Section 4.7. More on Area


 Sibyl Haynes
 1 years ago
 Views:
Transcription
1 Difference Equations to Differential Equations Section 4.7 More on Area In Section 4. we motivated the definition of the definite integral with the idea of finding the area of a region in the plane. However, to solve the problem we restricted to a very special type of region, namely, a region lying between the graph of a function f and an interval on the xaxis. We will now consider the more general problem of the area of a region lying between the graphs of two functions. y f( x) y g( x) a b Figure 4.7. Approximating the area between y f(x) and y g(x) Suppose f and g are functions defined on an interval [a, b] with g(x) f(x) for all x in [a, b]. We suppose that f and g are integrable on [a, b], from which it follows that the function k defined by k(x) f(x) g(x) is also integrable on [a, b]. Let R be the region lying between the graphs of f and g over the interval [a, b] and let A be the area of R. In other words, A is the area of the region of the plane bounded by the curves y f(x), y g(x), x a, and x b. We begin with an approximation for A. First, we divide [a, b] into n intervals of equal length x b a n and let a x < x < x < x < < x n b be the endpoints of these intervals. Next, for i,,,..., n, let R i be the region lying between the graphs of f and g over the Copyright c by Dan Sloughter
2 More on Area Section Figure 4.7. Region bounded by the graphs of y x and y x interval [x i, x i ]. If A i is the area of R i, then A A i. (4.7.) i Now f(x i ) g(x i ) is the distance between the graphs of f and g at x i, and so (f(x i ) g(x i )) x should approximate A i reasonably well when x is small. Thus (f(x i ) g(x i )) x i k(x i ) x (4.7.) i will approximate A. Moreover, we should expect that this approximation will improve as x decreases, that is, as n increases, and so we should have A lim n k(x i ) x. (4.7.) i But now the righthand side of (4.7.) is a Riemann sum, in particular, the righthand rule sum, and so the righthand side of (4.7.) converges to the definite integral of k on [a, b]. Hence we have A b a k(x)dx b a (f(x) g(x))dx. (4.7.4) Example Let R be the region bounded by the curves y x and y x, as shown in Figure Note that these curves intersect when x x,
3 Section 4.7 More on Area R R Figure 4.7. Region bounded by the graphs of x y and x y + which implies that x, that is, x or x. Hence the two curves intersect at (, ) and (, ), and so we may describe R as the region between the curves y x and y x which lies above the interval [, ]. Thus if A is the area of R, we have A (( x ) x )dx ( x )dx (x ) x 8. ( ) ( + ) Example Let R be the region bounded by the curves x y and x y +. These two curves intersect when y y +, which implies that y y (y )(y + ). Hence the two curves intersect when y and y, that is, at the points (, ) and (4, ). However, looking at Figure 4.7., we see that not all of R lies over the interval [, 4]. In fact, R may be broken up into two regions, R and R, where R is the region between the curves y x and y x over the interval [, ] and R is the region between the curves y x and y x over the interval [, 4]. Thus, if A is the area of R, A is the
4 4 More on Area Section 4.7 area of R, and A is the area of R, then A A + A 4 x ( x ( x)) + x dx ( x 4 + ( ) 9. 4 ( x (x ))dx ( x x + )dx ) 4 x + x ( + ) The region R in the previous example may also be described as the region lying between the curves x y and x y+ over the interval [, ] on the yaxis. In general, analogous to our development above, if f and g are functions defined on an interval [c, d] on the yaxis with g(y) f(y) for all y in [c, d], then the area A of the region bounded by x f(y), x g(y), y c, and y d (see Figure 4.7.4), is given by A d c (f(y) g(y))dy. (4.7.5) d x g( y) x f( y) c Figure Region between the curves x f(y) and x g(y)
5 Section 4.7 More on Area R.5 R Figure Region bounded by the graphs of y x x and y x In particular, for our previous example we have A (y + y )dy ( y + y ) y ( ) ( + ) 9. In this case, the second method for solving the problem is a little simpler than the first; in general, it is often useful to look at a problem both ways and evaluate using the simpler of the two approaches. Example Let R be the region bounded by the curves y x x and y x. These curves intersect when x x x, that is, when Hence the curves intersect when x, or x x x x(x x ). x 5, x + 5, where the latter two values were found using the quadratic formula. From the graphs in Figure 4.7.5, we see that R may be divided into two regions, R and R, where R extends
