Proton Nuclear Magnetic Resonance Spectroscopy

Size: px
Start display at page:

Download "Proton Nuclear Magnetic Resonance Spectroscopy"

Transcription

1 CHEM 334L Organic Chemistry Laboratory Revision 2.0 Proton Nuclear Magnetic Resonance Spectroscopy In this laboratory exercise we will learn how to use the Chemistry Department's Nuclear Magnetic Resonance (NMR) spectrometer and how to interpret the spectra obtained using this spectrometer. NMR is one of the most powerful techniques available to the organic chemist for molecular structure determination. Therefore, knowing how to obtain and interpret NMR spectra is of critical importance. The proton at the heart of the Hydrogen atom, like the electron, exhibits behavior reminiscent of a spinning top. And, like the electron, its spin is quantized; limited to the states of Up and Down. In the presence of a strong external magnetic field (H o ), the energy of the two spin states splits; the stronger the field the greater the splitting. A photon whose frequency ( = c/) is such that its energy (E photon ) matches the energy difference (E) between the spin states can be absorbed by the proton and flip the proton's spin: E = E photon = hc / where h is Planck's constant (6.626 x J sec), c is the speed of light (300 x 10 8 m/sec) and is the photon's wavelength. For magnetic fields typically employed in modern NMR spectrometers the spin state splitting is such that these photons will lie in the Radio Frequency region of the electromagnetic spectrum. Absorbance of these photons can then be detected by the spectrometer.

2 P a g e 2 Because the splitting energy depends of the size of the NMR spectrometer's magnet field, the frequency of absorbance will also depend on the machine's magnet "size." Therefore, signal absorbance is generally reported in terms of a machine independent Chemical Shift (). The chemical shift of a signal is defined as the signal's frequency "downfield" from a reference compound's signal (Tetramethylsilane, THS, (CH 3 ) 4 Si), reported in Hertz (Hz) relative to the machine's magnet "size," reported in MegaHertz (MHz): = So, if a proton's signal is 2130 Hz downfield from the TMS signal produced by a 300 MHz NMR, it would have a chemical shift value of: = = 7.1 ppm Chemical shift values have units of parts per milliom (ppm). Now, this would all be rather uninteresting if all the Hydrogen atoms in a molecule had nuclei that absorbed at exactly the same frequency; we would observe a single absorbance peak in the spectrum. However, locally, within a molecule, each Hydrogen atom will be in a different magnetic environment. This is because the electron cloud surrounding a nucleus can act like a small wire loop within which an electric current induced by the external magnetic field establishes a local magnetic field which acts in opposition to the externally established field. This local field "shields" the nucleus from the external field. Slight molecular differences then lead to slight differences in the shielding experienced by different protons within a molecule and this causes their associated NMR signals to exhibit different chemical shifts. For instance, the molecule CH 3 CCl 2 CH 2 Cl has protons in two different "magnetic" environments, CH 3 - and -CH 2 -, and so will produce a spectrum with two signals of slightly different chemical shift. The CH 3 - signal occurs at 2.23 ppm and that of -CH 2 - at 4.00 ppm.

3 P a g e 3 Introduction to Organic Chemistry, 2 nd Ed. Andrew Streitwiesser & Clayton H. Heathcock Notice also that the CH 3 - signal is "larger," has a greater area, than the -CH 2 - signal. This is because it is due to the absorbance of three protons, versus two protons for the -CH 2 - signal. Typical chemical shift values for common proton types are provided below. You should become familiar with these values.

4 P a g e 4 Finally, neighboring protons can influence the "magnetic" environment of each other via a mechanism called spin-spin coupling. Consider two neighboring protons A and B. A will observe that B can occupy its two possible spin states. Whether B is spin Up or Down will influence the spin states of A; the coupling is through the chemical bonds connecting the Hydrogen atoms. One case will cause A to absorb at a slightly higher frequency and the other a slightly lower frequency. This will lead to a splitting of A s absorbance into a doublet. If A couples to two Hydrogen atoms, then the splitting will occur again and a triplet will be observed; etc. The relative intensities of simple multiplets are: Multiplet Intensities Doublet 1:1 Triplet 1:2:1 Quartet 1:3:3:1 Quintet 1:4:6:4:1 Sextet 1:5:10:10:5:1 Septet 1:6:15:20:15:6:1 For example, the molecule CH 3 CH 2 Cl should exhibit two NMR signals. The first is due to the CH 3 - protons and will be split into a triplet due to the neighboring two protons. The other signal, due to the -CH 2 - protons, should be split into a quartet. As seen in the spectrum below, this is in fact the case:

