Chapter 7 Quadratic Functions & Applications I

Size: px
Start display at page:

Download "Chapter 7 Quadratic Functions & Applications I"

Transcription

1 Chapter 7 Quadratic Functions & Applications I In physics the study of the motion of objects is known as Kinematics. In kinematics there are four key measures to be analyzed. These are work, potential, kinetic, and mechanical energy. Work is when a force is applied to an object to cause its displacement. Potential energy is the energy stored in an object at rest. Kinetic energy is the energy of motion, and mechanical energy is the energy possessed by an object due to its motion or position. Each of these forms of energy can be quantified and physicists can calculate various components for each type of energy. For example, kinetic energy is calculated using the formula 1 mv KE,where m is the mass of the object and v is its velocity. Kinetic m energy is measured in Joules. One Joule is equivalent to 1kg. So when s working with the formula, a final answer is stated in Joules. For example, the kinetic energy of a 65kg rollercoaster car traveling at a velocity of 18.3 m/s will be 1.05 x 10 5 Joules. Below is a table of the formulas related to each of the forms of energy mentioned above. Energy Type Formula Units of Measure Potential (gravitational) PE = mgh Joules Kinetic 1 Joules KE mv Mechanical ME = KE + PE Joules Work w Fd cos Joules In the above equations m is the mass of an object, g is gravity (9.8m/s ), v is velocity, h is height, F is force, d is displacement When you examine these equations you should notice that they each have a different form. Potential and mechanical energy are both 1 st degree

2 equations so we know that their graphs will be straight lines. We also see a trigonometric equation in the equation for work. This equation has a nonlinear, wave-like, graph that you will study in a future math course. This leaves us with the equation for kinetic energy. Its equation is a second degree equation. From integrated math 1, we know that all second degree equations are related to the parent function y x, otherwise known as the quadratic function. We also know that the graphs of such functions are nonlinear parabolas. y x In this chapter we will build on the basic information we learned about quadratic equations in integrated math 1. Some of the basics covered last year are summarized in the following sections. To review basics of quadratics from Integrated Math 1 Hawkes Learning Program To help you review the material covered in Integrated Math 1 please visit the following sections chapter 6: sections 6.6, chapter 10: sections 10.1a, 10.

3 Concepts & Skills The concepts and skills covered in this chapter include Properties of Parabolas Transforming Parabolas Identify the Domain & Range of a Parabola Review Factoring & Solving Quadratic Equations Learn the Completing the Square Method for solving Quadratics Calculate the Vertex of the Parabola. Calculate and Recognize that the Vertex of a Parabola is the minimum or maximum value of the parabola Graph a Quadratic using the Vertex, x &y-intercepts, and axis of symmetry. Apply Quadratic Equations to Real Life examples Interpret the meaning of Minimum & Maximum values for a Parabola as they relate to application problems. 7.1a Function (graph) Translations During the last chapters of integrated math 1 you worked with quadratic and absolute value functions. During that time you explored how the different form of the function and the value of particular variables impacted the shape and placement of the graph. Recall, there at that time you learned about vertical and horizontal translation of the two functions. We will continue to work with these translations as well as a new translation a reflection, during this section of the course. For your review, recall that following represent the translations that were studied last year Translation Vertical shift Upward Vertical shift Down Function Form f ( x) c f ( x) c Horizontal shift to the right f ( x h) Horizontal shift to the left f ( x h) Combined vertical & horizontal Shift f ( x h) c

4 INSTANT RECALL! Write the translated form of the absolute value function for each of the following units up. Right.5 units units up 4. Left 6 units units down units right 7. Left 4 units 7.1b Graphing Non-linear Functions As with any function, the fail-safe method for graphing is to setup a function table. Let s face it, sometimes we do not have a calculator at hand. Keys to Graphing Non-linear Functions 1. As the degree of the function increase, so must the number of points you graph! For functions with a degree of or higher use at least six (6) x-values.. Use both positive and negative values to generate coordinates. 3. These are non-linear functions. That means the graphs are not lines. Do not use straight lines to connect coordinates. 4. Polynomial functions (any function with a degree of or higher) have curves that are both SMOOTH (no corners of kinks) and CONTINUOUS (no gaps). This can be seen in the diagram below. What is the parent function of the graph?