6 6 More on Area Section 4.7 from x 5 to x and R extends from x to x + 5. Note that in R we have x x x, whereas x x x in R. Thus, if A is the area of R, A is the area of R, and A is the area of R, then Problems A A + A 5 (x x x )dx + ( 4 x4 x x. ) (x x + x)dx ( x 4 x4 ) + 5 x. Find the area of the region bounded by the curves y x and y x.. Find the area of the region bounded by the curves y x and y x.. Find the area of the region bounded by the curves y x and y x Find the area of the region bounded by the curves y cos(x) and y x. 5. Find the area of the region bounded by the curves y sin(x) and y x. 6. Find the area of one of the regions lying between the curves y cos(x) and y sin(x) between two consecutive points of intersection. 7. Find the area of the region in the first quadrant bounded by y cos(x), y sin(x), and x. 8. Find the area of one of the regions lying between the curves y cos (x) and y sin (x) between two consecutive points of intersection. 9. Let R be the region bounded by the curves y x and y x. (a) Set up an integral to find the area of R using functions of x. (b) Set up an integral to find the area of R using functions of y. (c) Evaluate the simpler of the integrals in (a) and (b).. Find the area of the region bounded by the curves x y and x y.. Find the area of the region bounded by the curves x y and x 6 y.. Find the area of the region bounded by the curves y x x and y x.. Find the area of the region bounded by the curves y x 4 4x and y x. 4. To estimate the surface area of a lake, measurements of the width of the lake are made at points spaced 5 yards apart from one end of the lake to the other. Suppose the measurements are, in order,, 5,,, 8, 4,, 5,, 95, 5, 65, 4, 75, 5, 8,, 9, 6, 4, and, all measured in yards. Use Simpson s rule to approximate the surface area of the lake.
MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.
MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin
More informationSection 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a
More informationSection 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
More informationPROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
More informationEngineering Math II Spring 2015 Solutions for Class Activity #2
Engineering Math II Spring 15 Solutions for Class Activity # Problem 1. Find the area of the region bounded by the parabola y = x, the tangent line to this parabola at 1, 1), and the xaxis. Then find
More informationHOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba
HOMEWORK SOLUTIONS All questions are from Vector Calculus, by Marsden and Tromba Question :..6 Let w = f(x, y) be a function of two variables, and let x = u + v, y = u v. Show that Solution. By the chain
More informationLimit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)
SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f
More information(b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation
(1) Consider the function y = f(x) =e x on the interval [, 1]. (a) Find the area under the graph of this function over this interval using the Fundamental Theorem of Calculus. (b) Subdivide the interval
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More informationGRAPHING IN POLAR COORDINATES SYMMETRY
GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry  yaxis,
More information4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationMATH 2300 review problems for Exam 3 ANSWERS
MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test
More informationSolutions to Practice Problems for Test 4
olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,
More informationAP Calculus AB 2012 Scoring Guidelines
AP Calculus AB Scoring Guidelines The College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded in 9, the College
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationThis function is symmetric with respect to the yaxis, so I will let  /2 /2 and multiply the area by 2.
INTEGRATION IN POLAR COORDINATES One of the main reasons why we study polar coordinates is to help us to find the area of a region that cannot easily be integrated in terms of x. In this set of notes,
More informationG.A. Pavliotis. Department of Mathematics. Imperial College London
EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.
