How do the structures of cells and biological membranes enable the functions that are required to sustain life?

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "How do the structures of cells and biological membranes enable the functions that are required to sustain life?"

Transcription

1 Cells & Membranes How do the structures of cells and biological membranes enable the functions that are required to sustain life? Essential Understandings 2.A.3 Organisms must exchange matter with the environment to grow, reproduce and maintain organization. 2.B.1 Cell membranes are selectively permeable due to their structure. 2.B.2 Growth and dynamic homeostasis are maintained by the constant movement of molecules across membranes. 2.B.3 Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. 4.A.2 The structure and function of subcellular components, and their interactions, provide essential cellular processes. 4.B.2 Cooperative interactions within organisms promote efficiency in the use of energy and matter. Major Connections: 1.B.1b Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today: Structural evidence supports the relatedness of all eukaryotes. 3.D.1 Cell communication processes share common features that reflect a shared evolutionary history. 3.D.2 Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. Textbook References Chapter 7 and 8 Laboratories Diffusion & Osmosis Lab Investigation Page 1 of 12

2 *Remember to mark the key terms required to understand a statement or question* 2.A.3 Organisms must exchange matter with the environment to grow, reproduce and maintain organization. b. What factors affect the ability of the cell to obtain necessary resources or eliminate waste products? b.1. For each of the following structures, explain how it functions to meet the need to exchange materials and energy with their environment: Root hairs Cells of the alveoli Cells of the villi Microvilli b.2. Surface area-to-volume ratios affect biological systems. How do surface area-to-volume (SA/V) ratios change as the size and shape of cells and organisms change? To answer this, calculate the SA and V of a cube 1 mm on a side. Then do the same for cubes that are 2 mm and 4 mm on a side and compare their SA/V ratios. In general, how does surface area change as linear dimensions increase twofold? In general, how does volume change as linear dimensions increase twofold? In general, how do SA/V ratios change as linear dimensions increase twofold? Assume a bacterium is 10 µm in linear dimension. Fill in the chart. a. If modeled as a cube, what would its SA, V, and SA/V ratio be? b. If modeled as a sphere, what would its SA, V, and SA/V ratio be? c. What are the SA and V values and the SA/V ratios for a cube-shaped eukaryotic cell that is 100 µm in linear dimension? a. 10-μm bacterium as a cube b. 10-μm bacterium as a sphere c. 100-μm eukaryote cube-shaped SA V SA/V ratio Page 2 of 12

3 Is it possible to change the SA/V ratio of an organism or cell by changing its shape? To prove this to yourself and to help you determine the changes in SA/V ratios that occur, use modeling clay or dough to make a cube that is 1 inch on a side. The cube will obviously have a constant mass or volume. Assume that every cell requires a minimum of 1 unit of oxygen per um3 per second to stay alive. Fill in the chart below. a. How much oxygen must cross each µm2 of surface area per second in the 10- µm bacterium versus the 100-µm eukaryote to keep each alive? b. What effects might this difference have on metabolic rates in these organisms? 10-μm bacterium 100-μm eukaryote a. Oxygen/μm2 of SA/second b. Possible effect(s) on metabolic rate 2.B.1 Cell membranes are selectively permeable due to their structure. a. Cell membranes separate the internal environment of the cell from the external environment. b. Describe the fluid-mosaic model of a plasma membrane and its overall properties. b.1. Review fluid mosaic membrane structure by labeling (and coloring) the diagram below. Start with the cytoplasm and extracellular fluid. In the membrane, color phospholipids gray, embedded protein molecules purple, carbohydrates, glycoprotein and glycolipid molecules green, and cholesterol molecules yellow. Also show the functions of certain proteins by labeling them enzyme, receptor protein, and transport protein. Page 3 of 12

4 Now, draw from memory a labeled diagram of the fluid mosaic membrane! b.2. Diagram an individual phospholipid molecule. What properties do the phospholipids give the membrane? b.3. Which properties of the embedded proteins are similar to that of the phospholipids? b.4. For each of the following types of molecules, explain whether or not it can freely pass through the membrane: small nonpolar molecules large polar molecules ions water For the types of molecules that do not pass freely through the membrane, how do they move across? Include specific examples. c. Some cells have cell walls. What are the two major functions of cell walls? c.1. What types of cells have a cell wall? What kind of molecules are unique to each type. 2.B.2 Growth and dynamic homeostasis are maintained by the constant movement of molecules across membranes. a./b./c. For each of the types of transport listed below: Describe the transport process and explain how the organization of cell membranes functions in the movement of specific molecules across membranes; and, Explain the significance of each type of transport to a specific cell (you may use different cell types as examples.) passive transport active transport endocytosis exocytosis osmosis (include hypotonic, hypertonic, and isotonic) facilitated diffusion glucose transport Na + /K + transport Add to your diagram of the fluid mosaic membrane. Show the types of transport across the membrane. Page 4 of 12