5 Outside of graphing by hand, the best way to graph a function is with a calculator. It is fast, and very accurate more than the human hand. Make sure however to adjust the domain and range of the viewing window to make sure you are seeing the full graph. To review the general shape of the graphs of the parent functions refer back to chapter of the integrated math 1 text. You Try! a) The following is a table of values for the function f(x)=x. Copy and complete the table. X y ) Plot the points for the pairs of values given in the table by constructing a proper coordinate plane. Pay attention to the scale of the domain and range BEFORE you draw your plane! ) Do the points you have plotted suggest a line or a curve? 3) Complete the graph by drawing a smooth curve through the points you have plotted. 4) Does the graph have a line of symmetry? If so, at what point would it cut the curve? Is the point a high or low point on the curve? What is the equation for this line of symmetry? 5) Notice that the curve does not lie below the x-axis. If you were to draw the curve for x=-10 to 10, do you agree that all the points of this curve would still lie above the x-axis? What if x is drawn from -100 to 100? 6) From the graph, find the values of y when x = 1.5 and x = ) From the graph, find the values for x when y = 8 b) The following is a table of values for the function f(x)=1+x-3x. Copy and complete the table. X y ) Plot the points for the pairs of values given in the table by constructing a proper coordinate plane. ) Do the points you have plotted suggest a line or a curve?

6 3) Complete the graph by drawing a smooth curve through the points you have plotted. 4) What is the equation for this line of symmetry? High point or low point? 5) From your graph, find the value of y when x =.8 6) From your graph, find the value of x when y = -8 c) Using your calculator, graph the function f(x)= x +x-8. 1) Does this graph have a high or low point? Using the calculator, can you find the coordinates of this point on the graph? ) State the domain and range of the function in interval notation. 3) Where are the x-intercepts of the graph? 4) What is the y-intercept? 5) What is the axis of symmetry? 6) Can you express where the graph is decreasing? Increasing? (hint: use the domain as your guide) 7.a Forms of a Quadratic Function By definition, any second degree expression is a quadratic function. Below is a table which summarizes the forms in which we typically see quadratics in mathematics and subsequently real life. Form ax ax +bx +c ax +bx ax +c a(x-h) +k (x+p)(x-q) Name Parent Function Standard Form Binomial Binomial Vertex Form Factored or Intercept Form

7 Exploration Use your graphing calculator to explore the following graphs of the above forms of the quadratic equations a) f(x) = ax if a= -, a=-1, a=-0.5, a=0.5, a=1, and a=. What impact does a have on the graph? b) f(x) = (x-h) with h=-4, h=-, h=, and h=4. How does the changing value of h impact the graph? c) f(x)=x +k with k=-4, k=-, k=, and k=4. How does the value of k impact the graph? d) f(x)=(x-3)(x+) What do you observe with this graph? 7.b Reflections in the Coordinate Plane Any time a function can be mirrored (reflected) around either the x-axis or y-axis, a reflection occurs. As you saw in example a of the exploration above, when a=- the graph reflected down versus when a =, the graph opened up. X-axis reflection for the parent quadratic function can be seen in the graph below In general reflections in the coordinate axes of the graph of y=f(x) are represented as follows 1. Reflections in the x-axis: y=-f(x). Reflection in the y-axis y = f(-x)

8 Graphically we can see these represented using the function Parent y x x-axis reflection y-axis reflection

9 Generally, when dealing with quadratic functions we only concern ourselves with x-axis reflection because of the symmetric nature of the parabola. It is hard to see y-axis symmetry when the two halves of the graph are symmetric to one-another! The same can be said for the absolute value function. All other functions in the function family however, can easily show y-axis reflection. 7.3a Methods for Solving Quadratics Because there are different forms of a quadratic, there are also different methods for solving them. Remember, the solution to a quadratic may be called, solution, answers, roots, x-intercepts, or zeros of the problem but what is most important is that you need to remember that there are always two answers for every quadratic equation! Methods for Solving Quadratics 1. Square Root Method. Solve by Factoring 3. Quadratic Formula 4. Completing the Square IMPORTANT TO REMEMBER: The solutions of a quadratic equation are the x-intercepts of the quadratics graph. The graph of a quadratic function is called a Parabola. Your primary resource for quadratic functions in this chapter is your Hawkes Learning Program. Hawkes Learning Program In this chapter we will cover the following sections chapter 6: section 6.7, chapter 10: sections 10.1b, 10.3, 10.5

10 7.3b Applications of Quadratic Equations As was stated at the beginning of this chapter, quadratics evolved out of the need to model real life situations with mathematics -in this case, situations that are non-linear. The following are some problems that apply quadratic reasoning to such situations. Referring back to the problems related to physics, let s model the kinetic energy of a car that has a mass of 75kg as it travels with varying velocity. Recall, 1 mv KE is a second degree (therefore, quadratic) equation. Logically we know that the car cannot have a negative velocity so one of the things you need to recognize from the start is that you are only going to be dealing with the first quadrant of the graph. Second, since velocity of the car is not constant we need to recognize that the graph will open up because as velocity increases so does the kinetic energy and at different points in the cars journey its level of kinetic energy will depend on its velocity. The graph of this can be seen below. In this model, x represents velocity. The corresponding table of values for this model is as follows for velocity of 0-80 m/s

