# Section 4.7. More on Area

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Difference Equations to Differential Equations Section 4.7 More on Area In Section 4. we motivated the definition of the definite integral with the idea of finding the area of a region in the plane. However, to solve the problem we restricted to a very special type of region, namely, a region lying between the graph of a function f and an interval on the x-axis. We will now consider the more general problem of the area of a region lying between the graphs of two functions. y f( x) y g( x) a b Figure 4.7. Approximating the area between y f(x) and y g(x) Suppose f and g are functions defined on an interval [a, b] with g(x) f(x) for all x in [a, b]. We suppose that f and g are integrable on [a, b], from which it follows that the function k defined by k(x) f(x) g(x) is also integrable on [a, b]. Let R be the region lying between the graphs of f and g over the interval [a, b] and let A be the area of R. In other words, A is the area of the region of the plane bounded by the curves y f(x), y g(x), x a, and x b. We begin with an approximation for A. First, we divide [a, b] into n intervals of equal length x b a n and let a x < x < x < x < < x n b be the endpoints of these intervals. Next, for i,,,..., n, let R i be the region lying between the graphs of f and g over the Copyright c by Dan Sloughter

2 More on Area Section Figure 4.7. Region bounded by the graphs of y x and y x interval [x i, x i ]. If A i is the area of R i, then A A i. (4.7.) i Now f(x i ) g(x i ) is the distance between the graphs of f and g at x i, and so (f(x i ) g(x i )) x should approximate A i reasonably well when x is small. Thus (f(x i ) g(x i )) x i k(x i ) x (4.7.) i will approximate A. Moreover, we should expect that this approximation will improve as x decreases, that is, as n increases, and so we should have A lim n k(x i ) x. (4.7.) i But now the right-hand side of (4.7.) is a Riemann sum, in particular, the right-hand rule sum, and so the right-hand side of (4.7.) converges to the definite integral of k on [a, b]. Hence we have A b a k(x)dx b a (f(x) g(x))dx. (4.7.4) Example Let R be the region bounded by the curves y x and y x, as shown in Figure Note that these curves intersect when x x,

3 Section 4.7 More on Area R R Figure 4.7. Region bounded by the graphs of x y and x y + which implies that x, that is, x or x. Hence the two curves intersect at (, ) and (, ), and so we may describe R as the region between the curves y x and y x which lies above the interval [, ]. Thus if A is the area of R, we have A (( x ) x )dx ( x )dx (x ) x 8. ( ) ( + ) Example Let R be the region bounded by the curves x y and x y +. These two curves intersect when y y +, which implies that y y (y )(y + ). Hence the two curves intersect when y and y, that is, at the points (, ) and (4, ). However, looking at Figure 4.7., we see that not all of R lies over the interval [, 4]. In fact, R may be broken up into two regions, R and R, where R is the region between the curves y x and y x over the interval [, ] and R is the region between the curves y x and y x over the interval [, 4]. Thus, if A is the area of R, A is the

4 4 More on Area Section 4.7 area of R, and A is the area of R, then A A + A 4 x ( x ( x)) + x dx ( x 4 + ( ) 9. 4 ( x (x ))dx ( x x + )dx ) 4 x + x ( + ) The region R in the previous example may also be described as the region lying between the curves x y and x y+ over the interval [, ] on the y-axis. In general, analogous to our development above, if f and g are functions defined on an interval [c, d] on the y-axis with g(y) f(y) for all y in [c, d], then the area A of the region bounded by x f(y), x g(y), y c, and y d (see Figure 4.7.4), is given by A d c (f(y) g(y))dy. (4.7.5) d x g( y) x f( y) c Figure Region between the curves x f(y) and x g(y)

5 Section 4.7 More on Area R.5 R Figure Region bounded by the graphs of y x x and y x In particular, for our previous example we have A (y + y )dy ( y + y ) y ( ) ( + ) 9. In this case, the second method for solving the problem is a little simpler than the first; in general, it is often useful to look at a problem both ways and evaluate using the simpler of the two approaches. Example Let R be the region bounded by the curves y x x and y x. These curves intersect when x x x, that is, when Hence the curves intersect when x, or x x x x(x x ). x 5, x + 5, where the latter two values were found using the quadratic formula. From the graphs in Figure 4.7.5, we see that R may be divided into two regions, R and R, where R extends