5 Review diffusion and the function of cell membranes by matching each of the phrases on the right with the appropriate mechanisms from the list on the left. Two questions require more than one answer. A. Diffusion B. Active transport C. Osmosis D. Phagocytosis E. Passive transport F. Facilitated diffusion G. Pinocytosis H. Receptor-mediated endocytosis I. Exocytosis 1. Diffusion across a biological membrane 2. Moves solutes against concentration gradient 3. Any spread of molecules from area of higher concentration to area of lower concentration 4. Diffusion with help of transport protein 5. Three types of endocytosis 6. Engulfing of fluid in membrane vesicles 7. Diffusion of water across selectively permeable membrane, from hypotonic to hypertonic solution 8. Transport molecules need ATP to function 9. Enables cell to engulf bulk quantities of specific large molecules 10. How oxygen and carbon dioxide enter and leave cells 11. Two types of passive transport 12. Engulfing of particle in membrane vesicle 13. Fusion of membrane-bound vesicle with membrane, and dumping of contents outside cell Page 5 of 12

6 Experiment Analysis Graph 1: Percent Change in Mass of Dialysis Tubing in Sucrose Solutions of Different Molarities Answer the following questions, based on Graph 1 above. Explain the relationship between the change in mass and the molarity of sucrose within the dialysis bags. Predict what would happen to the mass of each bag in this experiment if all the bags were placed in a 0.4 M sucrose solution instead of distilled water. Explain your response. Why would you calculate the percent change in mass rather than simply using the change in mass? A dialysis bag is filled with distilled water and then placed in a sucrose solution. The bag s initial mass is 20g, and its final mass is 18g. Calculate the percent change of mass. Page 6 of 12

7 Graph 2: Percent Change in Mass of Potato Cores at Different Molarities of Sucrose Answer the following two questions, based on Graph 2 above. Determine the osmotic molar concentration of the potato core. *Indicate this point on the graph. Molar concentration of sucrose = M What is the osmotic potential of the sucrose solution? The solute potential of this sucrose solution can be calculated using the following formula: ψs = icrt Where, i = ionization constant (for sucrose this is 1 because sucrose does not ionize in water) C = osmotic molar concentration R = pressure constant (handbook value: R = liter bars/mole K) T = temperature in K (take an average of recorded temperatures) If a potato is allowed to dehydrate by sitting in the open air, would the water potential of the potato cells decrease or increase? Why? If a plant cell has a lower water potential than its surrounding environment, and if pressure is equal to zero, is the cell hypertonic or hypotonic to its environment? Will the cell gain water or lose water? Explain your response. What effect does adding solute have on the solute potential component of that solution? Why? Explain what would happen to a red blood cell placed in distilled water in terms of concentration of water molecules and water potential. Page 7 of 12

8 2.B.3 Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. a. Identify the two main functions that internal membranes serve to help facilitate cellular processes. b. Explain how each of the following membranes and membrane-bound organelles in eukaryotic cells localize (compartmentalize) intracellular metabolic processes and specific enzymatic reactions. endoplasmic reticulum mitochondria chloroplasts lysosomes vacuoles Golgi nuclear envelope Sketch and label the endomembrane system on this diagram. Include rough ER, smooth ER, ribosomes, Golgi apparatus, lysosome, and transport vesicles. (1) Trace the path of a protein from its site of manufacture to the outside of the cell with a red arrow. (2) Trace the path of a protein incorporated into a lysosome in blue. (3) Trace the path of a protein incorporated into the plasma membrane in green. (4) Trace the path of a lipid secreted from the cell in yellow. Page 8 of 12

9 Review the nucleus and the various structures that make up the endomembrane system by matching each phrase on the left with a structure from the list on the right. Answers can be used more than once. 1. Lipids manufactured here 2. Small structure that makes protein 3. Contains chromatin 4. Sac of enzymes that digest things 5. Carries secretions for export from cell 6. Breaks down drugs and toxins in liver 7. Makes cell membranes 8. Cell control center 9. Numerous ribosomes give it its name 10. "Ships" products to plasma membrane, outside, or to other organelles 11. May store water, needed chemicals, wastes, pigments in plant cell 12. Buds off from Golgi apparatus 13. Defective in Pompe's disease and Tay-Sachs disease 14. Proteins made here for secretion from cell 15. Pumps out excess water from some cells 16. Nonmembranous organelle 17. Takes in transport vesicles from ER and modifies their contents 18. Digests food, wastes, foreign substances 19. Surrounded by double layer of membrane with pores A. Nucleus 20. How proteins, other substances get from ER to Golgi apparatus B. Transport vesicle C. Central vacuole D. Smooth ER E. Lysosome F. Golgi apparatus G. Rough ER H. Contractile vacuole I. Ribosome Page 9 of 12