5 P a g e 5 Introduction to Organic Chemistry, 2 nd Ed. Andrew Streitwiesser & Clayton H. Heathcock So, spectral information concerning Chemical Shift and Coupling will provide important clues about the molecular environment of each Hydrogen atom in a molecule. This information is extracted from the spectrum via: The number of NMR signals tells us how many different "types" of protons occur within the molecule. The relative intensity of an NMR signal tells us the relative number of protons of that "type" which occur within the molecule. The chemical shift of an NMR signal tells us the nature of the environment the protons find themselves in within the molecule. The splitting pattern of the NMR signal tells us about the neighboring protons within the molecule. Let us consider the following spectrum from Streitwiesser and Heathcock:

6 P a g e 6 A separate analysis of the compound producing this spectrum indicates it has the chemical formula C 2 H 4 Br 2. The spectrum exhibits two signals, indicating the molecule possesses two types of protons. The integrated areas of the signals are in a 3:1 ratio, indicating one signal (~2.25 ppm) is due to 3 protons and the other (~5.75 ppm) is due to one proton. Thus, we have signals due to CH 3 - and -CH- moieties. The signal due to the CH 3 - moiety is split into a doublet, indicating it neighbors a -CH- moiety. The signal due to the -CH- moiety is split into a quartet, indicating it neighbors a -CH 3 moiety. Thus, the molecular structure that produced this spectrum should be: CH 3 -CHBr 2. In this way, NMR spectra can be used to elucidate molecular structure. The Department's NMR is a Bruker 400 MHz machne, similar to the one pictured below. Sample Insertion Pt. Liquid N 2 Fill Port Liquid N 2 Dewar Surrounding the Electromagnet ( The magnetic field in which the sample is inserted is generated by a 400 MHz superconducting solenoid. The solenoid is cooled in liquid He jacketed with a liquid Nitrogen dewar such that a sufficiently low temperature can be achieved to allow the windings of the solenoid to exhibit superconductivity. This electromagnet is capable of producing very large magnetic fields, thereby increasing the resolution of the instrument significantly. A solution of the sample is placed in a small glass tube and is inserted into the magnet. It is then pulsed with RF radiation and the resulting signal is Fourier Transformed into the type of spectrum we have been examining.

7 P a g e 7 In this lab exercise, you will obtain and examine the spectra of some simple compounds. You will then be asked to correlate the spectral peaks with the Hydrogen atoms in the molecules of these compounds. You should become familiar with how to interpret NMR spectra in terms of molecular structure.

8 P a g e 8 Procedure Your laboratory instructor will demonstrate how to: prepare a sample for NMR analysis. take an NMR spectrum. Special Deuterated solvents are available with which solutions of your compounds can be prepared. The deuterated solvent with then interfere with the proton NMR spectrum minimally. These solvents typically come with the TMS reference already added. You will be expected to master the use of the Department's spectrometer such that you can independently take spectra without assistance. Each person in the laboratory class should take the spectrum of one of the following compounds: Ethyl Amine t-butyl Chloride Ethyl Benzoate p-bromo Toluene 2-Bromo Butane 1,2-Dichloro Ethane Then, as a class, you should collectively assign all the peaks in each spectrum to the Hydrogen atoms of the molecules comprising the compounds.

Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine

Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine Structure Determination: Nuclear Magnetic Resonance CHEM 241 UNIT 5C 1 The Use of NMR Spectroscopy Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbonhydrogen frameworks within

More information

Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

More information

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Introduction NMR is the most powerful tool available for organic structure determination. It is used to study a wide variety of nuclei: 1 H 13 C 15 N 19 F 31 P 2

More information

Determination of Equilibrium Constants using NMR Spectrscopy

Determination of Equilibrium Constants using NMR Spectrscopy CHEM 331L Physical Chemistry Laboratory Revision 1.0 Determination of Equilibrium Constants using NMR Spectrscopy In this laboratory exercise we will measure a chemical equilibrium constant using key proton

More information

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there? 1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel

More information

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING A N I N T R O D U T I O N T O... NMR SPETROSOPY NULEAR MAGNETI RESONANE 4 3 1 0 δ Self-study booklet PUBLISING NMR Spectroscopy NULEAR MAGNETI RESONANE SPETROSOPY Origin of Spectra Theory All nuclei possess

More information

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Theory behind NMR: In the late 1940 s, physical chemists originally developed NMR spectroscopy to study different properties of atomic nuclei,

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

More information

Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy. Nuclear Magnetic Resonance Spectroscopy. 11.1 Nuclear Magnetic Resonance

Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy. Nuclear Magnetic Resonance Spectroscopy. 11.1 Nuclear Magnetic Resonance John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy 11.1 Nuclear Magnetic Resonance Spectroscopy Many atomic nuclei behave

More information

Introduction to Nuclear Magnetic Resonance Spectroscopy

Introduction to Nuclear Magnetic Resonance Spectroscopy Introduction to Nuclear Magnetic Resonance Spectroscopy Dr. Dean L. Olson, NMR Lab Director School of Chemical Sciences University of Illinois Called figures, equations, and tables are from Principles

More information

NMR - Basic principles

NMR - Basic principles NMR - Basic principles Subatomic particles like electrons, protons and neutrons are associated with spin - a fundamental property like charge or mass. In the case of nuclei with even number of protons

More information

Nuclear Magnetic Resonance notes

Nuclear Magnetic Resonance notes Reminder: These notes are meant to supplement, not replace, the laboratory manual. Nuclear Magnetic Resonance notes Nuclear Magnetic Resonance (NMR) is a spectrometric technique which provides information

More information

Signal Manipulation. time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency

Signal Manipulation. time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency NMR Spectroscopy: 3 Signal Manipulation time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency Ref in (MHz) mixer Signal in (MHz) Signal

More information

Chemistry 307 Chapter 10 Nuclear Magnetic Resonance

Chemistry 307 Chapter 10 Nuclear Magnetic Resonance Chemistry 307 Chapter 10 Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) spectroscopy is one of three spectroscopic techniques that are useful tools for determining the structures of organic

More information

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive

More information

Nuclear Shielding and 1. H Chemical Shifts. 1 H NMR Spectroscopy Nuclear Magnetic Resonance

Nuclear Shielding and 1. H Chemical Shifts. 1 H NMR Spectroscopy Nuclear Magnetic Resonance NMR Spectroscopy Nuclear Magnetic Resonance Nuclear Shielding and hemical Shifts What do we mean by "shielding?" What do we mean by "chemical shift?" The electrons surrounding a nucleus affect the effective

More information

Nuclear Magnetic Resonance (NMR) Wade Textbook

Nuclear Magnetic Resonance (NMR) Wade Textbook Nuclear Magnetic Resonance (NMR) Wade Textbook Background Is a nondestructive structural analysis technique Has the same theoretical basis as magnetic resonance imaging (MRI) Referring to MRI as nuclear

More information

Background A nucleus with an odd atomic number or an odd mass number has a nuclear spin that can be observed by NMR spectrometers.

Background A nucleus with an odd atomic number or an odd mass number has a nuclear spin that can be observed by NMR spectrometers. NMR Spectroscopy I Reading: Wade chapter, sections -- -7 Study Problems: -, -7 Key oncepts and Skills: Given an structure, determine which protons are equivalent and which are nonequivalent, predict the

More information

Examination of Proton NMR Spectra

Examination of Proton NMR Spectra Examination of Proton NMR Spectra What to Look For 1) Number of Signals --- indicates how many "different kinds" of protons are present. 2) Positions of the Signals --- indicates something about magnetic

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Chapter 8 Nuclear Magnetic Resonance Spectroscopy http://www.yteach.co.uk/page.php/resources/view_all?id=nuclear_magnetic _resonance_nmr_spectroscopy_spin_spectrometer_spectrum_proton_t_pag e_5&from=search

More information

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm The Hydrogen Atom Is a Magnet Nuclear Magnetic Resonance Spectroscopy (NMR) Proton NMR A hydrogen nucleus can be viewed as a proton, which can be viewed as a spinning charge. As with any spinning charge,