6 6 More on Area Section 4.7 from x 5 to x and R extends from x to x + 5. Note that in R we have x x x, whereas x x x in R. Thus, if A is the area of R, A is the area of R, and A is the area of R, then Problems A A + A 5 (x x x )dx + ( 4 x4 x x. ) (x x + x)dx ( x 4 x4 ) + 5 x. Find the area of the region bounded by the curves y x and y x.. Find the area of the region bounded by the curves y x and y x.. Find the area of the region bounded by the curves y x and y x Find the area of the region bounded by the curves y cos(x) and y x. 5. Find the area of the region bounded by the curves y sin(x) and y x. 6. Find the area of one of the regions lying between the curves y cos(x) and y sin(x) between two consecutive points of intersection. 7. Find the area of the region in the first quadrant bounded by y cos(x), y sin(x), and x. 8. Find the area of one of the regions lying between the curves y cos (x) and y sin (x) between two consecutive points of intersection. 9. Let R be the region bounded by the curves y x and y x. (a) Set up an integral to find the area of R using functions of x. (b) Set up an integral to find the area of R using functions of y. (c) Evaluate the simpler of the integrals in (a) and (b).. Find the area of the region bounded by the curves x y and x y.. Find the area of the region bounded by the curves x y and x 6 y.. Find the area of the region bounded by the curves y x x and y x.. Find the area of the region bounded by the curves y x 4 4x and y x. 4. To estimate the surface area of a lake, measurements of the width of the lake are made at points spaced 5 yards apart from one end of the lake to the other. Suppose the measurements are, in order,, 5,,, 8, 4,, 5,, 95, 5, 65, 4, 75, 5, 8,, 9, 6, 4, and, all measured in yards. Use Simpson s rule to approximate the surface area of the lake.

### MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

### Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

### Section 12.6: Directional Derivatives and the Gradient Vector

Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

### PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

### Engineering Math II Spring 2015 Solutions for Class Activity #2

Engineering Math II Spring 15 Solutions for Class Activity # Problem 1. Find the area of the region bounded by the parabola y = x, the tangent line to this parabola at 1, 1), and the x-axis. Then find

### HOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba

HOMEWORK SOLUTIONS All questions are from Vector Calculus, by Marsden and Tromba Question :..6 Let w = f(x, y) be a function of two variables, and let x = u + v, y = u v. Show that Solution. By the chain

### Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f

### (b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation

(1) Consider the function y = f(x) =e x on the interval [, 1]. (a) Find the area under the graph of this function over this interval using the Fundamental Theorem of Calculus. (b) Subdivide the interval

### Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

### GRAPHING IN POLAR COORDINATES SYMMETRY

GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,

### 4.3 Lagrange Approximation

206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### MATH 2300 review problems for Exam 3 ANSWERS

MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test

### Solutions to Practice Problems for Test 4

olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

### AP Calculus AB 2012 Scoring Guidelines

AP Calculus AB Scoring Guidelines The College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 9, the College

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### This function is symmetric with respect to the y-axis, so I will let - /2 /2 and multiply the area by 2.

INTEGRATION IN POLAR COORDINATES One of the main reasons why we study polar coordinates is to help us to find the area of a region that cannot easily be integrated in terms of x. In this set of notes,

### G.A. Pavliotis. Department of Mathematics. Imperial College London

EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

### Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa

Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,

### Lecture 3: Derivatives and extremes of functions

Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16

### Taylor and Maclaurin Series

Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

### 4 More Applications of Definite Integrals: Volumes, arclength and other matters

4 More Applications of Definite Integrals: Volumes, arclength and other matters Volumes of surfaces of revolution 4. Find the volume of a cone whose height h is equal to its base radius r, by using the

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### Math 1B, lecture 5: area and volume

Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in

### correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

### Homework # 3 Solutions

Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

### Estimating the Average Value of a Function

Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

### National Quali cations 2015

H National Quali cations 05 X77/76/ WEDNESDAY, 0 MAY 9:00 AM 0:0 AM Mathematics Paper (Non-Calculator) Total marks 60 Attempt ALL questions. You may NOT use a calculator. Full credit will be given only