10 c. Examine cell diagrams and then compare the structures of the cells of prokaryotes, plants and animals by checking off their characteristics below. Characteristic Prokaryote Cell Plant Cell Animal Cell Prokaryotic structure Eukaryotic structure Relatively large size Relatively small size Extensive internal memb. Plasma membrane Cell wall Cytoplasm Ribosomes Nucleus Rough ER Smooth ER Golgi apparatus Lysosome Peroxisome Mitochondrion Chloroplast Central vacuole Cytoskeleton Cilia/Flagellum (9+2) Flagellum Centriole Linear chromosomes Circular chromosome Page 10 of 12

11 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes. Explain how the following organelles work together to perform living functions: 1. Nucleus and ribosomes 2. Endoplasmic reticulum and ribosomes 3. Golgi bodies and lysosomes 4. Nucleus and endoplasmic reticulum 5. Endoplasmic reticulum and Golgi bodies and vesicles 6. Endoplasmic reticulum and Golgi bodies and cell membrane 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter. a. Explain how organisms, at the cellular level, have areas or compartments that perform a subset of functions related to energy and matter, and how these parts contribute to the whole. Page 11 of 12

12 How do the following topics connect to what you are learning in this unit? 1.B.1b Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today: Structural evidence supports the relatedness of all eukaryotes. 3.D.1 Cell communication processes share common features that reflect a shared evolutionary history. 3.D.2 Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. Enrichment 1. Explain how technology can be used to better understand living processes at the cellular level. 2. Compare the components of the cytoskeleton by indicating with a checkmark which of the following are characteristics of microfilaments or microtubules. Hollow tubes Solid rods Made of tubulin Made of actin Help cell change cell shape Act in muscle cell contraction Move chromosomes Act as tracks for organelles Give cell rigidity, shape In cilia In flagella In centrioles Microfilaments Microtubules 3. Match each cell surface characteristic or structure on the left with a phrase on the right. A. Tight junction B. Plasmodesma C. Anchoring junction D. Cell wall E. Communicating junction F. Extracellular matrix 1. Channel between animal cells 2. Made of cellulose 3. Link animal cells in leakproof sheet 4. Channel between plant cells 5. Connects animal cells, leaving space between them 6. Sticky layer holds animal cells together Page 12 of 12

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells Chapter 4: A Tour of the Cell 1. Cell Basics 2. Prokaryotic Cells 3. Eukaryotic Cells 1. Cell Basics Limits to Cell Size There are 2 main reasons why cells are so small: If cells get too large: 1) there

More information

Biol 101 Exam 2: Cells & Cell Membranes Fall 2008

Biol 101 Exam 2: Cells & Cell Membranes Fall 2008 MULTIPLE CHOICE. There are 60 questions on this exam. All answers go on the Scantron. Choose the one alternative that best completes the statement or answers the question. 1. The cell theory is one of

More information

Eukaryotic Cell Structure. Section 7-3 p.179-187

Eukaryotic Cell Structure. Section 7-3 p.179-187 Eukaryotic Cell Structure Section 7-3 p.179-187 Group work vs. Cell Parts? Plasma membrane Cell wall Cellular Boundaries Fairly rigid structure located outside the plasma membrane that provides additional

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Part A Multiple Choice 1. The fluid mosaic model describes membranes as having A. a set of protein channels separated by phospholipids. B. a bilayer of phospholipids in

More information

Lecture 4 Cell Membranes & Organelles

Lecture 4 Cell Membranes & Organelles Lecture 4 Cell Membranes & Organelles Structure of Animal Cells The Phospholipid Structure Phospholipid structure Encases all living cells Its basic structure is represented by the fluidmosaic model Phospholipid

More information

7-2 Eukaryotic Cell Structure

7-2 Eukaryotic Cell Structure 2 of 49 Eukaryotic Cell Structures Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists divide the eukaryotic

More information

Study Guide. Explain how the genetic information in the nucleus is used to direct the production of proteins in the cytoplasm.

Study Guide. Explain how the genetic information in the nucleus is used to direct the production of proteins in the cytoplasm. Cells: The building blocks of life Study Guide Compare the following pairs of terms, noting the most significant differences: prokaryotic cells versus eukaryotic cells, plant cells versus animal cells.

More information

Test Booklet. Subject: SC, Grade: 9- Quiz: Cell Processes. Student name:

Test Booklet. Subject: SC, Grade: 9- Quiz: Cell Processes. Student name: Test Booklet Subject: SC, Grade: 9- Quiz: Cell Processes Student name: Author: Jennifer Holm School: Lincoln High School Printed: Tuesday February 09, 2016 1 Which describes the cell theory? A Cells are

More information

Name Class Date. What are the parts of a eukaryotic cell? What is the function of each part of a eukaryotic cell?

