Linear Algebra Methods for Data Mining

Size: px
Start display at page:

Download "Linear Algebra Methods for Data Mining"

Transcription

1 Linear Algebra Methods for Data Mining Saara Hyvönen, Spring 2007 The Singular Value Decomposition (SVD) Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki

2 Matrix decompositions We wish to decompose the matrix A by writing it as a product of two or more matrices: A m n = B m k C k n, A m n = B m k C k r D r n This is done in such a way that the right side of the equation yields some useful information or insight to the nature of the data matrix A. Or is in other ways useful for solving the problem at hand. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 1

3 Example (SVD): customer \ day Wed Thu Fri Sat Sun ABC Inc CDE Co FGH Ltd NOP Inc Smith Brown Johnson Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 2

4 = ( ) ( ) Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 3

5 The Singular Value Decomposition Any m n matrix A, with m n, can be factorized A = U ( ) Σ V T, 0 where U R m m and V R n n are orthogonal, and Σ R n n is diagonal: Σ = diag(σ 1, σ 2,..., σ n ), σ 1 σ 2... σ n 0. Skinny version : A = U 1 ΣV T, U 1 R m n. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 4

6 Singular values and singular vectors The diagonal elements σ j of Σ are the singular values of the matrix A. The columns of U and V are the left singular vectors and right singular vectors respectively. Equivalent form of SVD: Av j = σ j u j, A T u i = σ j v j. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 5

7 Outer product form: Start from skinny version of SVD: σ 1 A = U 1 ΣV T σ = (u 1 u 2... u n ) 2 σ 1 v1 T σ = (u 1 u 2... u n ) 2 v T 2. = σ n vn T n i=1... σ i u i v T i... σ n v T 1 v T 2. v T n Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 6

8 to get the outer product form A = n i=1 σ i u i v T i. This is a sum of rank one matrices!! (Each term σ i u i vi T in the sum is a rank one matrix). Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 7

9 Example A= [U,S,V]=svd(A) U= S= V= Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 8

10 [U,S,V]=svd(A,0) U= S= V= Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 9

11 Rank deficient case %A is not of full rank %i.e. the columns of A are not linearly independent A(:,3)=A(:,1)+A(:,2)*0.5 A= [U,S,V]=svd(A,0) U= Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 10

12 S= V= Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 11

13 Matrix approximation Theorem. Let U k = (u 1 u 2... u k ), V k = (v 1 v 2... v k ) and Σ k = diag(σ 1, σ 2,..., σ k ), and define A k = U k Σ k V T k. Then min rank(b) k A B 2 = A A k 2 = σ k+1. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 12

14 What does this mean? It means, that the best approximation of rank k for the matrix A is A k = U k Σ k V T k. Useful for compression noise reduction It also means, that we can estimate the correct rank by looking at the singular values... Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 13

15 Example: noise reduction Assume A is a low rank matrix plus noise: A = A k + N. Then typically singular values of A have the following behaviour: 8 singular values index Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 14

16 2 log of singular values index Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 15

17 SVD is useful for: compression noise reduction finding concepts or topics (text mining/lsi) data exploration and visualizing data (e.g. spatial data/pca) classification (of e.g. handwritten digits) Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 16

18 SVD appears under different names: Principal Component Analysis (PCA) Latent Semantic Indexing (LSI)/Latent Semantic Analysis (LSA) Karhunen-Loeve expansion/hotelling transform (in image processing) Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 17

19 Example: Classification of handwritten digits Digitized images, 28 28, grayscale. Task: classify unknown digits. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 18

20 Digitized images, 28 28, grayscale. The image can also be considered as a function of two variables: c = c(x, y), where c is the intensity of the color. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 19

21 The image of one digit is a matrix (of size 28 28). Stacking all the columns of each image matrix above each other gives a vector (of size 784 1). The image vectors can then be collected into a data matrix (of size 784 N, where N is the number of images). Distance between images: Euclidean distance in R 784 or cosine distance. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 20

