Objective: To calibrate a thermocouple and find the corresponding curve-fit correlation.

Size: px
Start display at page:

Download "Objective: To calibrate a thermocouple and find the corresponding curve-fit correlation."

Transcription

1 MEE 390sp11 Laboratory Experiment #1: Application of Thermocouples for Sensing Instructor: Milivoje Kostic TA: Chris Edwards February 1, 2011 Part #1: Thermocouple Calibration Apparatus: Thermocouple, controllable bath, Bulb Thermometer, Multimeter, Ice bath Useful Links: K-type Thermocouple Table Specifications: Thermocouple: Omega make type K thermocouple Constant temperature bath: Haake A81, 115V / 60Hz / 1500 VA Max temperature 180 C, precision 0.1 C Bulb Thermometer: Max temperature 150 C, precision 0.5 C Liquid: Water circulated to maintain constant temperature. Multimeter: Hewlett-Packard type 3478 or HP 34401a digital multimeter, 1 mv resolution Ice bath: Constant temperature 0 C Objective: To calibrate a thermocouple and find the corresponding curve-fit correlation. Theory: Thermocouples are based on the Seebeck effect. The Seebeck effect states when two dissimilar metal wires are connected with each other in a loop to form two junctions and maintained at two different temperatures, a change in voltage or electromotive force (emf) will be generated and the electrons will flow through the loop circuit. Refer to figure 1 to see a visual representation. The voltage drop will be proportional to the difference in temperature between the junctions and the metals used. Nickel-Aluminum T Desired 1 2 T IceBath Nickel-Chromium Nickel-Chromium emf (E DMM ) Figure 1: Design of thermocouple of two materials and two junction points The higher the temperature difference, the higher the emf, as well as the change in voltage in the loop. The magnitude of the emf is in the order of a millivolt or even fractions of a 1

2 millivolt. We need a precise and sensitive multimeter which can read up to microvolts to do this experiment Figure 2: Haake controllable temperature bath with thermocouple junction inset Legend: 1 On/Off switch 2 Cooling cycle start switch 3 Cooling cycle indicator light 4 Warning indicator light 5 Heating cycle indicator light 6 selection knob 7 Digital temperature display 8 set-in button 9 limit knob 10 Bulb thermometer 11 Hot water thermocouple wire 12 Ice bath thermocouple wire 13 Ice bath 14 Digital multimeter 15 Thermocouple junction (hot or cold) Procedure: 1. Check the level of water in the bath. Connect the apparatus to the power supply. 2. Turn on the water bath by switching the main switch (1) as shown in the figure. 3. Connect the ends of the thermocouple to the digital multimeter (DMM) and set the multimeter to read in millivolts DC. 2

3 4. Keep the set-in button (8) depressed and set the temperature to desired level (30 C to start) by turning the knob (6) and observing the display (7). Release the button (8) after setting the temperature. In normal mode, the temperature shown on the digital display is the actual temperature of the bath (T Bath ) against which the thermocouple sensor is to be calibrated. 5. Place one junction of the thermocouple into the ice bath and place the other junction (11) in the hot water bath. Then wait for few minutes for it to reach the steady state (i.e. the reading on the DMM steadies down except the last digit). Be careful to hold (tape) the sensor wire away from the circulator's propeller! 6. Write down the bulb thermometer (10) reading. 7. Write down the DMM reading in millivolts (E DMM ). 8. Repeat the steps 4 through 7 in steps of 5 degrees from 30 C to 60 C. Observations: Bath, T B ( C) Bath, T B ( F) Bulb T TH ( C) MM reading, E DMM [mv] corresponding to E, T TC [ C] corresponding to E, T TC [ F] For the Laboratory Report: 1. Plot the measured bath temperatures values (T Bath ) on x-axis against the corresponding thermocouple values (E DMM in mv) on y-axis. 2. Find the slope, intercept and the correlation coefficient of the curve-fitted line by any method. If the correlation coefficient is not very close to one, curve fit with higher order polynomial. NOTE: The DMM voltage reading of the hot water bath will correspond to the actual temperature of the hot water. This happens because the ice bath voltage reading is assumed to be 0 mv. However, your reading will never be exactly zero due to many reasons, for example: 1. The thermocouple is not perfect (make a short-circuit to check its zero). 2. The measured circuitry may be picking up some "noise," since it acts as an antenna, etc. 3

4 Part #2: Dynamic Response of a Thermocouple Sensor Apparatus: Thermocouple, controllable bath, Multimeter, Ice bath, Stopwatch (or similar timer) Useful Links: Specifications: Thermocouple: Omega make type T thermocouple Constant temperature bath: Haake A81, 115V / 60Hz / 1500 VA Max temperature 180 C, precision 0.1 C Liquid: Water circulated to maintain constant temperature. Multimeter: Hewlett-Packard type 3478 or HP 34401a digital multimeter, 1 mv resolution Ice bath: Constant temperature 0 C Objective: To measure the dynamic response of a thermocouple sensor to find its time constant and 90% rise time. Theory: The dynamic response of a temperature sensor will depend on its design, material properties, and the nature of the heat transfer process during the measurements. The dynamic response of a sensor is schematically presented figure 3 for a step-change (increase) of the input temperature from T room to T bath. For a decreasing step-change input, instead of rising time, there will be the corresponding falling time. We need to take enough number of measurements (7-15) during the 90% rise time. If we want to record measurements manually with a multimeter, we will have to modify the thermocouple sensor by putting it in a container, thus making a new sensor with larger time constant. Figure 3: Dynamic response of a sensor Procedure: 1. Check the level of water in the bath. Connect the apparatus to the Power supply. 2. Turn on the water bath by switching the main switch (1) as shown in the figure. 4