Name Class Date. What are the parts of a eukaryotic cell? What is the function of each part of a eukaryotic cell? CHAPTER 1 2 SECTION Cells: The Basic Units of Life Eukaryotic Cells BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the parts of a eukaryotic cell? What

More information

Ch 1 - The Cell & Cell Processes

Ch 1 - The Cell & Cell Processes Ch 1 - The Cell & Cell Processes P All cells have Cell membrane - phospholipid bilayer surrounding cell parts Cytoplasm - everything between cell membrane + nucleus P Most cells have Nucleus - brain of

More information

Biology. Biology. Slide 1 of 49. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 49. Copyright Pearson Prentice Hall Biology Biology 1 of 49 2 of 49 Comparing the Cell to a Factory 1. Eukaryotic Cell Structures A.Organelles: Structures within a eukaryotic cell perform important cellular functions B. Cytoplasm: * Gel/liquid

More information

Chapter 2: Cell Structure and Function pg. 70-107

Chapter 2: Cell Structure and Function pg. 70-107 UNIT 1: Biochemistry Chapter 2: Cell Structure and Function pg. 70-107 Organelles are internal structures that carry out specialized functions, interacting and complementing each other. Animal and plant

More information

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration.

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration. Biology Keystone (PA Core) Quiz Homeostasis and Transport - (BIO.A.4.1.1 ) Plasma Membrane, (BIO.A.4.1.2 ) Transport Mechanisms, (BIO.A.4.1.3 ) Transport Facilitation Student Name: Teacher Name: Jared

More information

Objectives List scientists who contributed to the cell theory List the components of the cell theory Compare prokaryote and eukaryote cells Label a

Objectives List scientists who contributed to the cell theory List the components of the cell theory Compare prokaryote and eukaryote cells Label a Objectives List scientists who contributed to the cell theory List the components of the cell theory Compare prokaryote and eukaryote cells Label a plant and an animal cell Know the functions of cell organelles

More information

Biological cell membranes

Biological cell membranes Unit 14: Cell biology. 14 2 Biological cell membranes The cell surface membrane surrounds the cell and acts as a barrier between the cell s contents and the environment. The cell membrane has multiple

More information

Chapter 5 The Plasma Membrane and Transport

Chapter 5 The Plasma Membrane and Transport Chapter 5 The Plasma Membrane and Transport State Standard Standard 1.a. Membrane Function 1, Forms a boundary between living cells and their surroundings. 2. Controls the movement of molecules into and

More information

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures.

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures. 7.2 Cell Structure Lesson Objectives Describe the structure and function of the cell nucleus. Describe the role of vacuoles, lysosomes, and the cytoskeleton. Identify the role of ribosomes, endoplasmic

More information

Biol115 The Thread of Life

Biol115 The Thread of Life Biol115 The Thread of Life Lecture 13 A panoramic tour of the cell It is the cells which create and maintain in us, during the span of our lives, our will to live and survive, to search and experiment,

More information

Section 7-2 Eukaryotic Cell Structure

Section 7-2 Eukaryotic Cell Structure Name Class Date Section 7-2 Eukaryotic Cell Structure (pages 174-181) Key Concept What are the functions of the major cell structures? Comparing a Cell to a Factory (page 174) 1. What is an organelle?

More information

Cells & Cell Organelles

Cells & Cell Organelles Cells & Cell Organelles The Building Blocks of Life H Biology Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell

More information

Cell Structure and Function

Cell Structure and Function Bio 100 - Cells 1 Cell Structure and Function Tenets of Cell Theory 1. All living things are made up of one or more cells 2. Cells are the basic living units within organisms, and the chemical reactions

More information

Plasma Membrane hydrophilic polar heads

Plasma Membrane hydrophilic polar heads The Parts of the Cell 3 main parts in ALL cells: plasma membrane, cytoplasm, genetic material this is about the parts of a generic eukaryotic cell Plasma Membrane -is a fluid mosaic model membrane is fluid

More information

1.1.1 Cell Structure. Relevant Past Paper Questions. Condensed Notes By Specification Point. 2013 January 5 e f i j. 2012 June 2 e f g i

1.1.1 Cell Structure. Relevant Past Paper Questions. Condensed Notes By Specification Point. 2013 January 5 e f i j. 2012 June 2 e f g i 1.1.1 Cell Structure Relevant Past Paper Questions Paper Question Specification point(s) tested 2013 January 5 e f i j 2012 June 2 e f g i 2012 January 4 a b d f 2011 June 1 part a only f 2011 January

More information

Homeostasis and Transport Module A Anchor 4

Homeostasis and Transport Module A Anchor 4 Homeostasis and Transport Module A Anchor 4 Key Concepts: - Buffers play an important role in maintaining homeostasis in organisms. - To maintain homeostasis, unicellular organisms grow, respond to the

More information

Biology Chapter 7 Practice Test

Biology Chapter 7 Practice Test Biology Chapter 7 Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. The work of Schleiden and Schwann can be summarized by

More information

Review of the Cell and Its Organelles

Review of the Cell and Its Organelles Biology Learning Centre Review of the Cell and Its Organelles Tips for most effective learning of this material: Memorize the names and structures over several days. This will help you retain what you

More information

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org Chapter 3 Cellular Structure and Function Worksheets (Opening image copyright by Sebastian Kaulitzki, 2010. Used under license from Shutterstock.com.) Lesson 3.1: Introduction to Cells Lesson 3.2: Cell

More information

Six major functions of membrane proteins: Transport Enzymatic activity

Six major functions of membrane proteins: Transport Enzymatic activity CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic

More information

4. Biology of the Cell

4. Biology of the Cell 4. Biology of the Cell Our primary focus in this chapter will be the plasma membrane and movement of materials across the plasma membrane. You should already be familiar with the basic structures and roles

More information

Microscopes. Eukaryotes Eukaryotic cells are characterized by having: DNA in a nucleus that is bounded by a membranous nuclear envelope

Microscopes. Eukaryotes Eukaryotic cells are characterized by having: DNA in a nucleus that is bounded by a membranous nuclear envelope CH 6 The Cell Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye. In a light microscope (LM), visible light is passed through a specimen and then through glass

More information

The Cell Interior and Function

The Cell Interior and Function The Cell Interior and Function 5 5.0 CHAPTER PREVIEW Investigate and understand the organization and function of the cell interior. Define the differences between eukaryotic and prokaryotic cell structure.

More information

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope Biology 101 Chapter 4 Cells as the Basic Unit of Life The Cell Theory Major Contributors: Galileo = first observations made with a microscope Robert Hooke = first to observe small compartments in dead

More information

Cell Structure & Function!

Cell Structure & Function! Cell Structure & Function! Chapter 3! The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' but 'That's funny.! -- Isaac Asimov Animal Cell Plant Cell Cell

More information

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells.

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells. CYTOLOGY Cytology Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells. A. two major cell types B. distinguished by structural organization See table on handout for differences.

More information

The Cell: Organelle Diagrams

The Cell: Organelle Diagrams The Cell: Organelle Diagrams Fig 7-4. A prokaryotic cell. Lacking a true nucleus and the other membrane-enclosed organelles of the eukaryotic cell, the prokaryotic cell is much simpler in structure. Only

More information

The correct answer is d A. Answer a is incorrect. The cell theory states that all living things are composed of one or more cells.

The correct answer is d A. Answer a is incorrect. The cell theory states that all living things are composed of one or more cells. 1. Which of the following statements is NOT part of the cell theory? a. All organisms are composed of one or more cells. b. Cells come from other cells by division. c. Cells are the smallest living things.

More information

Cell Unit Practice Test #1

Cell Unit Practice Test #1 ell Unit Practice Test #1 Name: ate: 1. Which organelle is primarily concerned with the conversion of potential energy of organic compounds into suitable form for immediate use by the cell?. mitochondria.

More information

Table of Contents. North Carolina Essential Standards Correlation Chart... 6

Table of Contents. North Carolina Essential Standards Correlation Chart... 6 Table of Contents North Carolina Essential Standards Correlation Chart........ 6 Objectives Chapter 1 Cell Biology................................. 9 Lesson 1 Cell Structure...............................

More information

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole Name: ate: 1. Which structure is outside the nucleus of a cell and contains N?. chromosome. gene. mitochondrion. vacuole 2. potato core was placed in a beaker of water as shown in the figure below. Which

More information

AP Biology Mt. Mansfield Union High School Cell Theory and Structure

AP Biology Mt. Mansfield Union High School Cell Theory and Structure Cell Organelles Organelles- membrane bound, sub-cellular structures that perform specialized tasks. 1) Physically separate different chemical reactions 2) Separate different chemical reactions that take

More information

Chapter 7: Membrane Structure and Function

Chapter 7: Membrane Structure and Function Name Period Concept 7.1 Cellular membranes are fluid mosaics of lipids and proteins 1. The large molecules of all living things fall into just four main classes. Name them. 2. Explain what is meant when

More information

Cellular Structure and Function

Cellular Structure and Function Chapter Test A CHAPTER 7 Cellular Structure and Function Part A: Multiple Choice In the space at the left, write the letter of the term or phrase that best answers each question. 1. Which defines a cell?

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

What will you learn?

What will you learn? What will you learn? Cell Membrane and Transport PLO B9 B10 It is expected that students will analyse the structure and function of the cell membrane explain why cells divide when they reach a particular

More information

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production

More information

7. A selectively permeable membrane only allows certain molecules to pass through.

7. A selectively permeable membrane only allows certain molecules to pass through. CHAPTER 2 GETTING IN & OUT OF CELLS PASSIVE TRANSPORT Cell membranes help organisms maintain homeostasis by controlling what substances may enter or leave cells. Some substances can cross the cell membrane

More information

Transport Across Cell Membranes

Transport Across Cell Membranes Transport Across Cell Membranes CELL MEMBRANE STRUCTURE A phospholipid bilayer makes up the main part of the cell membrane Each phospholipid molecule contains a charged polar head (H 2 O-loving) and non-polar,