22 Naive method Given a data base of handwritten digits (training set), compute the mean (centroid) of all digits of one kind. Centroid of threes: Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 21

23 Naive method Given a data base of handwritten digits (training set), compute the mean (centroid) of all digits of one kind. Compare an unknown digit (from the test set) with all means, and classify as the digit that is closest (using e.g. euclidean or cosine distance). Good results for well-written digits, worse for bad digits. does not use any information about the variation of the digits of one kind. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 22

24 Results using the naive method Success rate around 75%. Good... but not good enough! For the homework set (training set=4000, test set size = 2000) the number of misclassifications per digit look like this: digit missed total Some digits are easier to recognize than others. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 23

25 SVD Any matrix A can be written as a sum of rank 1 matrices: A = n i=1 σ i u i v T i. Consider a data matrix A,where each column of A is one image of a digit. Column j: a j = n i=1 (σ iv ij )u i. u j is the same size as a j. We can fold it back to get an image. We can think of the left singular vectors u j as singular images. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 24

26 Compute the SVD of the matrix fo one digit (=3), (392 images). Singular values and right singular vectors v j : 10 5 Singular values of threes 0.15 Three right singular vectors of threes Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 25

27 Left singular vectors or singular images u j : Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 26

28 Classification Let z be and unknown digit, and consider the least squares problem (for some predetermined k): min α j z k j=1 α j u j. Then, if z is the same digit as that represented by the u j, then the residual should be small. I.e. z should be well approximated by some linear combination of the u j. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 27

29 Assume Principal components (SVD) regression Each digit is well characterize by a few of the first singular images of its own kind. Each digit is NOT characterized very well by a few of the first singular images of some other digit. We can use this to classify unknown digits: Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 28

30 Algorithm Training: For the training set of digits, compute the SVD of each set of digits of one kind. We get 10 sets of singular images, one for each digit. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 29

31 Classification: 1. Take an unknown digit z. For each set of singular images u j, solve the least squares problem min α j z k j=1 α j u j. and compute the relative residual r / z, where r is the residual. 2. Classify z to be the digit corresponding to the smallest relative residual. Or: find the smallest residual r 0 and the next smallest residual r 1. If r 0 τr 1, where τ is the tolerance, then classify, else give up. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 30

32 Results To be reported by you in you homework assignment. Performance better: success rate over 90%. Still not up to the best (more complicated) methods. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 31

33 Nice test digit 3 in basis 3 Original image of digit and approximations using 1,3,5,7 and 9 basis vectors in 3-basis: Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 32

34 Relative residual in least squares problem for nice test digit 3 in 3-basis: 0.75 Relative residual in LS problem for test digit (nice 3) in 3 basis number of basis vectors Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 33

35 Nice test digit 3 in basis 5 Original image of digit and approximations using 1,3,5,7 and 9 basis vectors in 5-basis: Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 34

36 Relative residual in least squares problem for nice test digit 3 in 5-basis: 0.8 Relative residual in LS problem for test digit (nice 3) in 5 basis number of basis vectors Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 35

37 Ugly test digit 3 in basis 3 Original image of digit and approximations using 1,3,5,7 and 9 basis vectors in 3-basis: Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 36

38 Relative residual in least squares problem for ugly test digit 3 in 3-basis: 0.7 Relative residual in LS problem for test digit (ugly 3) in 3 basis number of basis vectors Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 37

39 Ugly test digit 3 in basis 5 Original image of digit and approximations using 1,3,5,7 and 9 basis vectors in 5-basis: Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 38

40 Relative residual in least squares problem for ugly test digit 3 in 5-basis: 0.61 Relative residual in LS problem for test digit (ugly 3) in 5 basis number of basis vectors Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 39

41 Conclusion: do not use many terms in the basis. The 100th singular images of all vectors. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 40

42 Work Training: compute SVD s of 10 matrices of dimension m 2 n i, each image of a digit is a m m matrix; n i = number of training digits i. Solve 10 least squares problems; multiply test digit by 10 matrices with orthogonal columns. Fast test phase! Suitable for real time computations! Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 41

43 Test results Correct classification as a function fo the number of basis vectors for each digit vector: number of vectors Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 42

44 How to improve performance? Ugly digits are difficult to handle automatically. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 43

45 The Singular Value Decomposition Any m n matrix A, with m n, can be factorized A = U ( ) Σ V T, 0 where U R m m and V R n n are orthogonal, and Σ R n n is diagonal: Σ = diag(σ 1, σ 2,..., σ n ), σ 1 σ 2... σ n 0. Skinny version : A = U 1 ΣV T, U 1 R m n. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 44

46 We can write A T A = VΣU T UΣV T = VΣ 2 V T, so we get A T AV = VΣ 2. Let v j be the j th column of V. Write the above column by column: A T Av j = σjv 2 j. Equivalently, we can write AA T =... = UΣ 2 U T column of U) AA T u j = σju 2 j. to get (u j is the j th Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 45

47 Singular values and vectors The singular values are the nonnegative square roots of the eigenvalues of A T A, and hence uniquely determined. The columns of V are the eigenvectors of A T A, arranged in the same order as the σ j. The columns of U are the eigenvectors of AA T, arranged in the same order as the σ j. If A is real, then V, Σ and U can be taken to be real. Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 46

48 Uniqueness considerations. Σ is unique: the eigenvalues of A T A are unique, the positive square roots of them = the singular values are also unique, and the ordering fixes Σ. But how about U and V? σ 1 σ 2... σ n 0 Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 47

49 Example from lecture 4 revisited: %Rank deficient case: A is not of full rank. %The columns of A are not linearly independent. A=[ ; ] A= A(:,3)=A(:,1)+A(:,2)*0.5 A= Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 48

50 %Matlab version 7 [U,S,V]=svd(A,0) U= S= V= %Matlab version 6.5 [U,S,V]=svd(A,0) U= S= V= Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 49

51 Uniqueness of U and V Let A be a m n, real valued matrix, with m n. If the singular values σ j are distinct, and A = U 1 ΣV T = U 2 ΣW T, the following holds for the columns of V and W: w j = ( 1) k jv j, k j (0, 1). If m = n = rank of A, then, given V, U is uniquely determined. But if m > n, U is never uniquely determined! (Only the k first columns are, up to a multiplication by ±1, where k = rank(a).) Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 50

52 Example: 1st singular images of handwritten digits Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 51

53 References [1] Lars Eldén: Matrix Methods in Data Mining and Pattern Recognition, SIAM item[[2]] T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning. Data mining, Inference and Prediction, Springer Verlag, New York, [3] The data is from the MNIST database of handwritten digits, Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 52

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 Lecture 3: QR, least squares, linear regression Linear Algebra Methods for Data Mining, Spring 2007, University

More information

Lecture 5: Singular Value Decomposition SVD (1)

Lecture 5: Singular Value Decomposition SVD (1) EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25-Sep-02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system

More information

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

More information

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #18: Dimensionality Reduc7on

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #18: Dimensionality Reduc7on CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #18: Dimensionality Reduc7on Dimensionality Reduc=on Assump=on: Data lies on or near a low d- dimensional subspace Axes of this subspace

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 Text mining & Information Retrieval Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean

More information

Text Analytics (Text Mining)

Text Analytics (Text Mining) CSE 6242 / CX 4242 Apr 3, 2014 Text Analytics (Text Mining) LSI (uses SVD), Visualization Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Multidimensional data analysis

Multidimensional data analysis Multidimensional data analysis Ella Bingham Dept of Computer Science, University of Helsinki ella.bingham@cs.helsinki.fi June 2008 The Finnish Graduate School in Astronomy and Space Physics Summer School

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning

Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning SAMSI 10 May 2013 Outline Introduction to NMF Applications Motivations NMF as a middle step

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

SYMMETRIC EIGENFACES MILI I. SHAH

SYMMETRIC EIGENFACES MILI I. SHAH SYMMETRIC EIGENFACES MILI I. SHAH Abstract. Over the years, mathematicians and computer scientists have produced an extensive body of work in the area of facial analysis. Several facial analysis algorithms

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

3 Orthogonal Vectors and Matrices

3 Orthogonal Vectors and Matrices 3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first

More information

Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products

Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products H. Geuvers Institute for Computing and Information Sciences Intelligent Systems Version: spring 2015 H. Geuvers Version:

More information

4. Matrix Methods for Analysis of Structure in Data Sets:

4. Matrix Methods for Analysis of Structure in Data Sets: ATM 552 Notes: Matrix Methods: EOF, SVD, ETC. D.L.Hartmann Page 64 4. Matrix Methods for Analysis of Structure in Data Sets: Empirical Orthogonal Functions, Principal Component Analysis, Singular Value

More information

Summary: Transformations. Lecture 14 Parameter Estimation Readings T&V Sec 5.1-5.3. Parameter Estimation: Fitting Geometric Models

Summary: Transformations. Lecture 14 Parameter Estimation Readings T&V Sec 5.1-5.3. Parameter Estimation: Fitting Geometric Models Summary: Transformations Lecture 14 Parameter Estimation eadings T&V Sec 5.1-5.3 Euclidean similarity affine projective Parameter Estimation We will talk about estimating parameters of 1) Geometric models

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2015 Collaborative Filtering assumption: users with similar taste in past will have similar taste in future requires only matrix of ratings applicable in many domains

More information

SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated

SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET Course Title Course Number Department Linear Algebra Mathematics MAT-240 Action Taken (Please Check One) New Course Initiated

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,

More information

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs. Multimedia Databases Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 14 Previous Lecture 13 Indexes for Multimedia Data 13.1

More information

Unsupervised and supervised dimension reduction: Algorithms and connections

Unsupervised and supervised dimension reduction: Algorithms and connections Unsupervised and supervised dimension reduction: Algorithms and connections Jieping Ye Department of Computer Science and Engineering Evolutionary Functional Genomics Center The Biodesign Institute Arizona

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

W. Heath Rushing Adsurgo LLC. Harness the Power of Text Analytics: Unstructured Data Analysis for Healthcare. Session H-1 JTCC: October 23, 2015

W. Heath Rushing Adsurgo LLC. Harness the Power of Text Analytics: Unstructured Data Analysis for Healthcare. Session H-1 JTCC: October 23, 2015 W. Heath Rushing Adsurgo LLC Harness the Power of Text Analytics: Unstructured Data Analysis for Healthcare Session H-1 JTCC: October 23, 2015 Outline Demonstration: Recent article on cnn.com Introduction

More information

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics INTERNATIONAL BLACK SEA UNIVERSITY COMPUTER TECHNOLOGIES AND ENGINEERING FACULTY ELABORATION OF AN ALGORITHM OF DETECTING TESTS DIMENSIONALITY Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

Linear Algebraic Equations, SVD, and the Pseudo-Inverse

Linear Algebraic Equations, SVD, and the Pseudo-Inverse Linear Algebraic Equations, SVD, and the Pseudo-Inverse Philip N. Sabes October, 21 1 A Little Background 1.1 Singular values and matrix inversion For non-smmetric matrices, the eigenvalues and singular

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

Quadratic forms Cochran s theorem, degrees of freedom, and all that

Quadratic forms Cochran s theorem, degrees of freedom, and all that Quadratic forms Cochran s theorem, degrees of freedom, and all that Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 1, Slide 1 Why We Care Cochran s theorem tells us

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Manifold Learning Examples PCA, LLE and ISOMAP

Manifold Learning Examples PCA, LLE and ISOMAP Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition

More information

Notes on Symmetric Matrices

Notes on Symmetric Matrices CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