5 3. Keep the set-in button (8) depressed and set the temperature to desired level (60 C) by turning the knob (6) and observing the display (7). Release the button (8) after setting the temperature. 4. Connect the ends of the thermocouple to the DMM and set the multimeter to read in millivolts DC. 5. Place one junction of the thermocouple in the ice bath and the other can be kept at rest away from all heat sinks and/or sources. Wait for the multimeter reading to stabilize (i.e. the reading on the DMM steadies down except the last digit). Record the reading in millivolts (E Room ). This will be your initial (Time = 0 sec) reading. 6. Next, remove the junction from the ice bath and allow the DMM to stabilize again before continuing. This should allow both junctions to be at room temperature. 7. Now place one junction into the hot bath and leave the other junction at room temperature and start the stopwatch. 8. Record the multimeter readings every 5 seconds until you have recorded values for 1 minute. R Room = mv Observations: Time (sec) DMM reading E DMM (mv) E Response = E Room + E DMM corresponding to E Response, T TC ( C) corresponding to E Response, T TC ( F) For the Laboratory Report: 1. Plot the data with the time on X-axis and the temperature readings (T Tc ) on Y-axis. Curve fit with the corresponding exponential function, and determine the time constant and the 90% rise time (see figure 3 for visual representations). Perform this for both Celsius and Fahrenheit temperatures. 2. Comment on the measurements and the results. 5

6 Part #3: Measuring Radial Heat Conduction Required for honors students, optional for non-honor students Apparatus: HT10X Heat Transfer Service Unit, HT12 Radial Heat Conduction Accessory Useful Links: Specifications: Heat Transfer Service Unit: Armfield HT10x, Max voltage input 24.3 V Radial Heat Conduction Accessory: Max flow rate 1.5 L/min Liquid: Water Objective: To measure the temperature distribution for steady state conduction of energy through the wall of a cylinder (radial energy flow) and demonstrate the effect of a change in heat flow. Theory: When the inner and outer surfaces of a thick walled cylinder are each at different, uniform temperatures, heat flows radially through the cylinder wall. The disk can be considered as a series of successive layers.from continuity considerations, the radial heat flow through each of the successive layers in the wall must be constant if the flow is steady. However, since the area of the successive layers increases with the radius, there is a temperature gradient in the radial direction. The radial specimen in the HT12 consists of a 3.2 mm thick disk with inside radius R i = 7 mm and outside radius R o = 50 mm. Six K type thermocouples are positioned at uniform intervals of 10mm from the center of the disk i.e. 7 mm, mm, 20 mm, 30 mm, 40 mm and 50 mm radius respectively. The conduction heat transfer rate can be quantified by: = 2 If algebraically adjusted, the conductivity is = ( ) ( ) = ( ) ( ) (1) (2) 6

7 Apparatus: Legend 1 On/Off Switch 2 Voltage Input Control Knob 3 Voltage/current/thermocouple display 4 Thermocouple temperature display Figure 4: HT10X Heat Transfer Service Unit 5,6 Thermocouple attachment locations 7 Quarter-turn inlet valve 8 Pressure regulator 9 Flow control valve Figure 5: HT12 Radial Heat Conduction Accessory 7

8 Equipment Set-up: 1. Locate the HT12 Radial Heat Conduction accessory alongside the HT10X Heat Transfer Service Unit on a suitable bench. 2. Connect the six thermocouples on the HT12 to the appropriate sockets on the front of the service unit. Ensure that the labels on the thermocouples leads (T1-T6) match the labels on the sockets. 3. Set the HEATER VOLTAGE potentiometer to minimum (counterclockwise) and the selector switch to MANUAL then connect the heater lead from the HT12 to the socket marked Output 3 at the rear of the service unit. 4. Ensure that a cold water supply is connected to the inlet of the pressure regulating valveon HT Ensure that the flexible cooling water outlet tube is directed to a suitable drain. 6. Ensure that the service unit is connected to an electrical supply. Procedure: 1. Switch on the front Main switch (if the panel meters do not illuminate check the RCD and circuit breakers at the rear of the service unit, all switches at the rear should be up). 2. Turn on the cooling water and adjust the flow control valve (not the pressure regulator) to give approximately 1.5 L/min. Fully open gives roughly 1.5 L/min. 3. Set the Heater Voltage to 12 Volts (adjust the heater voltage potentiometer to give a reading of 12 Volts on the top panel meter with theselector switch set to position V). 4. Allow the HT12 to stabilize (monitor the temperatures using the lower selector switch/meter). 5. When the temperatures are stable record T1, T2, T3, T4, T5, T6, V, I. 6. Repeat the procedure and note the readings for the above values for the Heater Voltage of 17 V, 21 V and 23 V. Observations: No. Heater Voltage (Volts) Heater Current (Amps) T 1 ( C) T 2 ( C) T 3 ( C) T 4 ( C) T 5 ( C) T 6 ( C) For the Laboratory Report: 1. For each set of readings plot a graph of temperature against radius (The slope should be linear and negative): 2. Comment on the change in T1 with respect to power. 3. Calculate change in at different points of the plot. 8