More information

Keystone Study Guide Module A: Cells and Cell Processes

Keystone Study Guide Module A: Cells and Cell Processes Keystone Study Guide Module A: Cells and Cell Processes Topic 1: Biological Principles Cells and the Organization of Life Characteristics of Life all living things share the following characteristics:

More information

COPYRIGHTED MATERIAL. Cells. Review. Structure and Function of the Cell

COPYRIGHTED MATERIAL. Cells. Review. Structure and Function of the Cell 8682-3 Ch02.F 12/15/00 9:34 AM Page 35 Cells Review Structure and Function of the Cell The cell is the basic functional unit of all living things. The plasma membrane (cell membrane) bounds the cell and

More information

CHAPTER 5.1 5.2: Plasma Membrane Structure

CHAPTER 5.1 5.2: Plasma Membrane Structure CHAPTER 5.1 5.2: Plasma Membrane Structure 1. Describe the structure of a phospholipid molecule. Be sure to describe their behavior in relationship to water. 2. What happens when a collection of phospholipids

More information

FIGURE 2.18. A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

FIGURE 2.18. A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water). PLASMA MEMBRANE 1. The plasma membrane is the outermost part of a cell. 2. The main component of the plasma membrane is phospholipids. FIGURE 2.18 A. The phosphate end of the molecule is polar (charged)

More information

Cell Membrane & Tonicity Worksheet

Cell Membrane & Tonicity Worksheet NAME ANSWER KEY DATE PERIOD Cell Membrane & Tonicity Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the PLASMA membrane and is made of a phospholipid BI-LAYER.

More information

1. The lipid layer that forms the foundation of cell membranes is primarily composed of molecules called.

1. The lipid layer that forms the foundation of cell membranes is primarily composed of molecules called. Cell Membranes 1. The lipid layer that forms the foundation of cell membranes is primarily composed of molecules called. 2. Due to the repellent nature of the polar water molecules, the tails of the phospholipids

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function -plasma membrane acts as a barrier between cells and the surrounding. -plasma membrane is selective permeable -consist of lipids, proteins and carbohydrates -major lipids

More information

AP Biology-Chapter #6 & 7 Review

AP Biology-Chapter #6 & 7 Review DO NOT WRITE ON THIS TEST- USE ANSWER DOCUMENT AP Biology-Chapter #6 & 7 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. All of the following are

More information

CELLS: PLANT CELLS 20 FEBRUARY 2013

CELLS: PLANT CELLS 20 FEBRUARY 2013 CELLS: PLANT CELLS 20 FEBRUARY 2013 Lesson Description In this lesson we will discuss the following: The Cell Theory Terminology Parts of Plant Cells: Organelles Difference between plant and animal cells

More information

Cells. Structure, Function and Homeostasis

Cells. Structure, Function and Homeostasis Cells Structure, Function and Homeostasis Characteristics of Cells Basic unit of life anything alive is made of cells Plasma membrane (skin) that separates them from the environment. Skeletonsfor protection

More information

Biology I. Chapter 7

Biology I. Chapter 7 Biology I Chapter 7 Interest Grabber NOTEBOOK #1 Are All Cells Alike? All living things are made up of cells. Some organisms are composed of only one cell. Other organisms are made up of many cells. 1.

More information

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Activity Title: Quick Hit Goal of Activity: To perform formative and summative assessments

More information

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside www.denniskunkel.com Tour of the Cell www.denniskunkel.com Today s Topics Properties of all cells Prokaryotes and Eukaryotes Functions of Major Cellular Organelles Information, Synthesis&Transport,, Vesicles

More information

Chapter 5: The Working Cell

Chapter 5: The Working Cell Chapter 5: The Working Cell SOME BASIC ENERGY CONCEPTS Energy makes the world go around, but what is energy? Energy is defined as the capacity to perform work. Kinetic energy is the energy of motion. Potential

More information

Chapter 5 Organelles. Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells.

Chapter 5 Organelles. Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells. Chapter 5 Organelles Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells. Check Your Understanding What is a cell? How do we visualize cells?

More information

CHARACTERISTICS OF PROKARYOTIC AND EUKARYOTIC CELLS

CHARACTERISTICS OF PROKARYOTIC AND EUKARYOTIC CELLS CHARACTERISTICS OF PROKARYOTIC AND EUKARYOTIC CELLS CHAPTER 4 Cellular Characteristics Cellular Characteristics 2 Domains, then Phyla 1 Domain, 4 kingdoms, then Phyla Prokaryotic Cells Sizes 0.5-2µm (average)

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

Comparing Plant And Animal Cells

Comparing Plant And Animal Cells Comparing Plant And Animal Cells http://khanacademy.org/video?v=hmwvj9x4gny Plant Cells shape - most plant cells are squarish or rectangular in shape. amyloplast (starch storage organelle)- an organelle

More information

Bell Ringer. What do you already know about cells? What types of cells have you heard of? Do you know what kind of cell this is?