11 To use the kinetic energy equation in this way provides us with good information about the vehicle. We know the graph has a minimum value at a velocity of zero (that s where it has its most Potential Energy) and increases as the velocity increases. What if we turn this problem around however and ask the question, If a car has kinetic energy of 30,000 J and a mass of 75kg, what is its velocity? We can solve this quadratic for the value! 30,000 (75/ ) v 30, v 30,000 / v v v 8.86m / s v For this simple physic example we have modeled kinetic energy both visually and then algebraically You Try! a) Using your calculator, generate the kinetic energy graph for a rolling marble if it has a mass of 10g. b) In the example above, what is the velocity of the marble if it has the following kinetic energy 115J, 4500J, and 615J

12 It is important to note here that conceptually, the above problems only reflect the relationship of kinetic energy to mass and velocity on a continued application of velocity. We know in fact that during a cars journey it will slow down and stop and speed-up at different points which would directly change the shape of the graph for the actual kinetic energy incurred by the car during the trip. The model above is in its simplest form showing the relationship that as velocity increases on a continued basis so does kinetic energy. Here are some other examples showing where quadratics can apply in life. Work the problem for the required information. Cost Analysis 1. A power drink manufacturer has a daily production cost that can be Revenue modeled with the following C( x) 60, x 0.065x where C is the total cost (in dollars) to produce the power drink and x is the number of units produced each day. What is the number of units that need to be produced each day that will yield the manufacturer a minimum cost?. Microsoft has estimated that the total revenue R (in thousands of dollars) earned from selling hand-held video games is given by p R 5p 100 p where p is the price per unit in dollars. Remember revenue is just the amount of money they take in from the sale of the units. It is not the profit for the hand-held unit. Profit = Revenue Cost! a) Find the revenue when price per unit = $0, $5, and $35 b) Find the unit price that will give Microsoft the maximum revenue c) What is the maximum revenue? d) Explain what is happening to Microsoft revenue as the unit price for the video game goes from $7 to $3.

13 Height of a Ball 3. The height, y, in feet, of a punted football is approximated by the 9 3 following y 16 x x where x is the horizontal distance (in 05 5 feet) from where the football is punted. a) Graph the path of the punted football b) How high is the football when it is punted? Why? c) What is the highest point the punted football reaches? d) How far does the football travel before it lands on the ground? Assume no one is there to receive the punt. Consumption Analysis 4. According to the US Department of Agriculture, the annual per capita consumption C of cigarettes by American adults between 1960 and 003 can be modeled by C t t 1.3t where t is the year, with t=0 corresponding to a) Use your calculator to graph this model. What is an appropriate viewing domain and range for this model? b) In what year did the US experience a maximum in the consumption of cigarettes? How many where consumed? c) In 1966, federal law required tobacco companies to post the infamous Warning: The Surgeon General has determined that Cigarette Smoking May be Hazardous to your Health. on every package of cigarettes. Based on the date and the model above, do you think the warning had any impact on the consumption of cigarettes in the US? Why or Why not? d) What was the consumption of cigarettes in 000? e) In the year 000, the US population (age 18 and older) was 09,117,000. Of those, 48,306,000 were smokers. What was the average annual consumption of cigarettes per smoker in 000? What was the average daily consumption per smoker in 000?

14 Web & Video Links (to review Quadratic Basics) uadratic-equations-in-standard-form 3. a-algebra-i--quadratic-roots 4. mple-quadratic-equation 5. pplying-the-quadratic-formula 6. pplication-problem-with-quadratic-formula

Week 1: Functions and Equations

Week 1: Functions and Equations Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

Graphing Quadratic Functions

Graphing Quadratic Functions Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

More information

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved. 1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

More information

5-3 Polynomial Functions. not in one variable because there are two variables, x. and y

5-3 Polynomial Functions. not in one variable because there are two variables, x. and y y. 5-3 Polynomial Functions State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why. 1. 11x 6 5x 5 + 4x 2 coefficient of the

More information

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line. Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

Algebra II A Final Exam

Algebra II A Final Exam Algebra II A Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the expression for the given value of the variable(s). 1. ; x = 4 a. 34 b.

More information

7.1 Graphs of Quadratic Functions in Vertex Form

7.1 Graphs of Quadratic Functions in Vertex Form 7.1 Graphs of Quadratic Functions in Vertex Form Quadratic Function in Vertex Form A quadratic function in vertex form is a function that can be written in the form f (x) = a(x! h) 2 + k where a is called

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

More information

Introduction to Quadratic Functions

Introduction to Quadratic Functions Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Graphing Linear Equations in Two Variables

Graphing Linear Equations in Two Variables Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES.

BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. I. GENERALITIES There are 3 common methods to solve quadratic inequalities. Therefore, students sometimes are confused to select the fastest and the best

More information

2.5 Transformations of Functions

2.5 Transformations of Functions 2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

PARABOLAS AND THEIR FEATURES

PARABOLAS AND THEIR FEATURES STANDARD FORM PARABOLAS AND THEIR FEATURES If a! 0, the equation y = ax 2 + bx + c is the standard form of a quadratic function and its graph is a parabola. If a > 0, the parabola opens upward and the

More information

Section 3.2 Polynomial Functions and Their Graphs

Section 3.2 Polynomial Functions and Their Graphs Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P(x) = 3, Q(x) = 4x 7, R(x) = x 2 +x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 +2x+4 (b)

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

Section 3.1 Quadratic Functions and Models

Section 3.1 Quadratic Functions and Models Section 3.1 Quadratic Functions and Models DEFINITION: A quadratic function is a function f of the form fx) = ax 2 +bx+c where a,b, and c are real numbers and a 0. Graphing Quadratic Functions Using the

More information

Solve Quadratic Equations by the Quadratic Formula. The solutions of the quadratic equation ax 2 1 bx 1 c 5 0 are. Standardized Test Practice

Solve Quadratic Equations by the Quadratic Formula. The solutions of the quadratic equation ax 2 1 bx 1 c 5 0 are. Standardized Test Practice 10.6 Solve Quadratic Equations by the Quadratic Formula Before You solved quadratic equations by completing the square. Now You will solve quadratic equations using the quadratic formula. Why? So you can

More information

Logo Symmetry Learning Task. Unit 5

Logo Symmetry Learning Task. Unit 5 Logo Symmetry Learning Task Unit 5 Course Mathematics I: Algebra, Geometry, Statistics Overview The Logo Symmetry Learning Task explores graph symmetry and odd and even functions. Students are asked to

More information

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 Dear Student: The AP physics course you have signed up for is designed to prepare you for a superior performance on the AP test. To complete material

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

M 1310 4.1 Polynomial Functions 1

M 1310 4.1 Polynomial Functions 1 M 1310 4.1 Polynomial Functions 1 Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a, a,..., a, a, a n n1 2 1 0, be real numbers, with a

More information

Elements of a graph. Click on the links below to jump directly to the relevant section

Elements of a graph. Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

More information

Warm-Up Oct. 22. Daily Agenda:

Warm-Up Oct. 22. Daily Agenda: Evaluate y = 2x 3x + 5 when x = 1, 0, and 2. Daily Agenda: Grade Assignment Go over Ch 3 Test; Retakes must be done by next Tuesday 5.1 notes / assignment Graphing Quadratic Functions 5.2 notes / assignment

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

More information

Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas:

Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas: Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas: Developing strategies for determining the zeroes of quadratic functions Making connections between the meaning

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Interim 2. Mid-Year 2014 - Algebra II

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Interim 2. Mid-Year 2014 - Algebra II Student Name: Teacher: District: Date: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Interim 2 Description: Mid-Year 2014 - Algebra II Form: 201 1. During a physics experiment,

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

QUADRATIC EQUATIONS AND FUNCTIONS

QUADRATIC EQUATIONS AND FUNCTIONS Douglas College Learning Centre QUADRATIC EQUATIONS AND FUNCTIONS Quadratic equations and functions are very important in Business Math. Questions related to quadratic equations and functions cover a wide

More information

Use Square Roots to Solve Quadratic Equations

Use Square Roots to Solve Quadratic Equations 10.4 Use Square Roots to Solve Quadratic Equations Before You solved a quadratic equation by graphing. Now You will solve a quadratic equation by finding square roots. Why? So you can solve a problem about

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

More information

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

More information

6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions 6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Performance Based Learning and Assessment Task

Performance Based Learning and Assessment Task Performance Based Learning and Assessment Task Activity/Task Title I. ASSESSSMENT TASK OVERVIEW & PURPOSE: Students will be asked to find various characteristics of a polynomial function, modeled by a

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Graphing calculators Transparencies (optional)

