation of the real potential. Several vibrational energy levels are required for such a fit and so they are generally only used for vibrational bands in electronic spectra.

15 5.1 Rotational Structure in Electronic Spectra Total term values: E T G F e v hc = + + J Transition wavenumbers: ν = ( T T ) + ( G G ) + ( F F ) e e v v Electronic Vibrational Rotational Transition transition transition FCF (ΔJ rules) Example: 1 Σ 1 Σ ΔJ = ±1, leads to P(J) and R(J) branches as in vib rot spectra [See section 4.7] J J However, much larger changes in rotational constants, of both sign, are now possible band heads are commonly observed in electronic spectra, and may occur in either branch.

16 5.13 Band Heads in Electronic Spectra ( J ) = ν ( )( 1 ) ( )( 1 ) el + + J + + J + vib ( J ) = ν ( + ) J + ( ) J el vib R B B B B P B B B B (1) () In vibration rotation spectra, B generally decreases slightly with v leading to bunching of lines in the R branch. In electronic transitions, the change in <R > can be large depending on the bonding character of the two orbitals between which the electron moves. dν Band heads occur when lines in a branch coalesce, i.e., = 0 d J dν d In the R branch: = ( B + B ) + ( B B )( J + 1) dν d J ( J 1) J In the P branch: = ( B + B ) + J ( B B ) J head head = = ( B + B ) ( B B ) ( B + B ) ( B B )

17 5.13 Band Heads in Electronic Spectra Large change in R e in transition with result that B <<B rotational levels more closely spaced in upper state. Bandhead in the R branch: increased spacing in P branch CuH 1 Σ 1 Σ transition

18 5.14 Q branches The ΔJ = ±1 selection rule arises from conservation of angular momentum and symmetry. However, if additional angular momenta are present we can also observe Q branches (ΔJ = 0 transitions). Q J = ν + B B J J + 1 ( ) ( ) ( ) This angular momentum could be electronic: e.g., 1 Π 1 Σ transition (or indeed any transition involving ΔΛ > 0)......or vibrational if the transition involves a degenerate vibrational mode (e.g., a bending mode of a linear molecule) el vib AlH 1 Π 1 Σ + emission spectrum showing Q branch

19 5.15 Photoelectron Spectroscopy (gas phase) Photoionization is the limiting case of exciting a single electron to higher electronic states. Photoelectron spectroscopy, which records the ionization energies for removal of electrons, provides a measure of the energy of molecular orbitals. K.E. e Ionic states 1) Excite with fixed λ high above the I.E. (e.g., with a He(I) lamp at 1. ev) ) Measure K.E. of ejected photoelectrons hν Adiabatic ionization energy As energy is conserved: hν = I + E M+ + K.E. e + K.E. M+ where I is the adiabatic ionization energy and E M+ is the internal energy of the ion. K.E. e >> K.E. M+ 0 K.E. e = hν I E M+

20 5.16 Photoelectron Spectroscopy of atoms S S 1/ S 1/ (Spin orbit splitting unresolved here) 1s 1 s 1 P 1/,3/ p s p 1 1s Now resolve spin orbit coupling in ionic i states

21 5.17 Photoelectron Spectroscopy of H With a He(I) lamp only the first ionization threshold of H (1sσ g ) 1 is accessible. H + ionic state Removal of a strongly bonding electron results in a substantial reduction in bonding character (H + dth + more weakly bound than H ) and R + e > R e Long vibrational progression (Franck Condon principle)

22 5.18 Photoelectron Spectroscopy of N B A C 3 bands in He(I) PES: A: (pσ g ) 1 : weakly bonding electron removed, short progression, N + Σ g + B: (pπ u ) 1 : strongly bonding electron removed, longer progression, N + Π u C: (sσ u 1 : weakly anti bonding electron removed, short progression, N + Σ + u) u i.e., band sub structure represents vibrational levels of each ionic state