Bell Ringer. What do you already know about cells? What types of cells have you heard of? Do you know what kind of cell this is? Bell Ringer Do you know what kind of cell this is? What do you already know about cells? What types of cells have you heard of? WHAT CELL IS IT? In your groups, look at the picture of a cell you have been

More information

The human respiratory system includes the nose, the larynx, and the lungs. This body system helps maintain homeostasis by

The human respiratory system includes the nose, the larynx, and the lungs. This body system helps maintain homeostasis by Study Island 1. During heatstroke, the body can't dispose of excess heat. As a result, the homeostatic balance is disturbed, and internal body temperatures can reach as much as 110. Heatstroke is dangerous

More information

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta Compartmentalization of the Cell Professor Alfred Cuschieri Department of Anatomy University of Malta Objectives By the end of this session the student should be able to: 1. Identify the different organelles

More information

AP Biology. The Cell Membrane

AP Biology. The Cell Membrane The Cell Membrane Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those structure function

More information

Osmosis, Diffusion and Cell Transport

Osmosis, Diffusion and Cell Transport Osmosis, Diffusion and Cell Transport Types of Transport There are 3 types of transport in cells: 1. Passive Transport: does not use the cell s energy in bringing materials in & out of the cell 2. Active

More information

Section 7-3 Cell Boundaries

Section 7-3 Cell Boundaries Note: For the past several years, I ve been puzzling how to integrate new discoveries on the nature of water movement through cell membranes into Chapter 7. The Section below is a draft of my first efforts

More information

Multiple Choice Questions

Multiple Choice Questions Chapter 5 THE FUNDAMENTAL UNIT OF LIFE Multiple Choice Questions 1. Which of the following can be made into crystal? (a) A Bacterium (b) An Amoeba (c) A Virus (d) A Sperm 2. A cell will swell up if (a)

More information

Name Date Class. This section describes cell structure and function in plant cells, animal cells, and bacteria.

Name Date Class. This section describes cell structure and function in plant cells, animal cells, and bacteria. Looking Inside Cells This section describes cell structure and function in plant cells, animal cells, and bacteria. Use Target Reading Skills Before you read, preview Figure 12. Then write two questions

More information

Chapter 4 Lecture Notes: Eukaryotic Cell Structure and Function

Chapter 4 Lecture Notes: Eukaryotic Cell Structure and Function Chapter 4 Lecture Notes: Eukaryotic Cell Structure and Function I. Overview: What is a eukaryote? A. Organisms whose cell/cells have a membrane-enclosed nucleus B. Have numerous other intracellular membranes

More information

Plant and Animal Cells

Plant and Animal Cells Plant and Animal Cells a. Explain that cells take in nutrients in order to grow, divide and to make needed materials. S7L2a b. Relate cell structures (cell membrane, nucleus, cytoplasm, chloroplasts, and

More information

Eukaryotes. www.njctl.org PSI Biology Eukaryotes & Gene Expression

Eukaryotes. www.njctl.org PSI Biology Eukaryotes & Gene Expression Eukaryotes The Eukaryotic Cell Classwork 1. Identify two characteristics that are shared by all cells. 2. Suppose you are investigating a cell that contains a nucleus. Would you categorize this cell as

More information

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic Cell Biology A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells or composed of cells. 1 The interior contents

More information

Cell Biology - Part 2 Membranes

Cell Biology - Part 2 Membranes Cell Biology - Part 2 Membranes The organization of cells is made possible by membranes. Membranes isolate, partition, and compartmentalize cells. 1 Membranes isolate the inside of the cell from the outside

More information

Cell Membrane Coloring Worksheet

Cell Membrane Coloring Worksheet Cell Membrane Coloring Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the plasma membrane and is made of a phospholipid bilayer. The phospholipids have a hydrophilic

More information

Week 1 EOC Review Cell Theory, Cell Structure, Cell Transport

Week 1 EOC Review Cell Theory, Cell Structure, Cell Transport Week 1 EOC Review Cell Theory, Cell Structure, Cell Transport Benchmarks: SC.912.L.14.1 Describe the scientific theory of cells (cell theory) and relate the history of its discovery to the processes of

More information

Cells (ScienceGHSGT1) 1. Which part of the cell provides energy through the process of cellular respiration?

Cells (ScienceGHSGT1) 1. Which part of the cell provides energy through the process of cellular respiration? Name: Date: 1. Which part of the cell provides energy through the process of cellular respiration? A. cell wall B. cytoplasm C. mitochondrion D. cell membrane 2. All cells must have a A. cell membrane.