Graphing calculators Transparencies (optional) What if it is in pieces? Piecewise Functions and an Intuitive Idea of Continuity Teacher Version Lesson Objective: Length of Activity: Students will: Recognize piecewise functions and the notation used

More information

Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0

Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0 College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve

More information

https://williamshartunionca.springboardonline.org/ebook/book/27e8f1b87a1c4555a1212b...

https://williamshartunionca.springboardonline.org/ebook/book/27e8f1b87a1c4555a1212b... of 19 9/2/2014 12:09 PM Answers Teacher Copy Plan Pacing: 1 class period Chunking the Lesson Example A #1 Example B Example C #2 Check Your Understanding Lesson Practice Teach Bell-Ringer Activity Students

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

TI-83/84 Plus Graphing Calculator Worksheet #2

TI-83/84 Plus Graphing Calculator Worksheet #2 TI-83/8 Plus Graphing Calculator Worksheet #2 The graphing calculator is set in the following, MODE, and Y, settings. Resetting your calculator brings it back to these original settings. MODE Y Note that

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

Name Partners Date. Energy Diagrams I

Name Partners Date. Energy Diagrams I Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy

More information

Gravitational Potential Energy

Gravitational Potential Energy Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

More information

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial

More information

1.7 Graphs of Functions

1.7 Graphs of Functions 64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

Mathematics as Problem Solving The students will demonstrate the ability to gather information from a graphical representation of an equation.

Mathematics as Problem Solving The students will demonstrate the ability to gather information from a graphical representation of an equation. Title: Another Way of Factoring Brief Overview: Students will find factors for quadratic equations with a leading coefficient of one. The students will then graph these equations using a graphing calculator

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

Work and Energy. W =!KE = KE f

Work and Energy. W =!KE = KE f Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

Graphing Motion. Every Picture Tells A Story

Graphing Motion. Every Picture Tells A Story Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it

More information

High School Algebra Reasoning with Equations and Inequalities Solve systems of equations.

High School Algebra Reasoning with Equations and Inequalities Solve systems of equations. Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student

More information

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved. 1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

More information

Part 1: Background - Graphing

Part 1: Background - Graphing Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

More information

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11} Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following

More information

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

More information

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

3. KINEMATICS IN TWO DIMENSIONS; VECTORS. 3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector

More information

1 Shapes of Cubic Functions

1 Shapes of Cubic Functions MA 1165 - Lecture 05 1 1/26/09 1 Shapes of Cubic Functions A cubic function (a.k.a. a third-degree polynomial function) is one that can be written in the form f(x) = ax 3 + bx 2 + cx + d. (1) Quadratic

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Graphic Designing with Transformed Functions

Graphic Designing with Transformed Functions Math Objectives Students will be able to identify a restricted domain interval and use function translations and dilations to choose and position a portion of the graph accurately in the plane to match

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

Pre Calculus Math 40S: Explained!

Pre Calculus Math 40S: Explained! www.math0s.com 97 Conics Lesson Part I The Double Napped Cone Conic Sections: There are main conic sections: circle, ellipse, parabola, and hyperbola. It is possible to create each of these shapes by passing

More information

In the Herb Business, Part III Factoring and Quadratic Equations

In the Herb Business, Part III Factoring and Quadratic Equations 74 In the Herb Business, Part III Factoring and Quadratic Equations In the herbal medicine business, you and your partner sold 120 bottles of your best herbal medicine each week when you sold at your original

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

More Quadratic Equations

More Quadratic Equations More Quadratic Equations Math 99 N1 Chapter 8 1 Quadratic Equations We won t discuss quadratic inequalities. Quadratic equations are equations where the unknown appears raised to second power, and, possibly

More information

CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

More information

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

Manhattan Center for Science and Math High School Mathematics Department Curriculum

Manhattan Center for Science and Math High School Mathematics Department Curriculum Content/Discipline Algebra 1 Semester 2: Marking Period 1 - Unit 8 Polynomials and Factoring Topic and Essential Question How do perform operations on polynomial functions How to factor different types

More information

Polynomial Operations and Factoring

Polynomial Operations and Factoring Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Algebra I. In this technological age, mathematics is more important than ever. When students

Algebra I. In this technological age, mathematics is more important than ever. When students In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

More information

EL-9650/9600c/9450/9400 Handbook Vol. 1

EL-9650/9600c/9450/9400 Handbook Vol. 1 Graphing Calculator EL-9650/9600c/9450/9400 Handbook Vol. Algebra EL-9650 EL-9450 Contents. Linear Equations - Slope and Intercept of Linear Equations -2 Parallel and Perpendicular Lines 2. Quadratic Equations

More information