More informationApr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa
Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,
More informationLecture 3: Derivatives and extremes of functions
Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16
More informationTaylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
More information4 More Applications of Definite Integrals: Volumes, arclength and other matters
4 More Applications of Definite Integrals: Volumes, arclength and other matters Volumes of surfaces of revolution 4. Find the volume of a cone whose height h is equal to its base radius r, by using the
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationMath 1B, lecture 5: area and volume
Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More informationHomework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
More informationEstimating the Average Value of a Function
Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and
More informationNational Quali cations 2015
H National Quali cations 05 X77/76/ WEDNESDAY, 0 MAY 9:00 AM 0:0 AM Mathematics Paper (NonCalculator) Total marks 60 Attempt ALL questions. You may NOT use a calculator. Full credit will be given only
More informationFIXED POINT ITERATION
FIXED POINT ITERATION We begin with a computational example. solving the two equations Consider E1: x =1+.5sinx E2: x =3+2sinx Graphs of these two equations are shown on accompanying graphs, with the solutions
More informationExample 1. Example 1 Plot the points whose polar coordinates are given by
Polar Coordinates A polar coordinate system, gives the coordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points
More informationPractice Problems for Midterm 2
Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,
More information7.3 Volumes Calculus
7. VOLUMES Just like in the last section where we found the area of one arbitrary rectangular strip and used an integral to add up the areas of an infinite number of infinitely thin rectangles, we are
More informationLesson 3. Numerical Integration
Lesson 3 Numerical Integration Last Week Defined the definite integral as limit of Riemann sums. The definite integral of f(t) from t = a to t = b. LHS: RHS: Last Time Estimate using left and right hand
More information1. Firstorder Ordinary Differential Equations
Advanced Engineering Mathematics 1. Firstorder ODEs 1 1. Firstorder Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential
More informationAPPLICATIONS OF DIFFERENTIATION
4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,
More informationSection 2.7 OnetoOne Functions and Their Inverses
Section. OnetoOne Functions and Their Inverses OnetoOne Functions HORIZONTAL LINE TEST: A function is onetoone if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
More information4.4 CURVE SKETCHING. there is no horizontal asymptote. Since sx 1 l 0 as x l 1 and f x is always positive, we have
SECTION 4.4 CURE SKETCHING 4.4 CURE SKETCHING EXAMPLE A Sketch the graph of f x. sx A. Domain x x 0 x x, B. The x and yintercepts are both 0. C. Symmetry: None D. Since x l sx there is no horizontal
More information14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style
Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of
More information3. Double Integrals 3A. Double Integrals in Rectangular Coordinates
3. Double Integrals 3A. Double Integrals in ectangular Coordinates 3A1 Evaluate each of the following iterated integrals: c) 2 1 1 1 x 2 (6x 2 +2y)dydx b) x 2x 2 ydydx d) π/2 π 1 u (usint+tcosu)dtdu u2
More informationMATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
More informationSine and Cosine Series; Odd and Even Functions
Sine and Cosine Series; Odd and Even Functions A sine series on the interval [, ] is a trigonometric series of the form k = 1 b k sin πkx. All of the terms in a series of this type have values vanishing
More informationUse finite approximations to estimate the area under the graph of the function. f(x) = x 3
5.1: 6 Use finite approximations to estimate the area under the graph of the function f(x) = x 3 between x = 0 and x = 1 using (a) a lower sum with two rectangles of equal width (b) a lower sum with four
More informationCalculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
More informationPRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
More informationStudent Activity: To investigate the Average Value of a Function
Student Activity: To investigate the Average Value of a Function Use in connection with the interactive file, Average Value 3, on the Student s CD. 1. Click all the boxes in the interactive file. Move
More information*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Noncalculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012
X00//0 NTIONL QULIFITIONS 0 MONY, MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Noncalculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (40 marks) Instructions for completion
More informationInverse Functions and Logarithms
Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a onetoone function if it never takes on the same value twice; that
More informationAP CALCULUS AB 2008 SCORING GUIDELINES
AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line
More informationAP Calculus BC 2006 FreeResponse Questions
AP Calculus BC 2006 FreeResponse Questions The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to
More informationx 2 + y 2 = 25 and try to solve for y in terms of x, we get 2 new equations y = 25 x 2 and y = 25 x 2.
Lecture : Implicit differentiation For more on the graphs of functions vs. the graphs of general equations see Graphs of Functions under Algebra/Precalculus Review on the class webpage. For more on graphing
More informationTOPIC 3: CONTINUITY OF FUNCTIONS
TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let
More informationa cos x + b sin x = R cos(x α)
a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this
More informationMATH 132: CALCULUS II SYLLABUS
MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationLesson 13. Solving Definite Integrals
Lesson Solving Definite Integrals How to find antiderivatives We have three methods:. Basic formulas. Algebraic simplification. Substitution Basic Formulas If f(x) is then an antiderivative is x n k cos(kx)
More informationChapter 11  Curve Sketching. Lecture 17. MATH10070  Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson.
Lecture 17 MATH10070  Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx
More informationThe composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result.
30 5.6 The chain rule The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result." Example. g(x) = x 2 and f(x) = (3x+1).