Molecular-Orbital Theory

Molecular-Orbital Theory Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the

More information

Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy. Abstract

Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy. Abstract Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy S. B. Bayram and M.D. Freamat Miami University, Department of Physics, Oxford, OH 45056 (Dated: July 23, 2012) Abstract We will

More information

3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy

3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy 3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy 3.1. Vibrational coarse structure of electronic spectra. The Born Oppenheimer Approximation introduced in the last chapter can be extended

More information

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Objectives After studying this lecture, you will be able to Calculate the bond lengths of diatomics from the value

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

Application Note AN4

Application Note AN4 TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 2372099A USA Patent App. No. 09/783,711 World Patents Pending INFRARED SPECTROSCOPY Application Note AN4

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Molecular Symmetry 1

Molecular Symmetry 1 Molecular Symmetry 1 I. WHAT IS SYMMETRY AND WHY IT IS IMPORTANT? Some object are more symmetrical than others. A sphere is more symmetrical than a cube because it looks the same after rotation through

More information

Section 6 Raman Scattering (lecture 10)

Section 6 Raman Scattering (lecture 10) Section 6 Scattering (lecture 10) Previously: Quantum theory of atoms / molecules Quantum Mechanics Valence Atomic and Molecular Spectroscopy Scattering The scattering process Elastic (Rayleigh) and inelastic

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

Electron spectroscopy Lecture 1-21. Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy

Electron spectroscopy Lecture 1-21. Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy Electron spectroscopy Lecture 1-21 Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy 653: Electron Spectroscopy urse structure cture 1. Introduction to electron spectroscopies

More information

CHAPTER 13 MOLECULAR SPECTROSCOPY

CHAPTER 13 MOLECULAR SPECTROSCOPY CHAPTER 13 MOLECULAR SPECTROSCOPY Our most detailed knowledge of atomic and molecular structure has been obtained from spectroscopy study of the emission, absorption and scattering of electromagnetic radiation

More information

CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW

CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW Quantum mechanics can account for the periodic structure of the elements, by any measure a major conceptual accomplishment for any theory. Although accurate

More information

LCAO-MO Correlation Diagrams

LCAO-MO Correlation Diagrams LCAO-MO Correlation Diagrams (Linear Combination of Atomic Orbitals to yield Molecular Orbitals) For (Second Row) Homonuclear Diatomic Molecules (X 2 ) - the following LCAO-MO s are generated: LCAO MO

More information

2.1-2 28-30 & 1 & 5 & 1950, 3 & 1971), & II

2.1-2 28-30 & 1 & 5 & 1950, 3 & 1971), & II Lecture 13 Molecular Spectroscopy 1. Long Wavelength Signatures 2. Introduction to Molecular Structure 3. Molecular Levels and Spectra 4. Emission and Absorption References Astro texts: Tielens, Secs 2.1-2

More information

Lesson 3. Chemical Bonding. Molecular Orbital Theory

Lesson 3. Chemical Bonding. Molecular Orbital Theory Lesson 3 Chemical Bonding Molecular Orbital Theory 1 Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system is lowered when the two atoms approach

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM 5.6 Physical Chemistry 5 Helium Atom page HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next simplest system: the Helium atom. In this situation,

More information

13.4 UV/VIS Spectroscopy

13.4 UV/VIS Spectroscopy 13.4 UV/VIS Spectroscopy The spectroscopy which utilizes the ultraviolet (UV) and visible (VIS) range of electromagnetic radiation, is frequently referred to as Electronic Spectroscopy. The term implies

More information

CHEM 101/105 BONDING (continued) Lect-16

CHEM 101/105 BONDING (continued) Lect-16 CHEM 0/05 BONDING (continued) Lect6 A Second covalent bonding theory, MOLECULAR ORBITAL THEORY accounts for covalent bonding by... before looking at MO, return for a moment to the individual unbonded atom

More information

PCV Project: Excitons in Molecular Spectroscopy

PCV Project: Excitons in Molecular Spectroscopy PCV Project: Excitons in Molecular Spectroscopy Introduction The concept of excitons was first introduced by Frenkel (1) in 1931 as a general excitation delocalization mechanism to account for the ability

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2011 206 Introduction/Aims Symmetries play a central role in particle physics;

More information

UV-Vis Vis spectroscopy. Electronic absorption spectroscopy

UV-Vis Vis spectroscopy. Electronic absorption spectroscopy UV-Vis Vis spectroscopy Electronic absorption spectroscopy Absortpion spectroscopy Provide information about presence and absence of unsaturated functional groups Useful adjunct to IR Determination of

More information

2. Molecular stucture/basic

2. Molecular stucture/basic 2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Spectral regions

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

Chapter 10 Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular Momentum and Point Group Symmetries

Chapter 10 Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular Momentum and Point Group Symmetries Chapter 10 Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular Momentum and Point Group Symmetries I. Angular Momentum Symmetry and Strategies for Angular Momentum Coupling

More information

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

More information

Potential Energy Surfaces C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Potential Energy Surfaces C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Potential Energy Surfaces C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Potential Energy Surfaces A potential energy surface is a mathematical function that gives

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

Section 3: Crystal Binding

Section 3: Crystal Binding Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride

More information

Symmetry and group theory

Symmetry and group theory Symmetry and group theory or How to Describe the Shape of a Molecule with two or three letters Natural symmetry in plants Symmetry in animals 1 Symmetry in the human body The platonic solids Symmetry in

More information

4. Molecular spectroscopy. Basel, 2008

4. Molecular spectroscopy. Basel, 2008 4. Molecular spectroscopy Basel, 2008 4. Molecular spectroscopy Contents: 1. Introduction 2. Schema of a spectrometer 3. Quantification of molecules mouvements 4. UV-VIS spectroscopy 5. IR spectroscopy

More information

Inorganic Chemistry review sheet Exam #1

Inorganic Chemistry review sheet Exam #1 Inorganic hemistry review sheet Exam #1 h. 1 General hemistry review reaction types: A/B, redox., single displacement, elimination, addition, rearrangement and solvolysis types of substances: elements,

More information

INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

2. Spin Chemistry and the Vector Model

2. Spin Chemistry and the Vector Model 2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing

More information

5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: Introduction to Spectroscopy 5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

More information

Lecture 1: Basic Concepts on Absorption and Fluorescence

Lecture 1: Basic Concepts on Absorption and Fluorescence Lecture 1: Basic Concepts on Absorption and Fluorescence Nicholas G. James Cell and Molecular Biology University of Hawaii at Manoa, Honolulu The Goal The emission of light after absorption of an outside

More information

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3 Chapter 16 Constituent Quark Model Quarks are fundamental spin- 1 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an anti-quark. There

More information

C 3 axis (z) y- axis

C 3 axis (z) y- axis Point Group Symmetry E It is assumed that the reader has previously learned, in undergraduate inorganic or physical chemistry classes, how symmetry arises in molecular shapes and structures and what symmetry

More information

Molecular Spectroscopy:

Molecular Spectroscopy: : How are some molecular parameters determined? Bond lengths Bond energies What are the practical applications of spectroscopic knowledge? Can molecules (or components thereof) be identified based on differences

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy 1 I. OPTICAL TRANSITIONS IN MOLECULES: INTRODUCTION The origin of spectral lines in molecular spectroscopy is the absorption, emission, and scattering of a proton when the energy

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

fotoelektron-spektroszkópia Rakyta Péter

fotoelektron-spektroszkópia Rakyta Péter Spin-pálya kölcsönhatás grafénben, fotoelektron-spektroszkópia Rakyta Péter EÖTVÖS LORÁND TUDOMÁNYEGYETEM, KOMPLEX RENDSZEREK FIZIKÁJA TANSZÉK 1 Introduction to graphene Sp 2 hybridization p z orbitals

More information

Section 4 Molecular Rotation and Vibration

Section 4 Molecular Rotation and Vibration Section 4 Molecular Rotation and Vibration Chapter 3 Treating the full internal nuclear-motion dynamics of a polyatomic molecule is complicated. It is conventional to examine the rotational movement of

More information

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

CHAPTER 5: MOLECULAR ORBITALS

CHAPTER 5: MOLECULAR ORBITALS Chapter 5 Molecular Orbitals 5 CHAPTER 5: MOLECULAR ORBITALS 5. There are three possible bonding interactions: p z d z p y d yz p x d xz 5. a. Li has a bond order of. (two electrons in a bonding orbital;

More information

Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

More information

electron does not become part of the compound; one electron goes in but two electrons come out.

electron does not become part of the compound; one electron goes in but two electrons come out. Characterization Techniques for Organic Compounds. When we run a reaction in the laboratory or when we isolate a compound from nature, one of our first tasks is to identify the compound that we have obtained.

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information

Lecture 12 Atomic structure

Lecture 12 Atomic structure Lecture 12 Atomic structure Atomic structure: background Our studies of hydrogen-like atoms revealed that the spectrum of the Hamiltonian, Ĥ 0 = ˆp2 2m 1 Ze 2 4πɛ 0 r is characterized by large n 2 -fold

More information

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1 AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

More information

Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

More information

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively. Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of

More information

In part I of this two-part series we present salient. Practical Group Theory and Raman Spectroscopy, Part I: Normal Vibrational Modes

In part I of this two-part series we present salient. Practical Group Theory and Raman Spectroscopy, Part I: Normal Vibrational Modes ELECTRONICALLY REPRINTED FROM FEBRUARY 2014 Molecular Spectroscopy Workbench Practical Group Theory and Raman Spectroscopy, Part I: Normal Vibrational Modes Group theory is an important component for understanding

More information

6. 3. Molecular spectroscopy. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria

6. 3. Molecular spectroscopy. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria 6. 3 Molecular spectroscopy Spectroscopy in its various forms is a technique with wide applications across many disciplines. From qualitative analysis in toxicology through to quantitative measurements

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

How To Understand Electron Spin Resonance

How To Understand Electron Spin Resonance HB 10-24-08 Electron Spin Resonance Lab 1 Electron Spin Resonance Equipment Electron Spin Resonance apparatus, leads, BK oscilloscope, 15 cm ruler for setting coil separation Reading Review the Oscilloscope

More information

An Introduction to Hartree-Fock Molecular Orbital Theory

An Introduction to Hartree-Fock Molecular Orbital Theory An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

The Rotational-Vibrational Spectrum of HCl

The Rotational-Vibrational Spectrum of HCl The Rotational-Vibrational Spectrum of HCl Objective To obtain the rotationally resolved vibrational absorption spectrum of HCI; to determine the rotational constant and rotational-vibrational coupling

More information

Molecular Orbitals. Chapter 5

Molecular Orbitals. Chapter 5 Chapter 5 Molecular rbitals Molecular orbital theory uses group theory to describe the bonding in molecules ; it complements and extends the introductory bonding models in Chapter 3. In molecular orbital

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy 1 Chap 12 Reactions will often give a mixture of products: OH H 2 SO 4 + Major Minor How would the chemist determine which product was formed? Both are cyclopentenes; they are isomers.

More information

CHEM 340 CHEMICAL BONDING - in General Lect-07 IONIC COVALENT METAL COVALENT NETWORK

CHEM 340 CHEMICAL BONDING - in General Lect-07 IONIC COVALENT METAL COVALENT NETWORK CHEM 340 CHEMICAL BONDING in General Lect07 BONDING between atoms classified as belonging to one of the following types: IONIC COVALENT METAL COVALENT NETWORK or each bond type, the valence shell electrons

More information

5.61 Fall 2012 Lecture #19 page 1

5.61 Fall 2012 Lecture #19 page 1 5.6 Fall 0 Lecture #9 page HYDROGEN ATOM Consider an arbitrary potential U(r) that only depends on the distance between two particles from the origin. We can write the Hamiltonian simply ħ + Ur ( ) H =