More information

Constrained Least Squares

Constrained Least Squares Constrained Least Squares Authors: G.H. Golub and C.F. Van Loan Chapter 12 in Matrix Computations, 3rd Edition, 1996, pp.580-587 CICN may05/1 Background The least squares problem: min Ax b 2 x Sometimes,

More information

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 Self-Adjoint and Normal Operators

More information

Predict the Popularity of YouTube Videos Using Early View Data

Predict the Popularity of YouTube Videos Using Early View Data 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Linear Algebra and TI 89

Linear Algebra and TI 89 Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Continuity of the Perron Root

Continuity of the Perron Root Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

Linear Algebra: Determinants, Inverses, Rank

Linear Algebra: Determinants, Inverses, Rank D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

IMAGE RECOGNITION FOR CATS AND DOGS

IMAGE RECOGNITION FOR CATS AND DOGS IMAGE RECOGNITION FOR CATS AND DOGS HYO JIN CHUNG AND MINH N. TRAN Abstract. In this project, we are given a training set of 8 images of cats and 8 images of dogs to classify a testing set of 38 images

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Introduction to Clustering

Introduction to Clustering Introduction to Clustering Yumi Kondo Student Seminar LSK301 Sep 25, 2010 Yumi Kondo (University of British Columbia) Introduction to Clustering Sep 25, 2010 1 / 36 Microarray Example N=65 P=1756 Yumi

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

Multidimensional data and factorial methods

Multidimensional data and factorial methods Multidimensional data and factorial methods Bidimensional data x 5 4 3 4 X 3 6 X 3 5 4 3 3 3 4 5 6 x Cartesian plane Multidimensional data n X x x x n X x x x n X m x m x m x nm Factorial plane Interpretation

More information

Cluster Analysis. Chapter. Chapter Outline. What You Will Learn in This Chapter

Cluster Analysis. Chapter. Chapter Outline. What You Will Learn in This Chapter 5 Chapter Cluster Analysis Chapter Outline Introduction, 210 Business Situation, 211 Model, 212 Distance or Dissimilarities, 213 Combinatorial Searches with K-Means, 216 Statistical Mixture Model with

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

More information

Principal components analysis

Principal components analysis CS229 Lecture notes Andrew Ng Part XI Principal components analysis In our discussion of factor analysis, we gave a way to model data x R n as approximately lying in some k-dimension subspace, where k

More information

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C.

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES From Exploratory Factor Analysis Ledyard R Tucker and Robert C MacCallum 1997 180 CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES In

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Least Squares Estimation

Least Squares Estimation Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

More information

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

How To Cluster

How To Cluster Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not. Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

More information

Syllabus for MATH 191 MATH 191 Topics in Data Science: Algorithms and Mathematical Foundations Department of Mathematics, UCLA Fall Quarter 2015

Syllabus for MATH 191 MATH 191 Topics in Data Science: Algorithms and Mathematical Foundations Department of Mathematics, UCLA Fall Quarter 2015 Syllabus for MATH 191 MATH 191 Topics in Data Science: Algorithms and Mathematical Foundations Department of Mathematics, UCLA Fall Quarter 2015 Lecture: MWF: 1:00-1:50pm, GEOLOGY 4645 Instructor: Mihai

More information

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

Examination paper for TMA4205 Numerical Linear Algebra

Examination paper for TMA4205 Numerical Linear Algebra Department of Mathematical Sciences Examination paper for TMA4205 Numerical Linear Algebra Academic contact during examination: Markus Grasmair Phone: 97580435 Examination date: December 16, 2015 Examination

More information

Factor analysis. Angela Montanari

Factor analysis. Angela Montanari Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Component Ordering in Independent Component Analysis Based on Data Power

Component Ordering in Independent Component Analysis Based on Data Power Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals

More information

We shall turn our attention to solving linear systems of equations. Ax = b

We shall turn our attention to solving linear systems of equations. Ax = b 59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information