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

Basic Characteristics of Cells. Cell Structure and Function. Each Cell Has Three Primary Regions. Basic Characteristics of Cells. The Plasma Membrane

Basic Characteristics of Cells. Cell Structure and Function. Each Cell Has Three Primary Regions. Basic Characteristics of Cells. The Plasma Membrane Basic Characteristics of Cells Cell Structure and Function Chapter 3 Smallest living subdivision of the human body Diverse in structure and function Small Basic Characteristics of Cells Each Cell Has Three

More information

3.1 AS Unit: Cells, Exchange and Transport

3.1 AS Unit: Cells, Exchange and Transport 3.1 AS Unit: Cells, Exchange and Transport Module 1: Cells 1.1.1 Cell Structure Candidates should be able to: (a) state the resolution and magnification that can be achieved by a light microscope, a transmission

More information

The light comes from a set of chemical reactions, the luciferin-luciferase system Fireflies make light energy from chemical energy

The light comes from a set of chemical reactions, the luciferin-luciferase system Fireflies make light energy from chemical energy Cool Fires Attract Mates and Meals Fireflies use light instead of chemical signals to send a message to potential mates Females can also use light to attract males of other firefly species, as meals not

More information

Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes.

Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes. LESSON 1. CELLS & TISSUES Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes. THE CELL All living matter is composed of functional

More information

The structure and function of the plasma membrane

The structure and function of the plasma membrane The structure and function of the plasma membrane Our current view of membrane structure is based on the fluid mosaic model. This model proposes that membranes are not rigid, with molecules locked into

More information

Cell Processes. Chapter Review

Cell Processes. Chapter Review Name Date Class Chapter Review Cell Processes Part A. Vocabulary Review Directions: Select the term from the following list that matches each description. active transport energy enzyme inorganic compound

More information

THE HISTORY OF CELL BIOLOGY

THE HISTORY OF CELL BIOLOGY SECTION 4-1 REVIEW THE HISTORY OF CELL BIOLOGY Define the following terms. 1. cell 2. cell theory Write the correct letter in the blank. 1. One early piece of evidence supporting the cell theory was the

More information

Cell Structure and Function. Eukaryotic Cell: Neuron

Cell Structure and Function. Eukaryotic Cell: Neuron Cell Structure and Function Eukaryotic Cell: Neuron Cell Structure and Function Eukaryotic Cells: Blood Cells Cell Structure and Function Prokaryotic Cells: Bacteria Cell Structure and Function All living

More information

AP BIOLOGY 2006 SCORING GUIDELINES. Question 1

AP BIOLOGY 2006 SCORING GUIDELINES. Question 1 AP BIOLOGY 2006 SCORING GUIDELINES Question 1 A major distinction between prokaryotes and eukaryotes is the presence of membrane-bound organelles in eukaryotes. (a) Describe the structure and function

More information

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue RAD 223 Radiography physiology Lecture Notes First lecture: Cell and Tissue Physiology: the word physiology derived from a Greek word for study of nature. It is the study of how the body and its part work

More information

UNIT 1 - Living Organisms and the Environment Situations. Cells

UNIT 1 - Living Organisms and the Environment Situations. Cells Lesson Summaries HUMAN AND SOCIAL BIOLOGY UNIT 1 - Living Organisms and the Environment Situations Lesson 2 Cells OBJECTIVES At the end of this lesson you will be able to: a) Describe the structure of

More information

Cell Cell Cell-membrane, Cytoplasm and Nucleus. Cytoplasm Cytosol and Cell Organelles

Cell Cell Cell-membrane, Cytoplasm and Nucleus. Cytoplasm Cytosol and Cell Organelles Cell, Mitosis and Cell Membrane Transport Cell Theory 4 basic concepts of cell theory are: Cells are the units of structure (building blocks) of all animals and plants. Cells are the smallest unit of function

More information

Modes of Membrane Transport

Modes of Membrane Transport Modes of Membrane Transport Transmembrane Transport movement of small substances through a cellular membrane (plasma, ER, mitochondrial..) ions, fatty acids, H 2 O, monosaccharides, steroids, amino acids

More information

Chapter 8. Movement across the Cell Membrane. AP Biology

Chapter 8. Movement across the Cell Membrane. AP Biology Chapter 8. Movement across the Cell Membrane More than just a barrier Expanding our view of cell membrane beyond just a phospholipid bilayer barrier phospholipids plus Fluid Mosaic Model In 1972, S.J.

More information

Introduction to the Cell: Plant and Animal Cells

Introduction to the Cell: Plant and Animal Cells Introduction to the Cell: Plant and Animal Cells Tissues, Organs, and Systems of Living Things Cells, Cell Division, and Animal Systems and Plant Systems Cell Specialization Human Systems All organisms

More information

3 Domains of Life Eukaryotic Cell (non bacterial) Prokaryotic Cell (bacteria)

3 Domains of Life Eukaryotic Cell (non bacterial) Prokaryotic Cell (bacteria) Prokaryotic and Eukaryotic Cells Two Main Classes of Cells Prokaryotic (Bacteria and Archaea) Pro = Before ; Karyon = Kernel No nucleus, DNA coiled up inside cell Eukaryotic (Everything else) Eu = True

More information

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II.

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II. BSC 2010 - Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information