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Applied Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Banwell and McCash Chapter 7 Skoog, Holler Nieman Chapter 19 Atkins, Chapter 18 Relaxation processes We need

More information

For example: (Example is from page 50 of the Thinkbook)

For example: (Example is from page 50 of the Thinkbook) SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

More information

Determination of Equilibrium Constants using NMR Spectroscopy

Determination of Equilibrium Constants using NMR Spectroscopy CHEM 331L Physical Chemistry Laboratory Revision 2.1 Determination of Equilibrium Constants using NMR Spectroscopy In this laboratory exercise we will measure the equilibrium constant for the cis-trans

More information

NMR Spectroscopy of Aromatic Compounds (#1e)

NMR Spectroscopy of Aromatic Compounds (#1e) NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

The Experiment Some nuclei have nuclear magnetic moments; just as importantly, some do not

The Experiment Some nuclei have nuclear magnetic moments; just as importantly, some do not Chemistry 2600 Lecture Notes Chapter 15 Nuclear Magnetic Resonance Spectroscopy Page 1 of 23 Structure Determination in Organic Chemistry: NMR Spectroscopy Three main techniques are used to determine the

More information

Solving Spectroscopy Problems

Solving Spectroscopy Problems Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger

More information

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY E35 SPECTRSCPIC TECNIQUES IN RGANIC CEMISTRY TE TASK To use mass spectrometry and IR, UV/vis and NMR spectroscopy to identify organic compounds. TE SKILLS By the end of the experiment you should be able

More information

NMR Nuclear Magnetic Resonance

NMR Nuclear Magnetic Resonance NMR Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) is an effect whereby magnetic nuclei in a magnetic field absorb and re-emit electromagnetic (EM) energy. This energy is at a specific resonance

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) Calculate the magnetic field that corresponds to the proton resonance frequency of 300.00

More information

Trans Fats. What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain

Trans Fats. What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain Trans Fats What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain fats found in such foodstuffs as vegetable shortenings, margarines, crackers, candies baked goods and many

More information

Introduction to Nuclear Magnetic Resonance (NMR) And. NMR Metabolomics

Introduction to Nuclear Magnetic Resonance (NMR) And. NMR Metabolomics Introduction to Nuclear Magnetic Resonance (NMR) And NMR Metabolomics Acknowledgment: Some slides from talks by Natalia Serkova, Wimal Pathmasiri, and from many internet sources (e.g., U of Oxford, Florida

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Most spinning nuclei behave like magnets. Nuclear Magnetic Resonance Spectroscopy asics owever, as opposed to the behavior of a classical magnet the nuclear spin magnetic moment does not always align with

More information

Experiment #2 NUCLEAR MAGNETIC RESONANCE

Experiment #2 NUCLEAR MAGNETIC RESONANCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry 5.311 Introductory Chemical Experimentation Experiment #2 NUCLEAR MAGNETIC RESONANCE I. Purpose This experiment is designed to introduce the

More information

NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum.

NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum. NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum. Dr. John Jackowski Chair of Science, Head of Chemistry Scotch College Melbourne john.jackowski@scotch.vic.edu.au

More information

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany. NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester

More information

Lecture #7 (2D NMR) Utility of Resonance Assignments

Lecture #7 (2D NMR) Utility of Resonance Assignments Lecture #7 (2D NMR) Basics of multidimensional NMR (2D NMR) 2D NOESY, COSY and TOCSY 2/23/15 Utility of Resonance Assignments Resonance Assignments: Assignment of frequency positions of resonances (peaks)

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy

Nuclear Magnetic Resonance (NMR) Spectroscopy April 28, 2016 Exam #3: Graded exams on Tuesday! Final Exam Tuesday, May 10 th, 10:30 a.m. Room: Votey 207 (tentative) Review Session: Sunday, May 8 th, 4 pm, Kalkin 325 (tentative) Office Hours Next week:

More information

How to Quickly Solve Spectrometry Problems

How to Quickly Solve Spectrometry Problems How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid

More information

Using Nuclear Magnetic Resonance Spectroscopy to Identify an Unknown Compound prepared by Joseph W. LeFevre, SUNY Oswego