More informationLimits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationArea in Polar Coordinates
Area in Polar Coordinates If we have a circle of radius r, and select a sector of angle θ, then the area of that sector can be shown to be 1. r θ Area = (1/)r θ As a check, we see that if θ =, then the
More informationMicroeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
More informationExercises and Problems in Calculus. John M. Erdman Portland State University. Version August 1, 2013
Exercises and Problems in Calculus John M. Erdman Portland State University Version August 1, 2013 c 2010 John M. Erdman Email address: erdman@pdx.edu Contents Preface ix Part 1. PRELIMINARY MATERIAL
More informationVector Calculus Solutions to Sample Final Examination #1
Vector alculus s to Sample Final Examination #1 1. Let f(x, y) e xy sin(x + y). (a) In what direction, starting at (,π/), is f changing the fastest? (b) In what directions starting at (,π/) is f changing
More informationUnderstanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
More information1 Lecture 19: Implicit differentiation
Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y
More informationAP Calculus AB 2003 Scoring Guidelines Form B
AP Calculus AB Scoring Guidelines Form B The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the
More information2.1 Increasing, Decreasing, and Piecewise Functions; Applications
2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.
More informationAP Calculus AB 2003 Scoring Guidelines
AP Calculus AB Scoring Guidelines The materials included in these files are intended for use y AP teachers for course and exam preparation; permission for any other use must e sought from the Advanced
More information1.7 Graphs of Functions
64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each xcoordinate was matched with only one ycoordinate. We spent most
More informationx 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y
MA7  Calculus I for thelife Sciences Final Exam Solutions Spring May. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative
More informationLearning Objectives for Math 165
Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given
More informationFundamental Theorems of Vector Calculus
Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use
More informationINTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).
INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x
More informationChapter. Numerical Calculations
Chapter 3 Numerical Calculations 31 Before Performing a Calculation 32 Differential Calculations 33 Quadratic Differential Calculations 34 Integration Calculations 35 Maximum/Minimum Value Calculations
More informationAP Calculus AB 2009 Scoring Guidelines
AP Calculus AB 9 Scoring Guidelines The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and opportunity. Founded in 19,
More informationAP Calculus AB 2006 FreeResponse Questions
AP Calculus AB 2006 FreeResponse Questions The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationSection 1.8 Coordinate Geometry
Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of
More informationLectures 56: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5: Taylor Series Weeks 5 Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
More informationDiscrete Mathematics: Solutions to Homework (12%) For each of the following sets, determine whether {2} is an element of that set.
Discrete Mathematics: Solutions to Homework 2 1. (12%) For each of the following sets, determine whether {2} is an element of that set. (a) {x R x is an integer greater than 1} (b) {x R x is the square
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More informationMark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,
More information1 Fixed Point Iteration and Contraction Mapping Theorem
1 Fixed Point Iteration and Contraction Mapping Theorem Notation: For two sets A,B we write A B iff x A = x B. So A A is true. Some people use the notation instead. 1.1 Introduction Consider a function
More informationAP CALCULUS AB 2009 SCORING GUIDELINES
AP CALCULUS AB 2009 SCORING GUIDELINES Question 5 x 2 5 8 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in
More informationUNIT  I LESSON  1 The Solution of Numerical Algebraic and Transcendental Equations
UNIT  I LESSON  1 The Solution of Numerical Algebraic and Transcendental Equations Contents: 1.0 Aims and Objectives 1.1 Introduction 1.2 Bisection Method 1.2.1 Definition 1.2.2 Computation of real root
More informationAP Calculus BC 2004 FreeResponse Questions
AP Calculus BC 004 FreeResponse Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be
More informationAP Calculus BC 2013 FreeResponse Questions
AP Calculus BC 013 FreeResponse Questions About the College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded in
More informationMark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,
More informationAP Calculus AB 2006 Scoring Guidelines
AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to college
More informationMath 2443, Section 16.3
Math 44, Section 6. Review These notes will supplement not replace) the lectures based on Section 6. Section 6. i) ouble integrals over general regions: We defined double integrals over rectangles in the
More informationwww.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
More informationContents. Introduction and Notes pages 23 (These are important and it s only 2 pages ~ please take the time to read them!)
Page Contents Introduction and Notes pages 23 (These are important and it s only 2 pages ~ please take the time to read them!) Systematic Search for a Change of Sign (Decimal Search) Method Explanation
More informationAP Calculus BC 2009 FreeResponse Questions Form B
AP Calculus BC 009 FreeResponse Questions Form B The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and opportunity.
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationMATHEMATICS Unit Pure Core 2
General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 2 MPC2 Wednesday 9 January 2008 1.30 pm to 3.00 pm For this paper you must have: an 8page answer
More informationSolutions to Linear Algebra Practice Problems
Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationAP Calculus AB 2009 FreeResponse Questions
AP Calculus AB 2009 FreeResponse Questions The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and opportunity. Founded
More informationMULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then
MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.
More information