Experiment #3, Ohm s Law

Experiment #3, Ohm s Law Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,

More information

Lab E1: Introduction to Circuits

Lab E1: Introduction to Circuits E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

More information

Conversion Between Analog and Digital Signals

Conversion Between Analog and Digital Signals ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting

More information

EXPERIMENT 3a HEAT TRANSFER IN NATURAL CONVECTION

EXPERIMENT 3a HEAT TRANSFER IN NATURAL CONVECTION EXPERIMENT 3a HEAT TRANSFER IN NATURAL CONVECTION CONTENT: 1. Aim 2. Objective 3. Introduction 4. Theory/Background 5. Apparatus 6. Experimental Procedure 7. Precautions 8. Calculations 9. Uncertainty

More information

22.302 Experiment 5. Strain Gage Measurements

22.302 Experiment 5. Strain Gage Measurements 22.302 Experiment 5 Strain Gage Measurements Introduction The design of components for many engineering systems is based on the application of theoretical models. The accuracy of these models can be verified

More information

Unit 7: Electrical devices LO2: Understand electrical sensors and actuators Sensors temperature the thermistor

Unit 7: Electrical devices LO2: Understand electrical sensors and actuators Sensors temperature the thermistor Unit 7: Electrical devices LO2: Understand electrical sensors and actuators Sensors temperature the thermistor Instructions and answers for teachers These instructions should accompany the OCR resource

More information

IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation

IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation INTRODUCTION Due to their low cost and ease of use thermocouples are still a popular means for making temperature measurements up

More information

Lab 3 - DC Circuits and Ohm s Law

Lab 3 - DC Circuits and Ohm s Law Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

More information

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS ME 315 - Heat Transfer Laboratory Nomenclature Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS A heat exchange area, m 2 C max maximum specific heat rate, J/(s

More information

Loop Calibration and Maintenance

Loop Calibration and Maintenance Loop Calibration and Maintenance Application Note Introduction Process instrumentation requires periodic calibration and maintenance to ensure that it is operating correctly. This application note contains

More information

IDEAL AND NON-IDEAL GASES

IDEAL AND NON-IDEAL GASES 2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to

More information

M 140i. Multifunction Calibrator. Operation Manual

M 140i. Multifunction Calibrator. Operation Manual M 140i Multifunction Calibrator Operation Manual M-140i Multifunction Calibrator MEATEST, s.r.o. 2 Operation Manual v33 MEATEST, s.r.o. M-140i Multifunction Calibrator Content Operation Manual... 1 Basic

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

More information

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. 6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,

More information

(Issued 1 Dec. 1965) CRD-C 45-65 METHOD OF TEST FOR THERMAL CONDUCTIVITY OF LIGHTWEIGHT INSULATING CONCRETE 1

(Issued 1 Dec. 1965) CRD-C 45-65 METHOD OF TEST FOR THERMAL CONDUCTIVITY OF LIGHTWEIGHT INSULATING CONCRETE 1 CRD-C 45-65 METHOD OF TEST FOR THERMAL CONDUCTIVITY OF LIGHTWEIGHT INSULATING CONCRETE 1 Scope 1. This method of test covers a procedure for measuring the thermal conductivity of lightweight concrete of

More information

Bench Autoclave. Standard Operating Procedure. For Installation, Use and Maintenance

Bench Autoclave. Standard Operating Procedure. For Installation, Use and Maintenance Bench Autoclave Standard Operating Procedure For Installation, Use and Maintenance 1. Introduction This SOP is intended for use with the following model, in a laboratory context: Type: Nuve Bench Top Steam

More information

RTD and thermocouple circuits, with millivolt calculations

RTD and thermocouple circuits, with millivolt calculations RTD and thermocouple circuits, with millivolt calculations This worksheet and all related files are licensed under the Creative Commons ttribution License, version 1.0. To view a copy of this license,

More information

1.44 kw Programmable DC Power Supplies XLN Series

1.44 kw Programmable DC Power Supplies XLN Series Data sheet 1.44 kw Programmable DC Power Supplies XLN Series New Family of High Density System Power Supplies The B&K Precision XLN series are compact, programmable, single-output DC power supplies, suitable

More information

Heat. Investigating the function of the expansion valve of the heat pump. LD Physics Leaflets P2.6.3.2. Thermodynamic cycle Heat pump

Heat. Investigating the function of the expansion valve of the heat pump. LD Physics Leaflets P2.6.3.2. Thermodynamic cycle Heat pump Heat Thermodynamic cycle Heat pump LD Physics Leaflets P2.6.3.2 Investigating the function of the expansion valve of the heat pump Objects of the experiment g To study the operational components of the

More information

Evaluation copy. Build a Temperature Sensor. Project PROJECT DESIGN REQUIREMENTS

Evaluation copy. Build a Temperature Sensor. Project PROJECT DESIGN REQUIREMENTS Build a emperature Sensor Project A sensor is a device that measures a physical quantity and converts it into an electrical signal. Some sensors measure physical properties directly, while other sensors

More information

Using a Thermistor to Measure Temperature. Thermistors are resistors that vary their resistance according to temperature.

Using a Thermistor to Measure Temperature. Thermistors are resistors that vary their resistance according to temperature. Using a Thermistor to Measure Temperature Overview of a Thermistor Thermistors are resistors that vary their resistance according to temperature. The change in resistance is roughly proportional to the

More information

REGULINE 600VA / 1000VA REGULATOR USER MANUAL

REGULINE 600VA / 1000VA REGULATOR USER MANUAL REGULINE 600VA / 1000VA REGULATOR USER MANUAL TUNÇMATİK REGULINE SERIES AUTOMATIC VOLTAGE REGULATOR Models: REGULINE 600VA / REGULINE 1000VA Principle of Operation Automatic Voltage Regulators regulate

More information

T7079A,B Solid State Remote Temperature Controllers

T7079A,B Solid State Remote Temperature Controllers T7079A,B Solid State Remote Temperature Controllers FEATURES PRODUCT DATA Switch selection of heat or cool mode. Temperature sensing up to 400 feet. Does not require field calibration. 0K NTC temperature

More information

VCR Ion Beam Sputter Coater

VCR Ion Beam Sputter Coater VCR Ion Beam Sputter Coater Sputtering Process and Rates 2 Vacuum System 3 Loading the Sputter Chamber 4 Sputter Coating 5 Removing Samples from Chamber 6 Appendix A: VCR High Vacuum Gauge Conditioning

More information

UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING.

UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING. UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING. Group # First Name Last Name UserID @uwaterloo.ca Experiment #3: DIRECT CURRENT

More information

Building the AMP Amplifier

Building the AMP Amplifier Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;

More information

SUB Universal water baths SBB Boiling baths JB, PB Unstirred water baths

SUB Universal water baths SBB Boiling baths JB, PB Unstirred water baths SUB Universal water baths SBB Boiling baths JB, PB Unstirred water baths Operating instructions Universal water baths SUB6: 6 litres SUB14: 14 litres SUB28: 28 litres SUB36: 36 litres Boiling baths SBB6:

More information

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

More information

Using Thermocouple Sensors Connecting Grounded and Floating Thermocouples

Using Thermocouple Sensors Connecting Grounded and Floating Thermocouples Connecting Grounded and Floating Thermocouples For best performance, Thermocouple sensors should be floating. This will ensure that no noise currents can flow in the sensor leads and that no common-mode

More information

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0 1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

More information

PLEASE READ ALL INSTRUCTIONS BEFORE USE AND SAVE A COPY FOR FUTURE REFERENCE!

PLEASE READ ALL INSTRUCTIONS BEFORE USE AND SAVE A COPY FOR FUTURE REFERENCE! PLEASE READ ALL INSTRUCTIONS BEFORE USE AND SAVE A COPY FOR FUTURE REFERENCE! 1. Read all instructions carefully before using the machine. 2. Do not touch hot surfaces. Use handles or knobs. The lid and

More information

Module 1, Lesson 3 Temperature vs. resistance characteristics of a thermistor. Teacher. 45 minutes

Module 1, Lesson 3 Temperature vs. resistance characteristics of a thermistor. Teacher. 45 minutes Module 1, Lesson 3 Temperature vs. resistance characteristics of a thermistor 45 minutes Teacher Purpose of this lesson How thermistors are used to measure temperature. Using a multimeter to measure the

More information

HERZ-Thermal Actuators

HERZ-Thermal Actuators HERZ-Thermal Actuators Data Sheet 7708-7990, Issue 1011 Dimensions in mm 1 7710 00 1 7710 01 1 7711 18 1 7710 80 1 7710 81 1 7711 80 1 7711 81 1 7990 00 1 7980 00 1 7708 11 1 7708 10 1 7708 23 1 7709 01

More information

Measuring Electric Phenomena: the Ammeter and Voltmeter

Measuring Electric Phenomena: the Ammeter and Voltmeter Measuring Electric Phenomena: the Ammeter and Voltmeter 1 Objectives 1. To understand the use and operation of the Ammeter and Voltmeter in a simple direct current circuit, and 2. To verify Ohm s Law for

More information

CALIBRATION OF A THERMISTOR THERMOMETER (version = fall 2001)

CALIBRATION OF A THERMISTOR THERMOMETER (version = fall 2001) CALIBRATION OF A THERMISTOR THERMOMETER (version = fall 2001) I. Introduction Calibration experiments or procedures are fairly common in laboratory work which involves any type of instrumentation. Calibration

More information

VOLTAGE/CURRENT CALIBRATOR ISO-TECH ILC-421

VOLTAGE/CURRENT CALIBRATOR ISO-TECH ILC-421 VOLTAGE/CURRENT CALIBRATOR ISO-TECH ILC-421 TABLE OF CONTENTS 1. FEATURES... 1 2. SPECIFICATIONS... 1 2-1 General Specifications...1 2-2 Electrical Specifications... 2 3. FRONT PANEL DESCRIPTION... 4 3-1

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

More information

Soil Suction. Total Suction

Soil Suction. Total Suction Soil Suction Total Suction Total soil suction is defined in terms of the free energy or the relative vapor pressure (relative humidity) of the soil moisture. Ψ = v RT ln v w 0ω v u v 0 ( u ) u = partial

More information

SALES SPECIFICATION. SC7640 Auto/Manual High Resolution Sputter Coater

SALES SPECIFICATION. SC7640 Auto/Manual High Resolution Sputter Coater SALES SPECIFICATION SC7640 Auto/Manual High Resolution Sputter Coater Document Number SS-SC7640 Issue 1 (01/02) Disclaimer The components and packages described in this document are mutually compatible

More information

Microcontroller to Sensor Interfacing Techniques

Microcontroller to Sensor Interfacing Techniques to Sensor Interfacing Techniques Document Revision: 1.01 Date: 3rd February, 2006 16301 Blue Ridge Road, Missouri City, Texas 77489 Telephone: 1-713-283-9970 Fax: 1-281-416-2806 E-mail: info@bipom.com

More information

italtec PRINTED CIRCUITS EQUIPMENT PRINTED CIRCUITS EQUIPMENT Insulator machines Echting machines Special equipment and machines

italtec PRINTED CIRCUITS EQUIPMENT PRINTED CIRCUITS EQUIPMENT Insulator machines Echting machines Special equipment and machines PRINTED CIRCUITS EQUIPMENT PRINTED CIRCUITS EQUIPMENT Insulator machines Echting machines Special equipment and machines On customer request it is possible to supply: Benches for PCB Oven for PCB Chemicals

More information

Experimental Evaluation Of The Frost Formation

Experimental Evaluation Of The Frost Formation Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2014 Experimental Evaluation Of The Frost Formation Yusuke Tashiro Mitsubishi

More information

AN500T, AN1000, AN1000T, AN1500, AN1500T AN2000, AN2000T

AN500T, AN1000, AN1000T, AN1500, AN1500T AN2000, AN2000T Product Instruction Manual Accona AN500T, AN1000, AN1000T, AN1500, AN1500T AN2000, AN2000T Panel heater v16.5/5 Version 3.2 Jan 2015 Contents 1. Important safety points 2. Installation 2.1. Wall mounting

More information

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 DOUBLE PIPE HEAT EXCHANGER

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 DOUBLE PIPE HEAT EXCHANGER UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 DOUBLE PIPE HEAT EXCHANGER OBJECTIVE Determine the Reynolds number for each flow. Determine the individual heat transfer

More information

THERMAL RADIATION (THERM)

THERMAL RADIATION (THERM) UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 2 Classical Laboratory Experiment THERMAL RADIATION (THERM) Objectives In this experiment you will explore the basic characteristics of thermal radiation,

More information

Conversion of Thermocouple Voltage to Temperature

Conversion of Thermocouple Voltage to Temperature Conversion of Thermocouple Voltage to Temperature Gerald Recktenwald July 14, 21 Abstract This article provides a practical introduction to the conversion of thermocouple voltage to temperature. Beginning

More information

Basic RTD Measurements. Basics of Resistance Temperature Detectors

Basic RTD Measurements. Basics of Resistance Temperature Detectors Basic RTD Measurements Basics of Resistance Temperature Detectors Platinum RTD resistances range from about 10 O for a birdcage configuration to 10k O for a film type, but the most common is 100 O at 0

More information

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of

More information

Thermistor Basics. Application Note AN-TC11 Rev. A. May, 2013 Page 1 WHAT IS A THERMISTOR?

Thermistor Basics. Application Note AN-TC11 Rev. A. May, 2013 Page 1 WHAT IS A THERMISTOR? Thermistor Basics May, 2013 Page 1 WHAT IS A THERMISTOR? A thermistor is a resistance thermometer, or a resistor whose resistance is dependent on erature. The term is a combination of thermal and resistor.

More information

EXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL

EXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL 260 7- I. THEOY EXPEIMENT 7 OHM S LAW, ESISTOS IN SEIES AND PAALLEL The purposes of this experiment are to test Ohm's Law, to study resistors in series and parallel, and to learn the correct use of ammeters

More information

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

More information

MAVO-MONITOR / MAVO-SPOT Instrument Set for Contact or Distant Measurements of Luminances

MAVO-MONITOR / MAVO-SPOT Instrument Set for Contact or Distant Measurements of Luminances Operating Instructions MAVO-MONITOR / MAVO-SPOT Instrument Set for Contact or Distant Measurements of Luminances 15043 1/1.00 10 9 8 1 7 6 1 Display 2 Slider switch cd/m² segment test 3 ON/OFF switch 4

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface Pressure -Temperature Relationship in Gases Computer 7 Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and

More information

Galleon 6-10K Online UPS. Voltronic Power Technology Corporation

Galleon 6-10K Online UPS. Voltronic Power Technology Corporation Galleon 6-10K Online UPS Voltronic Power Technology Corporation Features Galleon online UPS series delivers optimal power quality, provides superior power management, resolves utility power protection

More information

Experiment 4: Sensor Bridge Circuits (tbc 1/11/2007, revised 2/20/2007, 2/28/2007) I. Introduction. From Voltage Dividers to Wheatstone Bridges

Experiment 4: Sensor Bridge Circuits (tbc 1/11/2007, revised 2/20/2007, 2/28/2007) I. Introduction. From Voltage Dividers to Wheatstone Bridges Experiment 4: Sensor Bridge Circuits (tbc //2007, revised 2/20/2007, 2/28/2007) Objective: To implement Wheatstone bridge circuits for temperature measurements using thermistors. I. Introduction. From

More information

Experiment 7: Forces and Torques on Magnetic Dipoles

Experiment 7: Forces and Torques on Magnetic Dipoles MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

More information

Experiment 6 ~ Joule Heating of a Resistor

Experiment 6 ~ Joule Heating of a Resistor Experiment 6 ~ Joule Heating of a Resistor Introduction: The power P absorbed in an electrical resistor of resistance R, current I, and voltage V is given by P = I 2 R = V 2 /R = VI. Despite the fact that

More information

Computer Controlled Vortex Tube Refrigerator Unit, with SCADA TPVC

Computer Controlled Vortex Tube Refrigerator Unit, with SCADA TPVC Technical Teaching Equipment Computer Controlled Vortex Tube Refrigerator Unit, with SCADA TPVC Teaching Technique used EDIBON SCADA System 2 Control Interface Box 5 Cables and Accessories 6 Manuals 3

More information

TECHNICAL SERVICE DEPARTMENT Technical Service Bulletin 1-800-432-8373. Tankless Electric (RTE) Troubleshooting

TECHNICAL SERVICE DEPARTMENT Technical Service Bulletin 1-800-432-8373. Tankless Electric (RTE) Troubleshooting Sequence of Operations 1 Power supply and field wiring block 2 Energy Cut Off (ECO) 3 Water flow plunger and cold inlet 4 Magnetic flow switch 5 Water temperature thermistor 6 Control panel and circuit

More information

TLK 48 MICROPROCESSOR-BASED DIGITAL ELECTRONIC REGULATOR

TLK 48 MICROPROCESSOR-BASED DIGITAL ELECTRONIC REGULATOR TLK 48 MICROPROCESSOR-BASED DIGITAL ELECTRONIC REGULATOR TECHNICAL DATA CARATTERISTICHE MECCANICHE Housing Self-extinguishing plastic, UL 94 V0 Dimensions 48x48 mm DIN depth 98 mm Weight 225 g approx.

More information

1 Coffee cooling : Part B : automated data acquisition

1 Coffee cooling : Part B : automated data acquisition 1 COFFEE COOLING : PART B : AUTOMATED DATA ACQUISITION 1 October 23, 2015 1 Coffee cooling : Part B : automated data acquisition Experiment designed by Peter Crew, Navot Arad and Dr Alston J. Misquitta

More information

ETC TWO STAGE ELECTRONIC TEMPERATURE CONTROL

ETC TWO STAGE ELECTRONIC TEMPERATURE CONTROL RANCO INSTALLATION INSTRUCTIONS ETC TWO STAGE ELECTRONIC TEMPERATURE CONTROL Relay Electrical Ratings PRODUCT DESCRIPTION The Ranco ETC is a microprocessor-based family of electronic temperature controls,

More information

SERVICE MANUAL OUTDOOR UNIT. No. OBH590 REVISED EDITION-B. Models HFC

SERVICE MANUAL OUTDOOR UNIT. No. OBH590 REVISED EDITION-B. Models HFC SPLIT-TYPE AIR CONDITIONERS Revision B: MUZ-EF25/35/42/50VE - E2 and MUZ-EF25/35VEH - E2 have been added. Please void OBH590 REVISED EDITION-A. OUTDOOR UNIT SERVICE MANUAL HFC utilized R410A. OBH590 REVISED

More information

Technical data. Danfoss DHP-A

Technical data. Danfoss DHP-A Technical data Danfoss DHP-A An air heat pump which produces both heat and hot water Can operate efficiently down to -0 C Danfoss TWS tank gives plenty of hot water quickly and with low operating costs

More information

Vaporization of Liquid Nitrogen

Vaporization of Liquid Nitrogen Vaporization of Liquid Nitrogen Goals and Introduction As a system exchanges thermal energy with its surroundings, the temperature of the system will usually increase or decrease, depending on the direction

More information

Voltech DC1000. Precision DC Bias Current Source

Voltech DC1000. Precision DC Bias Current Source DC1000 Precision DC Bias Current Source DC1000 Precision DC Bias Current Source TM Integral Rack Mount Lugs High Contrast Green LED Display Easy Control Rotary Knob Output LED Indicator DC 1000 OUTPUT

More information

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description Three terminal adjustable current sources Features Operates from 1V to 40V 0.02%/V current regulation Programmable from 1µA to 10mA ±3% initial accuracy Description The LM134/LM234/LM334 are 3-terminal

More information

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A 1. Compared to the number of free electrons in a conductor, the number of free electrons in an insulator of the same volume is less the same greater 2. Most metals are good electrical conductors because

More information

3466 Building Energy Management Training Systems

3466 Building Energy Management Training Systems 3466 Building Energy Management Training Systems LabVolt Series Datasheet Festo Didactic en 120 V - 60 Hz 06/2015 Table of Contents General Description 3 Courseware 3 Topic Coverage 4 List of Available

More information

USER INSTRUCTIONS FOR GET PORTABLE 12k BTU AIR CONDITIONER MODEL No. GPACU12HR

USER INSTRUCTIONS FOR GET PORTABLE 12k BTU AIR CONDITIONER MODEL No. GPACU12HR USER INSTRUCTIONS FOR GET PORTABLE 12k BTU AIR CONDITIONER MODEL No. GPACU12HR CONTENTS Introduction Safety Notes Identification of parts Installation instructions Operation instructions Maintenance Troubleshooting

More information

Multi-Range Programmable DC Power Supplies 9115 Series

Multi-Range Programmable DC Power Supplies 9115 Series Data Sheet 1200 W Multi-Range DC Power Supplies Features & Benefits Any 9115 series model can replace several supplies on your bench or in your rack. Unlike conventional supplies with fixed output ratings,

More information

HP switch LP switch Discharge thermo Comp. Surface thermo

HP switch LP switch Discharge thermo Comp. Surface thermo 1 Specifications Zubadan Model Name PUHZ-SHW80VHA PUHZ-SHW11VHA PUHZ-SHW11YHA Power supply (phase, cycle, voltage) 1φ, V, Hz 1φ, V, Hz 3φ, 0V, Hz Max. current A 9.5 35.0 13.0 Breaker size A 3 16 Outer

More information

SERVICE MANUAL MUZ-GE25VA - E1 MUZ-GE25VAH - E1 MUZ-GE35VA - E1 MUZ-GE35VAH - E1 MUZ-GE42VA - E1 MUZ-GE42VAH - E1 MUZ-GE50VA - E1 MUZ-GE50VAH - E1

SERVICE MANUAL MUZ-GE25VA - E1 MUZ-GE25VAH - E1 MUZ-GE35VA - E1 MUZ-GE35VAH - E1 MUZ-GE42VA - E1 MUZ-GE42VAH - E1 MUZ-GE50VA - E1 MUZ-GE50VAH - E1 SPLIT-TYPE AIR CONDITIONERS Revision A: MUZ-GE42/50VA(H) - E1 has been added. Please void OBH516. OUTDOOR UNIT SERVICE MANUAL HFC utilized R410A. OBH516 REVISED EDITION-A Models MUZ-GE25VA - E1 MUZ-GE25VAH

More information

Renewable Energy Test Station (RETS) TEST PROCEDURES FOR SOLAR TUKI

Renewable Energy Test Station (RETS) TEST PROCEDURES FOR SOLAR TUKI Renewable Energy Test Station (RETS) TEST PROCEDURES FOR SOLAR TUKI March 2007 A. Test Procedures for Solar Tuki Lamp S. No. Test Parameters Technical Requirements Instruments Required Test Methods A.

More information

RESULTS OF ICARUS 9 EXPERIMENTS RUN AT IMRA EUROPE

RESULTS OF ICARUS 9 EXPERIMENTS RUN AT IMRA EUROPE Roulette, T., J. Roulette, and S. Pons. Results of ICARUS 9 Experiments Run at IMRA Europe. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido,

More information

Service Guide 12/27/03 TESTING, SERVICE & REPAIR GUIDE (For SH Space Heating Models & RA Water Heating Models)

Service Guide 12/27/03 TESTING, SERVICE & REPAIR GUIDE (For SH Space Heating Models & RA Water Heating Models) TESTING, SERVICE & REPAIR GUIDE (For SH Space Heating Models & RA Water Heating Models) WARNING - HIGH VOLTAGE AC electrical circuits are connected to this heater. Do not attempt any service work on the

More information

This apparatus is designated Safety class 1 as defined in the IEC publication 1010-1 (Amendment 1).

This apparatus is designated Safety class 1 as defined in the IEC publication 1010-1 (Amendment 1). TECAL ACCU-TEMP II THERMOMETER OPERATING INSTRUCTIONS SOFTWARE VERSION 7.1 Supplied Accessories 1 Mains Cord 1 Operating Instructions (English) 1 RS232 Cable When unpacked, inspect for physical damage

More information

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit:

More information

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

More information

The Electrical Properties of Materials: Resistivity

The Electrical Properties of Materials: Resistivity The Electrical Properties of Materials: Resistivity 1 Objectives 1. To understand the properties of resistance and resistivity in conductors, 2. To measure the resistivity and temperature coefficient of

More information

LM135-LM235-LM335. Precision temperature sensors. Features. Description

LM135-LM235-LM335. Precision temperature sensors. Features. Description Precision temperature sensors Features Directly calibrated in K 1 C initial accuracy Operates from 450µA to 5mA Less than 1Ω dynamic impedance TO-92 (Plastic package) Description The LM135, LM235, LM335

More information

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Attachment C1. SolidWorks-Specific FEM Tutorial 1... 2 Attachment C2. SolidWorks-Specific

More information

Automotive Sensor Simulator. Automotive sensor simulator. Operating manual. AutoSim

Automotive Sensor Simulator. Automotive sensor simulator. Operating manual. AutoSim Automotive sensor simulator Operating manual AutoSim Contents Introduction.. page 3 Technical specifications.... page 4 Typical application of AutoSim simulator..... page 4 Device appearance... page 5

More information

Essential Electrical Concepts

Essential Electrical Concepts Essential Electrical Concepts Introduction Modern vehicles incorporate many electrical and electronic components and systems: Audio Lights Navigation Engine control Transmission control Braking and traction

More information

Experiment #4, Ohmic Heat

Experiment #4, Ohmic Heat Experiment #4, Ohmic Heat 1 Purpose Physics 18 - Fall 013 - Experiment #4 1 1. To demonstrate the conversion of the electric energy into heat.. To demonstrate that the rate of heat generation in an electrical

More information

Daker DK 1, 2, 3 kva. Manuel d installation Installation manual. Part. LE05334AC-07/13-01 GF

Daker DK 1, 2, 3 kva. Manuel d installation Installation manual. Part. LE05334AC-07/13-01 GF Daker DK 1, 2, 3 kva Manuel d installation Installation manual Part. LE05334AC-07/13-01 GF Daker DK 1, 2, 3 kva Index 1 Introduction 24 2 Conditions of use 24 3 LCD Panel 25 4 Installation 28 5 UPS communicator

More information

CHECKING AND TESTING ELECTRICAL INSTALLING WORK

CHECKING AND TESTING ELECTRICAL INSTALLING WORK CHECKING AND TESTING ELECTRICAL INSTALLING WORK Department of Consumer and Employment Protection Energy Safety Preface It is a requirement of the Electricity (Licensing) Regulations 1991 that all electrical

More information

HVAC-32A. Operation Manual. Specifications. Digital Multistage Air Conditioning Controller with inbuilt Outside Air Economy function

HVAC-32A. Operation Manual. Specifications. Digital Multistage Air Conditioning Controller with inbuilt Outside Air Economy function Specifications Supply Voltage 240VAC @ 0.07Amps or 24VAC @ 0.380Amps Relays 240V @ 12A max (resistive) / Comp1,2,3, Aux Ht, Rv O/B) Fuses (Equipment) 15 Amps Maximum 3AG Control Range Minus 10 to 50C Control

More information

Meter Relays. 077 Series Analogue Meter Relays. Features. Applications

Meter Relays. 077 Series Analogue Meter Relays. Features. Applications 077 Series Analogue Features Monitors and controls any variable which can be converted to an A.C. or D.C. signal. Rugged, shock and vibration resistant design Indicator, relays and power unit in one housing

More information

Harris IRT Enterprises Digital Resistance Tester Model 5060-06XR

Harris IRT Enterprises Digital Resistance Tester Model 5060-06XR Harris IRT Enterprises Digital Resistance Tester Model 5060-06XR Specifications & Dimensions 2 Theory of Operation 3 Operator Controls & Connectors 4 Test Connections 5 Calibration Procedure 6-7 Options

More information

2 Wire Electronic Time Delay Switch. 2 Wire Slave Switch. 3 Wire Electronic Time Delay Switch

2 Wire Electronic Time Delay Switch. 2 Wire Slave Switch. 3 Wire Electronic Time Delay Switch 2 Wire Electronic Time Delay Switch Cat No. DS1 2 Wire Slave Switch Cat No. DSS 3 Wire Electronic Time Delay Switch Cat No. DS2 Installation & Operating Instructions DS1/DSS Instructions for Installation

More information

SX460. Generator Automatic Voltage Regulator Operation Manual

SX460. Generator Automatic Voltage Regulator Operation Manual SX460 Generator Automatic Voltage Regulator Operation Manual Self Excited Automatic Voltage Regulator Compatible with Newage SX460* * Use for reference purpose only and not a genuine Newage product. 1.

More information

Chapter 13: Electric Circuits

Chapter 13: Electric Circuits Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel

More information

Multi-Range Programmable DC Power Supplies 9115 Series

Multi-Range Programmable DC Power Supplies 9115 Series Data Sheet Multi-Range Programmable DC Power Supplies 1200 W / 3000 W Multi-Range DC Power Supplies Features & Benefits Any model can replace several supplies on your bench or in your rack. Unlike conventional

More information

Using LabVIEW to Measure Temperature with a Thermistor

Using LabVIEW to Measure Temperature with a Thermistor Using LabVIEW to Measure Temperature with a Thermistor C. Briscoe and W. Dufee, University of Minnesota November, 2009 For resources, see the LabVIEW Resources page on the UMN ME2011 course site. Before

More information

TIG INVERTER INSTRUCTION MANUAL

TIG INVERTER INSTRUCTION MANUAL TIG INVERTER INSTRUCTION MANUAL Contents Warning General Description Block Diagram Main Parameters Circuit Diagram Installation and Operation Caution Maintenance Spare Parts List Troubleshooting 3 4 4

More information

High Power Programmable DC Power Supplies PVS Series

High Power Programmable DC Power Supplies PVS Series Data Sheet High Power Programmable DC Power Supplies The PVS10005, PVS60085, and PVS60085MR programmable DC power supplies offer clean output power up to 5.1 kw, excellent regulation, and fast transient

More information

The Fundamentals of Thermoelectrics

The Fundamentals of Thermoelectrics The Fundamentals of Thermoelectrics A bachelor s laboratory practical Contents 1 An introduction to thermoelectrics 1 2 The thermocouple 4 3 The Peltier device 5 3.1 n- and p-type Peltier elements..................

More information