Using Nuclear Magnetic Resonance Spectroscopy to Identify an Unknown Compound prepared by Joseph W. LeFevre, SUNY Oswego m o d u l a r l a b o r a t o r y p r o g r a m i n c h e m i s t r y publisher:. A. Neidig organic editor: Joe Jeffers TE 711 Using Nuclear Magnetic Resonance Spectroscopy to Identify an Unknown ompound

More information

1 Introduction to NMR Spectroscopy

1 Introduction to NMR Spectroscopy Introduction to NMR Spectroscopy Tremendous progress has been made in NMR spectroscopy with the introduction of multidimensional NMR spectroscopy and pulse Fourier transform NMR spectroscopy. For a deeper

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

CHE334 Identification of an Unknown Compound By NMR/IR/MS

CHE334 Identification of an Unknown Compound By NMR/IR/MS CHE334 Identification of an Unknown Compound By NMR/IR/MS Purpose The object of this experiment is to determine the structure of an unknown compound using IR, 1 H-NMR, 13 C-NMR and Mass spectroscopy. Infrared

More information

Tetramethylsilane (TMS) Trimethylsilyl d 4. -propionic acid (TMSP) Dioxane. O - Na + Dimethylfura n. Potassium Hydrogen Phthalate. Sodium Maleate CH 3

Tetramethylsilane (TMS) Trimethylsilyl d 4. -propionic acid (TMSP) Dioxane. O - Na + Dimethylfura n. Potassium Hydrogen Phthalate. Sodium Maleate CH 3 Practical Aspects of Quantitative NMR Experiments This discussion presumes that you already have an understanding of the basic theory of NMR. There are a number of issues that should be considered when

More information

Shielding vs. Deshielding:

Shielding vs. Deshielding: Shielding vs. Deshielding: Pre-tutorial: Things we need to know before we start the topic: What does the NMR Chemical shift do? The chemical shift is telling us the strength of the magnetic field that

More information

Proton NMR. One Dimensional H-NMR. Cl S. Common types of NMR experiments: 1-H NMR

Proton NMR. One Dimensional H-NMR. Cl S. Common types of NMR experiments: 1-H NMR Common types of NMR experiments: 1- NMR Proton NMR ne Dimensional -NMR a. Experiment igh field proton NMR (400Mz). single-pulse experiment. b. Spectral nterpretation i. Number of multiplets gives the different

More information

EXPERIMENT Aspirin: Synthesis and NMR Analysis

EXPERIMENT Aspirin: Synthesis and NMR Analysis EXPERIMENT Aspirin: Synthesis and NMR Analysis Introduction: When salicylic acid reacts with acetic anhydride in the presence of an acid catalyst, acetylsalicylic acid, or aspirin, is produced according

More information

How To Understand The Measurement Process

How To Understand The Measurement Process April 24, 2015 Exam #3: Solution Key online now! Graded exams by Monday! Final Exam Monday, May 4 th, 10:30 a.m. Room: Perkins 107 1 A Classical Perspective A classical view will help us understand the

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY CHEM 51LB EXP 1 SPECTRSCPIC METHDS: INFRARED AND NUCLEAR MAGNETIC RESNANCE SPECTRSCPY REACTINS: None TECHNIQUES: IR Spectroscopy, NMR Spectroscopy Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy

More information

Organic Spectroscopy: a Primer

Organic Spectroscopy: a Primer EM 03 rganic Spectroscopy: a Primer INDEX A. Introduction B. Infrared (IR) Spectroscopy 3. Proton Nuclear Magnetic Resonance ( NMR) Spectroscopy A. Introduction The problem of determining the structure

More information

NMR Spectroscopy in Notre Dame

NMR Spectroscopy in Notre Dame NMR Spectroscopy in Notre Dame University of Notre Dame College of Science Department of Chemistry and Biochemistry Nuclear Magnetic Resonance Facility http://www.nd.edu/~nmr Reservation system for spectrometers

More information

0 10 20 30 40 50 60 70 m/z

0 10 20 30 40 50 60 70 m/z Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

Chapter 19 Nuclear Magnetic Resonance Spectroscopy (NMR)

Chapter 19 Nuclear Magnetic Resonance Spectroscopy (NMR) Chapter 19 Nuclear Magnetic Resonance Spectroscopy (NMR) 23 pages 2 weeks worth! Problems : 1, 2, 3, 4, 7, 10, 11, 19, 20, 22, 24, 27, 30, 34, 35 Absorption of radio-frequency E from 4-900 MHz (wavelengths

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

Infrared Spectroscopy 紅 外 線 光 譜 儀

Infrared Spectroscopy 紅 外 線 光 譜 儀 Infrared Spectroscopy 紅 外 線 光 譜 儀 Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample (nondestructive method). The amount of light absorbed

More information

Spin-Lattice Relaxation Times

Spin-Lattice Relaxation Times Spin-Lattice Relaxation Times Reading Assignment: T. D. W. Claridge, High Resolution NMR Techniques in Organic Chemistry, Chapter 2; E. Breitmaier, W. Voelter, Carbon 13 NMR Spectroscopy,3rd Ed., 3.3.2.

More information

INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1 AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

More information

The Unified Scale for Referencing in NMR: New IUPAC Recommendations revised (cgf): 26 July 2010

The Unified Scale for Referencing in NMR: New IUPAC Recommendations revised (cgf): 26 July 2010 The Unified Scale for Referencing in NMR: New IUPAC Recommendations revised (cgf): 26 July 2010 In 2001, IUPAC set new definitions and standards for NMR referencing, 1 and updated these in 2008. 2 A significant

More information

NMR 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 1H NMR

NMR 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 1H NMR A P T E R 13 Spectroscopy A P T E R U T L I N E 13.1 Principles of Molecular Spectroscopy: Electromagnetic Radiation......... 518 13.2 Principles of Molecular Spectroscopy: Quantized Energy States..........

More information

What is NMR? Innovation with Integrity. Nuclear Magnetic Resonance NMR

What is NMR? Innovation with Integrity. Nuclear Magnetic Resonance NMR What is NMR? Nuclear Magnetic Resonance Innovation with Integrity NMR Nuclear Magnetic Resonance You may have heard the term NMR nuclear magnetic resonance but how much do you actually know about it? NMR

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

Experiment 3: Dynamic NMR spectroscopy (Dated: July 7, 2010)

Experiment 3: Dynamic NMR spectroscopy (Dated: July 7, 2010) Experiment 3: Dynamic NMR spectroscopy (Dated: July 7, 2010) I. INTRODUCTION In general spectroscopic experiments are divided into two categories: optical spectroscopy and magnetic spectroscopy. In previous

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

electron does not become part of the compound; one electron goes in but two electrons come out.

electron does not become part of the compound; one electron goes in but two electrons come out. Characterization Techniques for Organic Compounds. When we run a reaction in the laboratory or when we isolate a compound from nature, one of our first tasks is to identify the compound that we have obtained.

More information

Organic Spectroscopy

Organic Spectroscopy 1 Organic Spectroscopy Second Year, Michaelmas term, 8 lectures: Dr TDW Claridge & Prof BG Davis Lectures 1 4 highlight the importance of spectroscopic methods in the structural elucidation of organic

More information

Structural Bioinformatics (C3210) Experimental Methods for Macromolecular Structure Determination

Structural Bioinformatics (C3210) Experimental Methods for Macromolecular Structure Determination Structural Bioinformatics (C3210) Experimental Methods for Macromolecular Structure Determination Introduction Knowing the exact 3D-structure of bio-molecules is essential for any attempt to understand

More information

F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom

F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom Atomic Structure F32 TE STRUCTURE OF ATOMS ATOMS Atoms consist of a number of fundamental particles, the most important are... Mass / kg Charge / C Relative mass Relative Charge PROTON NEUTRON ELECTRON

More information

Chapter 5 Organic Spectrometry

Chapter 5 Organic Spectrometry Chapter 5 Organic Spectrometry from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside orgchembyneuman@yahoo.com

More information

EXPERIMENT Oil of Wintergreen: Synthesis and NMR Analysis

EXPERIMENT Oil of Wintergreen: Synthesis and NMR Analysis EXPERIMENT il of Wintergreen: Synthesis and NMR Analysis Introduction: When salicylic acid reacts with methanol in the presence of an acid catalyst, methyl salicylate, or oil of wintergreen, is produced

More information

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities 7512 J. Org. Chem. 1997, 62, 7512-7515 NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E. Gottlieb,* Vadim Kotlyar, and Abraham Nudelman* Department of Chemistry, Bar-Ilan University,

More information

Suggested solutions for Chapter 3

Suggested solutions for Chapter 3 s for Chapter PRBLEM Assuming that the molecular ion is the base peak (00% abundance) what peaks would appear in the mass spectrum of each of these molecules: (a) C5Br (b) C60 (c) C64Br In cases (a) and

More information

NMR-the basic principles and its use in studies of water/ethanol/mixture

NMR-the basic principles and its use in studies of water/ethanol/mixture NMR-the basic principles and its use in studies of water/ethanol/mixture Ayhan DEMİR, Bachelor Degree Project in Chemistry, 15 ECTS, April 2012, Sweden. Supervisor: Prof. Per Olof WESTLUND, Dr.Tobias SPARRMAN

More information

Nuclear Magnetic Resonance Spectroscopy Notes adapted by Audrey Dell Hammerich, October 3, 2013

Nuclear Magnetic Resonance Spectroscopy Notes adapted by Audrey Dell Hammerich, October 3, 2013 Nuclear Magnetic Resonance Spectroscopy Notes adapted by Audrey Dell Hammerich, October 3, 2013 Nuclear magnetic resonance (NMR), as all spectroscopic methods, relies upon the interaction of the sample

More information

Worked solutions to student book questions Chapter 7 Spectroscopy

Worked solutions to student book questions Chapter 7 Spectroscopy Q1. Potassium chloride can be used instead of salt by people suffering from high blood pressure. Suppose, while cooking, someone spilt some potassium chloride in the flame of a gas stove. a What colour

More information

CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY REACTIONS: None TECHNIQUES: IR, NMR Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy are

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter

More information

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number 2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

More information

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole

More information

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

Practical guide for quantitative 1D NMR integration Eugenio Alvarado, University of Michigan, 05/10/10

Practical guide for quantitative 1D NMR integration Eugenio Alvarado, University of Michigan, 05/10/10 Practical guide for quantitative 1D NMR integration Eugenio Alvarado, University of Michigan, 05/10/10 The purpose of this manuscript is not to present a discussion about quantitative NMR, but to offer

More information

Pesticide Analysis by Mass Spectrometry

Pesticide Analysis by Mass Spectrometry Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine

More information

Test Bank - Chapter 4 Multiple Choice

Test Bank - Chapter 4 Multiple Choice Test Bank - Chapter 4 The questions in the test bank cover the concepts from the lessons in Chapter 4. Select questions from any of the categories that match the content you covered with students. The

More information

Nuclear Magnetic Resonance and the Measurement of Relaxation Times of Acetone with Gadolinium

Nuclear Magnetic Resonance and the Measurement of Relaxation Times of Acetone with Gadolinium Nuclear Magnetic Resonance and the Measurement of Relaxation Times of Acetone with Gadolinium Xia Lee and Albert Tsai June 15, 2006 1 1 Introduction Nuclear magnetic resonance (NMR) is a spectroscopic

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Massachusetts Institute of Technology Department of Chemistry 5.33 Advanced Chemical Instrumentation FALL SEMESTER 2005

Massachusetts Institute of Technology Department of Chemistry 5.33 Advanced Chemical Instrumentation FALL SEMESTER 2005 Massachusetts Institute of Technology Department of Chemistry 5.33 Advanced Chemical Instrumentation FALL SEMESTER 2005 EXPERIMENT #2A: MAGNETIC RESONANCE SPECTROSCOPY I. Introduction Magnetic resonance

More information

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds:

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds: Organic Spectroscopy Methods for structure determination of organic compounds: X-ray rystallography rystall structures Mass spectroscopy Molecular formula -----------------------------------------------------------------------------

More information

Chemistry Department

Chemistry Department Chemistry Department NMR/Instrumentation Facility Users Guide - Rules, safety and system information Prepared by Leila Maurmann The NMR/Instrumentation facility at the Chemistry Department at Kansas State

More information

The photoionization detector (PID) utilizes ultraviolet

The photoionization detector (PID) utilizes ultraviolet Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).

More information