More information

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy Concept 2 A. Description of light-matter interaction B. Quantitatities in spectroscopy Dipole approximation Rabi oscillations Einstein kinetics in two-level system B. Absorption: quantitative description

More information

Diatomic Molecules. Atom -> Molecule. Diatomic Molecules - Lukas Schott

Diatomic Molecules. Atom -> Molecule. Diatomic Molecules - Lukas Schott Diatomic Molecules Atom -> Molecule Outline 1. Introduction and motivation 1. Overview of natural molecules (and sneak preview) 2. Reasons of interest 2. A Brief History of Molecules 3. Born Oppenheim

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Most spinning nuclei behave like magnets. Nuclear Magnetic Resonance Spectroscopy asics owever, as opposed to the behavior of a classical magnet the nuclear spin magnetic moment does not always align with

More information

Group Theory and Molecular Symmetry

Group Theory and Molecular Symmetry Group Theory and Molecular Symmetry Molecular Symmetry Symmetry Elements and perations Identity element E - Apply E to object and nothing happens. bject is unmoed. Rotation axis C n - Rotation of object

More information

SPECTROSCOPY. Light interacting with matter as an analytical tool

SPECTROSCOPY. Light interacting with matter as an analytical tool SPECTROSCOPY Light interacting with matter as an analytical tool Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations

More information

Hybrid Molecular Orbitals

Hybrid Molecular Orbitals Hybrid Molecular Orbitals Last time you learned how to construct molecule orbital diagrams for simple molecules based on the symmetry of the atomic orbitals. Molecular orbitals extend over the entire molecule

More information

Covalent Bonding & Molecular Orbital Theory

Covalent Bonding & Molecular Orbital Theory Covalent Bonding & Molecular Orbital Theory Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #16 References - MO Theory Molecular orbital theory is covered in many places including most

More information

1. Introduction 2. The H 2 Molecule 3. The CO Molecule 4. Summary. 1. Introduction

1. Introduction 2. The H 2 Molecule 3. The CO Molecule 4. Summary. 1. Introduction Lecture 19. The H 2 and CO Molecules 1. Introduction 2. The H 2 Molecule 3. The CO Molecule 4. Summary References Stahler & Palla, The Formation of Stars, Secs. 5.2-3 Shull & Beckwith, ARAA 20 163 1982

More information

Ultraviolet Spectroscopy

Ultraviolet Spectroscopy Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer

More information

Electron Paramagnetic (Spin) Resonance

Electron Paramagnetic (Spin) Resonance Electron Paramagnetic (Spin) Resonance References: Jardetzky & Jardetzky, Meth. Biochem. Anal. 9, 235. Wertz & Bolton, Electron Spin Resonance Poole, Electron Spin Resonance... Abragam & Bleaney, EPR of

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

The Unshifted Atom-A Simpler Method of Deriving Vibrational Modes of Molecular Symmetries

The Unshifted Atom-A Simpler Method of Deriving Vibrational Modes of Molecular Symmetries Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg. 189-202 The Unshifted

More information

The excitation in Raman spectroscopy is usually. Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization

The excitation in Raman spectroscopy is usually. Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization Electronically reprinted from March 214 Molecular Spectroscopy Workbench Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization In this second installment of a two-part series

More information

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

Spectroscopy and Regions of the Spectrum

Spectroscopy and Regions of the Spectrum Basics 9 Spectroscopy and Regions of the Spectrum Different regions of the spectrum probe different types of energy levels of an atomic or molecular system. It is not uncommon to refer to a spectroscopic

More information

Chemistry Workbook 2: Problems For Exam 2

Chemistry Workbook 2: Problems For Exam 2 Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.

More information

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding Bonding Models Section (Chapter, M&T) Chemical Bonding We will look at three models of bonding: Lewis model Valence Bond model M theory Bonding Models (Lewis) Bonding Models (Lewis) Lewis model of bonding

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information