### FIXED POINT ITERATION

FIXED POINT ITERATION We begin with a computational example. solving the two equations Consider E1: x =1+.5sinx E2: x =3+2sinx Graphs of these two equations are shown on accompanying graphs, with the solutions

### Example 1. Example 1 Plot the points whose polar coordinates are given by

Polar Co-ordinates A polar coordinate system, gives the co-ordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points

### Practice Problems for Midterm 2

Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,

### 7.3 Volumes Calculus

7. VOLUMES Just like in the last section where we found the area of one arbitrary rectangular strip and used an integral to add up the areas of an infinite number of infinitely thin rectangles, we are

### Lesson 3. Numerical Integration

Lesson 3 Numerical Integration Last Week Defined the definite integral as limit of Riemann sums. The definite integral of f(t) from t = a to t = b. LHS: RHS: Last Time Estimate using left and right hand

### 1. First-order Ordinary Differential Equations

Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

### APPLICATIONS OF DIFFERENTIATION

4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,

### Section 2.7 One-to-One Functions and Their Inverses

Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

### 4.4 CURVE SKETCHING. there is no horizontal asymptote. Since sx 1 l 0 as x l 1 and f x is always positive, we have

SECTION 4.4 CURE SKETCHING 4.4 CURE SKETCHING EXAMPLE A Sketch the graph of f x. sx A. Domain x x 0 x x, B. The x- and y-intercepts are both 0. C. Symmetry: None D. Since x l sx there is no horizontal

### 14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

### 3. Double Integrals 3A. Double Integrals in Rectangular Coordinates

3. Double Integrals 3A. Double Integrals in ectangular Coordinates 3A-1 Evaluate each of the following iterated integrals: c) 2 1 1 1 x 2 (6x 2 +2y)dydx b) x 2x 2 ydydx d) π/2 π 1 u (usint+tcosu)dtdu u2

### MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

### Sine and Cosine Series; Odd and Even Functions

Sine and Cosine Series; Odd and Even Functions A sine series on the interval [, ] is a trigonometric series of the form k = 1 b k sin πkx. All of the terms in a series of this type have values vanishing

### Use finite approximations to estimate the area under the graph of the function. f(x) = x 3

5.1: 6 Use finite approximations to estimate the area under the graph of the function f(x) = x 3 between x = 0 and x = 1 using (a) a lower sum with two rectangles of equal width (b) a lower sum with four

### Calculus 1: Sample Questions, Final Exam, Solutions

Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

### PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

### Student Activity: To investigate the Average Value of a Function

Student Activity: To investigate the Average Value of a Function Use in connection with the interactive file, Average Value 3, on the Student s CD. 1. Click all the boxes in the interactive file. Move

### *X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012

X00//0 NTIONL QULIFITIONS 0 MONY, MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Non-calculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (40 marks) Instructions for completion

### Inverse Functions and Logarithms

Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

### AP CALCULUS AB 2008 SCORING GUIDELINES

AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line

### AP Calculus BC 2006 Free-Response Questions

AP Calculus BC 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

### x 2 + y 2 = 25 and try to solve for y in terms of x, we get 2 new equations y = 25 x 2 and y = 25 x 2.

Lecture : Implicit differentiation For more on the graphs of functions vs. the graphs of general equations see Graphs of Functions under Algebra/Precalculus Review on the class webpage. For more on graphing

### TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

### a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

### MATH 132: CALCULUS II SYLLABUS

MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

### Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

### Lesson 13. Solving Definite Integrals

Lesson Solving Definite Integrals How to find antiderivatives We have three methods:. Basic formulas. Algebraic simplification. Substitution Basic Formulas If f(x) is then an antiderivative is x n k cos(kx)

### Chapter 11 - Curve Sketching. Lecture 17. MATH10070 - Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson.

Lecture 17 MATH10070 - Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx

### The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result.

30 5.6 The chain rule The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result." Example. g(x) = x 2 and f(x) = (3x+1).

### Limits and Continuity

Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### Area in Polar Coordinates

Area in Polar Coordinates If we have a circle of radius r, and select a sector of angle θ, then the area of that sector can be shown to be 1. r θ Area = (1/)r θ As a check, we see that if θ =, then the

### Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

### Exercises and Problems in Calculus. John M. Erdman Portland State University. Version August 1, 2013

Exercises and Problems in Calculus John M. Erdman Portland State University Version August 1, 2013 c 2010 John M. Erdman E-mail address: erdman@pdx.edu Contents Preface ix Part 1. PRELIMINARY MATERIAL

### Vector Calculus Solutions to Sample Final Examination #1

Vector alculus s to Sample Final Examination #1 1. Let f(x, y) e xy sin(x + y). (a) In what direction, starting at (,π/), is f changing the fastest? (b) In what directions starting at (,π/) is f changing

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### 1 Lecture 19: Implicit differentiation

Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y

### AP Calculus AB 2003 Scoring Guidelines Form B

AP Calculus AB Scoring Guidelines Form B The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the

### 2.1 Increasing, Decreasing, and Piecewise Functions; Applications

2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.

### AP Calculus AB 2003 Scoring Guidelines

AP Calculus AB Scoring Guidelines The materials included in these files are intended for use y AP teachers for course and exam preparation; permission for any other use must e sought from the Advanced

### 1.7 Graphs of Functions

64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

### x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y

MA7 - Calculus I for thelife Sciences Final Exam Solutions Spring -May-. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative

### Learning Objectives for Math 165

Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

### Fundamental Theorems of Vector Calculus

Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use

### INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

### Chapter. Numerical Calculations

Chapter 3 Numerical Calculations 3-1 Before Performing a Calculation 3-2 Differential Calculations 3-3 Quadratic Differential Calculations 3-4 Integration Calculations 3-5 Maximum/Minimum Value Calculations

### AP Calculus AB 2009 Scoring Guidelines

AP Calculus AB 9 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 19,

### AP Calculus AB 2006 Free-Response Questions

AP Calculus AB 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

### Lectures 5-6: Taylor Series

Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

### Discrete Mathematics: Solutions to Homework (12%) For each of the following sets, determine whether {2} is an element of that set.

Discrete Mathematics: Solutions to Homework 2 1. (12%) For each of the following sets, determine whether {2} is an element of that set. (a) {x R x is an integer greater than 1} (b) {x R x is the square

### Metric Spaces. Chapter 7. 7.1. Metrics

Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

### Mark Howell Gonzaga High School, Washington, D.C.

Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

### 1 Fixed Point Iteration and Contraction Mapping Theorem

1 Fixed Point Iteration and Contraction Mapping Theorem Notation: For two sets A,B we write A B iff x A = x B. So A A is true. Some people use the notation instead. 1.1 Introduction Consider a function

### AP CALCULUS AB 2009 SCORING GUIDELINES

AP CALCULUS AB 2009 SCORING GUIDELINES Question 5 x 2 5 8 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in

### UNIT - I LESSON - 1 The Solution of Numerical Algebraic and Transcendental Equations

UNIT - I LESSON - 1 The Solution of Numerical Algebraic and Transcendental Equations Contents: 1.0 Aims and Objectives 1.1 Introduction 1.2 Bisection Method 1.2.1 Definition 1.2.2 Computation of real root

### AP Calculus BC 2004 Free-Response Questions

AP Calculus BC 004 Free-Response Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be

### AP Calculus BC 2013 Free-Response Questions

AP Calculus BC 013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

### Mark Howell Gonzaga High School, Washington, D.C.

Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

### AP Calculus AB 2006 Scoring Guidelines

AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

### Math 2443, Section 16.3

Math 44, Section 6. Review These notes will supplement not replace) the lectures based on Section 6. Section 6. i) ouble integrals over general regions: We defined double integrals over rectangles in the

### www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

### Contents. Introduction and Notes pages 2-3 (These are important and it s only 2 pages ~ please take the time to read them!)

Page Contents Introduction and Notes pages 2-3 (These are important and it s only 2 pages ~ please take the time to read them!) Systematic Search for a Change of Sign (Decimal Search) Method Explanation

### AP Calculus BC 2009 Free-Response Questions Form B

AP Calculus BC 009 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### MATHEMATICS Unit Pure Core 2

General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 2 MPC2 Wednesday 9 January 2008 1.30 pm to 3.00 pm For this paper you must have: an 8-page answer

### Solutions to Linear Algebra Practice Problems

Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the

### SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives