Game Theory: Supermodular Games 1

Size: px
Start display at page:

Download "Game Theory: Supermodular Games 1"

Transcription

1 Game Theory: Supermodular Games 1 Christoph Schottmüller 1 License: CC Attribution ShareAlike / 22

2 Outline 1 Introduction 2 Model 3 Revision questions and exercises 2 / 22

3 Motivation I several solution concepts: (dominance) rationalizability (iterative deletion of dominated strategies) Nash equilibrium correlated equilibrium Which one to use? Are there games where all solution concepts give (approximately) same prediction? 3 / 22

4 Motivation II comparative statics: how does the equilibrium change if one parameter changes? how do market prices depend on demand elasticity/number of firms in the market/product substitutability? how will the central bank change its interest rate when unemployment rises? how does campaign spending depend on media bias? size of effect has to be estimated but game theoretic models can sometimes determine the sign of effect! are there properties of models under which the sign of the effect is unambiguously clear? 4 / 22

5 Example: Search Example: Simple search market N traders exert effort x i to search for other trader if two traders find each other, each gets benefit 1 probability { that ( trader i finds other trader is )} min 1, αx i j i x j + β where α > 0 and β>0 are such that 0 < α((n 1) + β) < 1 costs of effort are x 2 i Given the effort of the others, how much effort should i exert? If trader j exerts more effort, how does this affect the optimal effort of i? If the search technology improves, will a trader exert more or less effort? Could our answers depend on the solution concept used? 5 / 22

6 Model Setup: Simple smooth supermodular games N players action sets A i = [y i, ȳ i ] simultaneous move game utility functions: u i (a i, a i ): u i is twice continuously differentiable 2 u i a i a j 0 for i j ( supermodularity: this is the important assumption of today!) check: Does the simple search market satisfy the assumptions? 6 / 22

7 What are the effects of 2 u i a i a j 0? Increasing differences : let a 1 > a 1, then u 1(a 1, a 2, a 3,... ) u 1 (a 1, a 2, a 3,... ) = a1 u 1 a 1 a 1 (x, a 2, a 3,... ) dx is increasing in a 2 because of 2 u 1 a 1 a 2 0 check: verify that the simple search market satisfies increasing differences Result Let a i > a i. If u i(a i, a i ) > u i (a i, a i), then u i (a i, a i ) > u i(a i, a i ) for all a i a i. Roughly: Best responses are increasing. 7 / 22

8 Serially undominated strategies (another solution concept... ) same as iterative elimination of strictly dominated strategies BUT only pure strategies are used Which actions of player i are not strictly dominated by pure strategies? Call them A 1 i. Which actions of player i are not strictly dominated by pure strategies if the other players play only actions from A 1 j? Call them A2 i. Which actions of player i are not strictly dominated by pure strategies if the other players play only actions from A 2 j? Call them A3 i.... note that A 1 i A 2 i... U i = A 1 i A 2 i... is the set of serially undominated strategies of player i 8 / 22

9 Example: serially undominated strategies Difference between serially undominated strategies and iterative elimination of strictly dominated actions L C R T 6,5 4,2 3,3 M 3,0 3,5 6,1 B 4,1 3,0 2,16 9 / 22

10 Main result let u i denote the minimum of U i and ū i the maximum of U i Theorem (Supermodularity Result 1) The strategy profile (u 1, u 2,... ) is a Nash equilibrium. The strategy profile (ū 1, ū 2,... ) is also a Nash equilibrium. Why is this important? U i gives a range in which all rationalizable actions have to lie in (why?) all Nash equilibria have to be in (why?) the support of all correlated equilibria has to be in (why?) if u i and ū i are close, all these solution concepts give similar predictions! 10 / 22

11 Proof of Supermodularity Result 1 We show that (u 1, u 2,... ) is NE. Can a deviation to a i < u i or to a i > ū i be profitable? Can a deviation to a i (u i, ū i ] be profitable? Suppose it was, i.e. u i (a i, u i) u i (u i, u i ) > 0. Then,... Similar proof for (ū 1, ū 2,... ) (exercise) 11 / 22

12 Extending the result Result 1 is only useful if ū i and u i are close if u i = ū i, then there is a unique rationalizable action which is the unique Nash equilibrum which is a unique correlated equilibrium the game can be solved by iterative elimination of strictly dominated strategies note that result implies the following: Corollary If a supermodular game either has a unique pure strategy NE or is symmetric and has a unique pure strategy symmetric NE, then each player has a unique rationalizable action and the game can be solved by iterative elimination of strictly dominated actions. 12 / 22

13 Is the corollary useful? Take simple search market with 2 agents. Determine all pure strategy NE. How many correlated equilibria does this game have? What is the set of rationalizable actions? Does the answer change if there are n agents? 13 / 22

14 Bertrand with differentiated goods Example: price competition Two firms compete by setting prices. Demand for firm i is D i (p 1, p 2 ) = γ p i + βp j with 0 < β < 1 and γ > 0. Costs for firm i are c i D i (p 1, p 2 ). Both firms maximize profits. Is the game supermodular? Does it have a unique pure strategy Nash equilibrium? What are the sets of rationalizable actions and correlated equilibria? 14 / 22

15 Comparative statics I Now we want to ask questions like: how does the equilibrium effort in the search market change if α increases? how do the equilibrium prices in the Bertrand game change if c i changes (or β) changes? now: utility functions depend on actions and a parameter τ u i (a i, a i, τ) hence, lower and upper bounds on serially undominated strategies u i and ū i are functions of τ Theorem (Supermodularity Result 2) If 2 u i a i τ 0 for all i, then u i and ū i are increasing in τ. 15 / 22

16 Comparative Statics II result 2 is especially useful if u i (τ) = ū i (τ) check: how does the equilibrium effort in the search market depend on α? how do the equilibrium prices in the Bertrand game change if c i changes (or β) changes? idea behind result 2: assume 2 players and interior equilibrium (i.e. u i / a i = 0 in equilibrium) assume strictly concave utility functions, i.e. 2 u i / a 2 i < 0 if τ increases, how does this affect marginal utility u i / a i? can both a 1 and a 2 decrease if τ increases? can a 1 increase and a 2 decrease if τ increases? 16 / 22

17 Supermodularizing : Tricks I Example: Cournot Two firms with zero marginal costs set quantities q i. The resulting market price is 1 q 1 q 2. Firm i maximizes its profit q i (1 q i q j ). Is this game supermodular? Any idea what to do? 17 / 22

18 Supermodularizing : Tricks II We use again the price competition model but now we assume a logit demand 1 D i (p i, p j ) = e p i p j + 1 profits are then π i (p i, p j ) = p i e p i p j + 1 which do not satisfy 2 π i / p 1 p 2 0 trick: the price maximizing π i (p i, p j ) is the same that maximizes log(π i (p i, p j )) let firms maximize log profits u i (p i, p j ) = log(π i (p i, p j )) = log(p i ) log(e p i p j + 1) which satisfies 2 u i / p 1 p 2 0 (check!) 18 / 22

19 Extensions What if each player takes several actions? e.g. a firm sets price, quality and warranty length A i = [y 1, ȳ 1 i i ] [y 2, ȳ 2 i i ] [y k i, ȳ k i i i ] hence, an action of player i is now a vector (ai 1, a2 i,..., ak i i ) supermodularity in this setup: 2 u i a m i a n j 2 u i a m i a n i 0 for all i j and 1 m k i and 1 n k j 0 for all i and 1 m < n k i with these assumptions all results still hold 19 / 22

20 Revision questions Why are we interested in supermodular games? How are (simple smooth) supermodular games defined? (what is the crucial assumption?) Explain the increasing differences property. What is the main result for supermodular games? What does it imply for the case that the game has only one pure strategy Nash equilibrium? What do we mean by comparative statics and what kind of comparative static result is special for supermodular games? What kind of tricks can you use to make a game supermodular? 20 / 22

21 Exercises I Exercise 1: 1 Take the standard Bertrand model with homogenous goods: 2 firms have costs 0 and set a price p i. There is one consumer who buys from the firm with the lower price (as long as this price is below his valuation v). Is this game supermodular? 2 Choose a game theoretic model from another course you have taken and check whether the game was supermodular (or could be transformed into a supermodular model using one of the tricks). Exercise 2: Complete the proof of supermodularity result 1 by showing that (ū 1, ū 2,... ) is a Nash equilibrium. 21 / 22

22 Exercises II reading: Milgrom/Roberts paper: introduction+ sections 2+4 (you will probably encounter some terms that you don t know and the proofs might look a bit hard; that s ok: just try to read through it and relate it to the things we did in the lecture; section 4 might be easier to follow than section 2) *Exercise 3: Assume in addition to the assumptions so far that u i is strictly concave: 2 u i / a 2 i < 0. Show that each A k i (in the iterative elimination of dominated actions) is an interval and conclude that U i is an interval. 22 / 22

Chapter 7. Sealed-bid Auctions

Chapter 7. Sealed-bid Auctions Chapter 7 Sealed-bid Auctions An auction is a procedure used for selling and buying items by offering them up for bid. Auctions are often used to sell objects that have a variable price (for example oil)

More information

Oligopoly: Cournot/Bertrand/Stackelberg

Oligopoly: Cournot/Bertrand/Stackelberg Outline Alternative Market Models Wirtschaftswissenschaften Humboldt Universität zu Berlin March 5, 2006 Outline 1 Introduction Introduction Alternative Market Models 2 Game, Reaction Functions, Solution

More information

Price competition with homogenous products: The Bertrand duopoly model [Simultaneous move price setting duopoly]

Price competition with homogenous products: The Bertrand duopoly model [Simultaneous move price setting duopoly] ECON9 (Spring 0) & 350 (Tutorial ) Chapter Monopolistic Competition and Oligopoly (Part ) Price competition with homogenous products: The Bertrand duopoly model [Simultaneous move price setting duopoly]

More information

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such

More information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015 ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1

More information

Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions.

Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions. Name Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions. Question 1. A firm has a production function F (x 1, x 2 ) = ( x 1 + x 2 ) 2. It is a price

More information

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation 6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma

More information

ECON 40050 Game Theory Exam 1 - Answer Key. 4) All exams must be turned in by 1:45 pm. No extensions will be granted.

ECON 40050 Game Theory Exam 1 - Answer Key. 4) All exams must be turned in by 1:45 pm. No extensions will be granted. 1 ECON 40050 Game Theory Exam 1 - Answer Key Instructions: 1) You may use a pen or pencil, a hand-held nonprogrammable calculator, and a ruler. No other materials may be at or near your desk. Books, coats,

More information

Oligopoly: How do firms behave when there are only a few competitors? These firms produce all or most of their industry s output.

Oligopoly: How do firms behave when there are only a few competitors? These firms produce all or most of their industry s output. Topic 8 Chapter 13 Oligopoly and Monopolistic Competition Econ 203 Topic 8 page 1 Oligopoly: How do firms behave when there are only a few competitors? These firms produce all or most of their industry

More information

ECON 312: Oligopolisitic Competition 1. Industrial Organization Oligopolistic Competition

ECON 312: Oligopolisitic Competition 1. Industrial Organization Oligopolistic Competition ECON 312: Oligopolisitic Competition 1 Industrial Organization Oligopolistic Competition Both the monopoly and the perfectly competitive market structure has in common is that neither has to concern itself

More information

How to Solve Strategic Games? Dominant Strategies

How to Solve Strategic Games? Dominant Strategies How to Solve Strategic Games? There are three main concepts to solve strategic games: 1. Dominant Strategies & Dominant Strategy Equilibrium 2. Dominated Strategies & Iterative Elimination of Dominated

More information

Cournot s model of oligopoly

Cournot s model of oligopoly Cournot s model of oligopoly Single good produced by n firms Cost to firm i of producing q i units: C i (q i ), where C i is nonnegative and increasing If firms total output is Q then market price is P(Q),

More information

6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games

6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games 6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games Asu Ozdaglar MIT February 4, 2009 1 Introduction Outline Decisions, utility maximization Strategic form games Best responses

More information

Bargaining Solutions in a Social Network

Bargaining Solutions in a Social Network Bargaining Solutions in a Social Network Tanmoy Chakraborty and Michael Kearns Department of Computer and Information Science University of Pennsylvania Abstract. We study the concept of bargaining solutions,

More information

Competition and Regulation. Lecture 2: Background on imperfect competition

Competition and Regulation. Lecture 2: Background on imperfect competition Competition and Regulation Lecture 2: Background on imperfect competition Monopoly A monopolist maximizes its profits, choosing simultaneously quantity and prices, taking the Demand as a contraint; The

More information

Economics 203: Intermediate Microeconomics I Lab Exercise #11. Buy Building Lease F1 = 500 F1 = 750 Firm 2 F2 = 500 F2 = 400

Economics 203: Intermediate Microeconomics I Lab Exercise #11. Buy Building Lease F1 = 500 F1 = 750 Firm 2 F2 = 500 F2 = 400 Page 1 March 19, 2012 Section 1: Test Your Understanding Economics 203: Intermediate Microeconomics I Lab Exercise #11 The following payoff matrix represents the long-run payoffs for two duopolists faced

More information

Games Played in a Contracting Environment

Games Played in a Contracting Environment Games Played in a Contracting Environment V. Bhaskar Department of Economics University College London Gower Street London WC1 6BT February 2008 Abstract We analyze normal form games where a player has

More information

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima. Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren January, 2014 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that

More information

Richard Schmidtke: Private Provision of a Complementary Public Good

Richard Schmidtke: Private Provision of a Complementary Public Good Richard Schmidtke: Private Provision of a Complementary Public Good Munich Discussion Paper No. 2006-20 Department of Economics University of Munich Volkswirtschaftliche Fakultät Ludwig-Maximilians-Universität

More information

The vertical differentiation model in the insurance market: costs structure and equilibria analysis

The vertical differentiation model in the insurance market: costs structure and equilibria analysis The vertical differentiation model in the insurance market: costs structure and equilibria analysis Denis V. Kuzyutin 1, Maria V. Nikitina, Nadezhda V. Smirnova and Ludmila N. Razgulyaeva 1 St.Petersburg

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically

More information

9.1 Cournot and Bertrand Models with Homogeneous Products

9.1 Cournot and Bertrand Models with Homogeneous Products 1 Chapter 9 Quantity vs. Price Competition in Static Oligopoly Models We have seen how price and output are determined in perfectly competitive and monopoly markets. Most markets are oligopolistic, however,

More information

2. Information Economics

2. Information Economics 2. Information Economics In General Equilibrium Theory all agents had full information regarding any variable of interest (prices, commodities, state of nature, cost function, preferences, etc.) In many

More information

Computational Learning Theory Spring Semester, 2003/4. Lecture 1: March 2

Computational Learning Theory Spring Semester, 2003/4. Lecture 1: March 2 Computational Learning Theory Spring Semester, 2003/4 Lecture 1: March 2 Lecturer: Yishay Mansour Scribe: Gur Yaari, Idan Szpektor 1.1 Introduction Several fields in computer science and economics are

More information

The Basics of Game Theory

The Basics of Game Theory Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology RECITATION NOTES #7 The Basics of Game Theory Friday - November 5, 2004 OUTLINE OF TODAY S RECITATION 1. Game theory definitions:

More information

Microeconomic Theory Jamison / Kohlberg / Avery Problem Set 4 Solutions Spring 2012. (a) LEFT CENTER RIGHT TOP 8, 5 0, 0 6, 3 BOTTOM 0, 0 7, 6 6, 3

Microeconomic Theory Jamison / Kohlberg / Avery Problem Set 4 Solutions Spring 2012. (a) LEFT CENTER RIGHT TOP 8, 5 0, 0 6, 3 BOTTOM 0, 0 7, 6 6, 3 Microeconomic Theory Jamison / Kohlberg / Avery Problem Set 4 Solutions Spring 2012 1. Subgame Perfect Equilibrium and Dominance (a) LEFT CENTER RIGHT TOP 8, 5 0, 0 6, 3 BOTTOM 0, 0 7, 6 6, 3 Highlighting

More information

Application of Game Theory in Inventory Management

Application of Game Theory in Inventory Management Application of Game Theory in Inventory Management Rodrigo Tranamil-Vidal Universidad de Chile, Santiago de Chile, Chile Rodrigo.tranamil@ug.udechile.cl Abstract. Game theory has been successfully applied

More information

Economics of Insurance

Economics of Insurance Economics of Insurance In this last lecture, we cover most topics of Economics of Information within a single application. Through this, you will see how the differential informational assumptions allow

More information

Economics 431 Fall 2003 2nd midterm Answer Key

Economics 431 Fall 2003 2nd midterm Answer Key Economics 431 Fall 2003 2nd midterm Answer Key 1) (20 oints) Big C cable comany has a local monooly in cable TV (good 1) and fast Internet (good 2). Assume that the marginal cost of roducing either good

More information

Modeling Insurance Markets

Modeling Insurance Markets Modeling Insurance Markets Nathaniel Hendren Harvard April, 2015 Nathaniel Hendren (Harvard) Insurance April, 2015 1 / 29 Modeling Competition Insurance Markets is Tough There is no well-agreed upon model

More information

Two Papers on Internet Connectivity and Quality. Abstract

Two Papers on Internet Connectivity and Quality. Abstract Two Papers on Internet Connectivity and Quality ROBERTO ROSON Dipartimento di Scienze Economiche, Università Ca Foscari di Venezia, Venice, Italy. Abstract I review two papers, addressing the issue of

More information

THE NON-EQUIVALENCE OF EXPORT AND IMPORT QUOTAS

THE NON-EQUIVALENCE OF EXPORT AND IMPORT QUOTAS THE NON-EQIVALENCE OF EXPORT AND IMPORT QOTAS Harvey E. Lapan *, Professor Department of Economics 83 Heady Hall Iowa State niversity Ames, IA, 500 Jean-Philippe Gervais Assistant Professor Department

More information

CPC/CPA Hybrid Bidding in a Second Price Auction

CPC/CPA Hybrid Bidding in a Second Price Auction CPC/CPA Hybrid Bidding in a Second Price Auction Benjamin Edelman Hoan Soo Lee Working Paper 09-074 Copyright 2008 by Benjamin Edelman and Hoan Soo Lee Working papers are in draft form. This working paper

More information

Equilibrium computation: Part 1

Equilibrium computation: Part 1 Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium

More information

Product Differentiation In homogeneous goods markets, price competition leads to perfectly competitive outcome, even with two firms Price competition

Product Differentiation In homogeneous goods markets, price competition leads to perfectly competitive outcome, even with two firms Price competition Product Differentiation In homogeneous goods markets, price competition leads to perfectly competitive outcome, even with two firms Price competition with differentiated products Models where differentiation

More information

Working Paper Series

Working Paper Series RGEA Universidade de Vigo http://webs.uvigo.es/rgea Working Paper Series A Market Game Approach to Differential Information Economies Guadalupe Fugarolas, Carlos Hervés-Beloso, Emma Moreno- García and

More information

5 Market Games For Teaching Economics

5 Market Games For Teaching Economics 5 Market Games For Teaching Economics Progression 5 Market Games from website economics-games.com To be played separately or as a sequence: Market Game 1: Sunk costs, monopoly, and introduction to the

More information

Infinitely Repeated Games with Discounting Ù

Infinitely Repeated Games with Discounting Ù Infinitely Repeated Games with Discounting Page 1 Infinitely Repeated Games with Discounting Ù Introduction 1 Discounting the future 2 Interpreting the discount factor 3 The average discounted payoff 4

More information

6.254 : Game Theory with Engineering Applications Lecture 1: Introduction

6.254 : Game Theory with Engineering Applications Lecture 1: Introduction 6.254 : Game Theory with Engineering Applications Lecture 1: Introduction Asu Ozdaglar MIT February 2, 2010 1 Introduction Optimization Theory: Optimize a single objective over a decision variable x R

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

University of Oslo Department of Economics

University of Oslo Department of Economics University of Oslo Department of Economics Exam: ECON3200/4200 Microeconomics and game theory Date of exam: Tuesday, November 26, 2013 Grades are given: December 17, 2013 Duration: 14:30-17:30 The problem

More information

Wor King Papers. Economics Working Papers. Price-Matching leads to the Cournot Outcome 2013-12. Mongoljin Batsaikhan and Norovsambuu Tumennasan

Wor King Papers. Economics Working Papers. Price-Matching leads to the Cournot Outcome 2013-12. Mongoljin Batsaikhan and Norovsambuu Tumennasan Wor King Papers Economics Working Papers 2013-12 Price-Matching leads to the Cournot Outcome Mongoljin Batsaikhan and Norovsambuu Tumennasan Price-Matching leads to the Cournot Outcome Mongoljin Batsaikhan

More information

Labor Economics, 14.661. Lecture 3: Education, Selection, and Signaling

Labor Economics, 14.661. Lecture 3: Education, Selection, and Signaling Labor Economics, 14.661. Lecture 3: Education, Selection, and Signaling Daron Acemoglu MIT November 3, 2011. Daron Acemoglu (MIT) Education, Selection, and Signaling November 3, 2011. 1 / 31 Introduction

More information

Computing the Electricity Market Equilibrium: Uses of market equilibrium models

Computing the Electricity Market Equilibrium: Uses of market equilibrium models Computing the Electricity Market Equilibrium: Uses of market equilibrium models Ross Baldick Department of Electrical and Computer Engineering The University of Texas at Austin April 2007 Abstract We discuss

More information

Economics 1011a: Intermediate Microeconomics

Economics 1011a: Intermediate Microeconomics Lecture 12: More Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 12: More on Uncertainty Thursday, October 23, 2008 Last class we introduced choice under uncertainty. Today we will explore

More information

Equilibrium Bids in Sponsored Search. Auctions: Theory and Evidence

Equilibrium Bids in Sponsored Search. Auctions: Theory and Evidence Equilibrium Bids in Sponsored Search Auctions: Theory and Evidence Tilman Börgers Ingemar Cox Martin Pesendorfer Vaclav Petricek September 2008 We are grateful to Sébastien Lahaie, David Pennock, Isabelle

More information

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}. Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian

More information

Oligopoly and Strategic Pricing

Oligopoly and Strategic Pricing R.E.Marks 1998 Oligopoly 1 R.E.Marks 1998 Oligopoly Oligopoly and Strategic Pricing In this section we consider how firms compete when there are few sellers an oligopolistic market (from the Greek). Small

More information

Cheap Talk : Multiple Senders and Multiple Receivers

Cheap Talk : Multiple Senders and Multiple Receivers Corso di Laurea in Economia indirizzo Models and Methods of Quantitative Economics Prova finale di Laurea Cheap Talk : Multiple Senders and Multiple Receivers Relatore Prof. Piero Gottardi Laureando Arya

More information

AN INTRODUCTION TO GAME THEORY

AN INTRODUCTION TO GAME THEORY AN INTRODUCTION TO GAME THEORY 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. MARTIN J. OSBORNE University of Toronto

More information

On the Interaction and Competition among Internet Service Providers

On the Interaction and Competition among Internet Service Providers On the Interaction and Competition among Internet Service Providers Sam C.M. Lee John C.S. Lui + Abstract The current Internet architecture comprises of different privately owned Internet service providers

More information

Games Manipulators Play

Games Manipulators Play Games Manipulators Play Umberto Grandi Department of Mathematics University of Padova 23 January 2014 [Joint work with Edith Elkind, Francesca Rossi and Arkadii Slinko] Gibbard-Satterthwaite Theorem All

More information

R&D cooperation with unit-elastic demand

R&D cooperation with unit-elastic demand R&D cooperation with unit-elastic demand Georg Götz This draft: September 005. Abstract: This paper shows that R&D cooperation leads to the monopoly outcome in terms of price and quantity if demand is

More information

Cooleconomics.com Monopolistic Competition and Oligopoly. Contents:

Cooleconomics.com Monopolistic Competition and Oligopoly. Contents: Cooleconomics.com Monopolistic Competition and Oligopoly Contents: Monopolistic Competition Attributes Short Run performance Long run performance Excess capacity Importance of Advertising Socialist Critique

More information

Profit Loss in Cournot Oligopolies

Profit Loss in Cournot Oligopolies Profit Loss in Cournot Oligopolies John N. Tsitsiklis and Yunjian Xu Abstract We consider a Cournot oligopoly model where multiple suppliers (oligopolists) compete by choosing quantities. We compare the

More information

Forthcoming in Research Papers Series, SU- HSE, Research in Economics and Finance, May 2010

Forthcoming in Research Papers Series, SU- HSE, Research in Economics and Finance, May 2010 Forthcoming in Research Papers Series, SU- HSE, Research in Economics and Finance, May 2010 How Does Income Inequality Affect Market Outcomes in Vertically Differentiated Markets? Anna V. Yurko State University

More information

Market Structure: Duopoly and Oligopoly

Market Structure: Duopoly and Oligopoly WSG10 7/7/03 4:24 PM Page 145 10 Market Structure: Duopoly and Oligopoly OVERVIEW An oligopoly is an industry comprising a few firms. A duopoly, which is a special case of oligopoly, is an industry consisting

More information

Oligopoly Games under Asymmetric Costs and an Application to Energy Production

Oligopoly Games under Asymmetric Costs and an Application to Energy Production Oligopoly Games under Asymmetric Costs and an Application to Energy Production Andrew Ledvina Ronnie Sircar First version: July 20; revised January 202 and March 202 Astract Oligopolies in which firms

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

Midterm March 2015. (a) Consumer i s budget constraint is. c i 0 12 + b i c i H 12 (1 + r)b i c i L 12 (1 + r)b i ;

Midterm March 2015. (a) Consumer i s budget constraint is. c i 0 12 + b i c i H 12 (1 + r)b i c i L 12 (1 + r)b i ; Masters in Economics-UC3M Microeconomics II Midterm March 015 Exercise 1. In an economy that extends over two periods, today and tomorrow, there are two consumers, A and B; and a single perishable good,

More information

Price Dispersion. Ed Hopkins Economics University of Edinburgh Edinburgh EH8 9JY, UK. November, 2006. Abstract

Price Dispersion. Ed Hopkins Economics University of Edinburgh Edinburgh EH8 9JY, UK. November, 2006. Abstract Price Dispersion Ed Hopkins Economics University of Edinburgh Edinburgh EH8 9JY, UK November, 2006 Abstract A brief survey of the economics of price dispersion, written for the New Palgrave Dictionary

More information

Computational Game Theory and Clustering

Computational Game Theory and Clustering Computational Game Theory and Clustering Martin Hoefer mhoefer@mpi-inf.mpg.de 1 Computational Game Theory? 2 Complexity and Computation of Equilibrium 3 Bounding Inefficiencies 4 Conclusion Computational

More information

Equilibrium: Illustrations

Equilibrium: Illustrations Draft chapter from An introduction to game theory by Martin J. Osborne. Version: 2002/7/23. Martin.Osborne@utoronto.ca http://www.economics.utoronto.ca/osborne Copyright 1995 2002 by Martin J. Osborne.

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

Non-Exclusive Competition in the Market for Lemons

Non-Exclusive Competition in the Market for Lemons Non-Exclusive Competition in the Market for Lemons Andrea Attar Thomas Mariotti François Salanié October 2007 Abstract In order to check the impact of the exclusivity regime on equilibrium allocations,

More information

Week 7 - Game Theory and Industrial Organisation

Week 7 - Game Theory and Industrial Organisation Week 7 - Game Theory and Industrial Organisation The Cournot and Bertrand models are the two basic templates for models of oligopoly; industry structures with a small number of firms. There are a number

More information

Do not open this exam until told to do so.

Do not open this exam until told to do so. Do not open this exam until told to do so. Department of Economics College of Social and Applied Human Sciences K. Annen, Winter 004 Final (Version ): Intermediate Microeconomics (ECON30) Solutions Final

More information

A Cournot-Nash Bertrand Game Theory Model of a Service-Oriented Internet with Price and Quality Competition Among Network Transport Providers

A Cournot-Nash Bertrand Game Theory Model of a Service-Oriented Internet with Price and Quality Competition Among Network Transport Providers of a Service-Oriented Internet with Price and Quality Competition Among Network Transport Providers Anna Nagurney 1 Tilman Wolf 2 1 Isenberg School of Management University of Massachusetts Amherst, Massachusetts

More information

Find-The-Number. 1 Find-The-Number With Comps

Find-The-Number. 1 Find-The-Number With Comps Find-The-Number 1 Find-The-Number With Comps Consider the following two-person game, which we call Find-The-Number with Comps. Player A (for answerer) has a number x between 1 and 1000. Player Q (for questioner)

More information

A Simple Model of Price Dispersion *

A Simple Model of Price Dispersion * Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 112 http://www.dallasfed.org/assets/documents/institute/wpapers/2012/0112.pdf A Simple Model of Price Dispersion

More information

Prices versus Exams as Strategic Instruments for Competing Universities

Prices versus Exams as Strategic Instruments for Competing Universities Prices versus Exams as Strategic Instruments for Competing Universities Elena Del Rey and Laura Romero October 004 Abstract In this paper we investigate the optimal choice of prices and/or exams by universities

More information

Competition between Apple and Samsung in the smartphone market introduction into some key concepts in managerial economics

Competition between Apple and Samsung in the smartphone market introduction into some key concepts in managerial economics Competition between Apple and Samsung in the smartphone market introduction into some key concepts in managerial economics Dr. Markus Thomas Münter Collège des Ingénieurs Stuttgart, June, 03 SNORKELING

More information

The Envelope Theorem 1

The Envelope Theorem 1 John Nachbar Washington University April 2, 2015 1 Introduction. The Envelope Theorem 1 The Envelope theorem is a corollary of the Karush-Kuhn-Tucker theorem (KKT) that characterizes changes in the value

More information

Economics II: Micro Fall 2009 Exercise session 5. Market with a sole supplier is Monopolistic.

Economics II: Micro Fall 2009 Exercise session 5. Market with a sole supplier is Monopolistic. Economics II: Micro Fall 009 Exercise session 5 VŠE 1 Review Optimal production: Independent of the level of market concentration, optimal level of production is where MR = MC. Monopoly: Market with a

More information

Managerial Economics & Business Strategy Chapter 9. Basic Oligopoly Models

Managerial Economics & Business Strategy Chapter 9. Basic Oligopoly Models Managerial Economics & Business Strategy Chapter 9 Basic Oligopoly Models Overview I. Conditions for Oligopoly? II. Role of Strategic Interdependence III. Profit Maximization in Four Oligopoly Settings

More information

FINAL EXAM, Econ 171, March, 2015, with answers

FINAL EXAM, Econ 171, March, 2015, with answers FINAL EXAM, Econ 171, March, 2015, with answers There are 9 questions. Answer any 8 of them. Good luck! Problem 1. (True or False) If a player has a dominant strategy in a simultaneous-move game, then

More information

Lecture Notes on Elasticity of Substitution

Lecture Notes on Elasticity of Substitution Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 210A March 3, 2011 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before

More information

Financial Markets. Itay Goldstein. Wharton School, University of Pennsylvania

Financial Markets. Itay Goldstein. Wharton School, University of Pennsylvania Financial Markets Itay Goldstein Wharton School, University of Pennsylvania 1 Trading and Price Formation This line of the literature analyzes the formation of prices in financial markets in a setting

More information

1 Nonzero sum games and Nash equilibria

1 Nonzero sum games and Nash equilibria princeton univ. F 14 cos 521: Advanced Algorithm Design Lecture 19: Equilibria and algorithms Lecturer: Sanjeev Arora Scribe: Economic and game-theoretic reasoning specifically, how agents respond to economic

More information

Goal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota

Goal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota Goal Problems in Gambling and Game Theory Bill Sudderth School of Statistics University of Minnesota 1 Three problems Maximizing the probability of reaching a goal. Maximizing the probability of reaching

More information

Designing Incentives in Online Collaborative Environments 1

Designing Incentives in Online Collaborative Environments 1 Designing Incentives in Online Collaborative Environments 1 Yoram Bachrach, Vasilis Syrgkanis, and Milan Vojnović November 2012 Technical Report MSR-TR-2012-115 Microsoft Research Microsoft Corporation

More information

Atomic Cournotian Traders May Be Walrasian

Atomic Cournotian Traders May Be Walrasian Atomic Cournotian Traders May Be Walrasian Giulio Codognato, Sayantan Ghosal, Simone Tonin September 2014 Abstract In a bilateral oligopoly, with large traders, represented as atoms, and small traders,

More information

8 Modeling network traffic using game theory

8 Modeling network traffic using game theory 8 Modeling network traffic using game theory Network represented as a weighted graph; each edge has a designated travel time that may depend on the amount of traffic it contains (some edges sensitive to

More information

MARKET STRUCTURE AND INSIDER TRADING. Keywords: Insider Trading, Stock prices, Correlated signals, Kyle model

MARKET STRUCTURE AND INSIDER TRADING. Keywords: Insider Trading, Stock prices, Correlated signals, Kyle model MARKET STRUCTURE AND INSIDER TRADING WASSIM DAHER AND LEONARD J. MIRMAN Abstract. In this paper we examine the real and financial effects of two insiders trading in a static Jain Mirman model (Henceforth

More information

Terry College of Business - ECON 7950

Terry College of Business - ECON 7950 Terry College of Business - ECON 7950 Lecture 9: Product Differentiation Primary reference: McAfee, Competitive Solutions, Ch. 4 Differentiated Products When products are differentiated, competition does

More information

Testing Cost Inefficiency under Free Entry in the Real Estate Brokerage Industry

Testing Cost Inefficiency under Free Entry in the Real Estate Brokerage Industry Web Appendix to Testing Cost Inefficiency under Free Entry in the Real Estate Brokerage Industry Lu Han University of Toronto lu.han@rotman.utoronto.ca Seung-Hyun Hong University of Illinois hyunhong@ad.uiuc.edu

More information

Using Generalized Forecasts for Online Currency Conversion

Using Generalized Forecasts for Online Currency Conversion Using Generalized Forecasts for Online Currency Conversion Kazuo Iwama and Kouki Yonezawa School of Informatics Kyoto University Kyoto 606-8501, Japan {iwama,yonezawa}@kuis.kyoto-u.ac.jp Abstract. El-Yaniv

More information

Games of Incomplete Information

Games of Incomplete Information Games of Incomplete Information Jonathan Levin February 00 Introduction We now start to explore models of incomplete information. Informally, a game of incomplete information is a game where the players

More information

Microeconomics. Lecture Outline. Claudia Vogel. Winter Term 2009/2010. Part III Market Structure and Competitive Strategy

Microeconomics. Lecture Outline. Claudia Vogel. Winter Term 2009/2010. Part III Market Structure and Competitive Strategy Microeconomics Claudia Vogel EUV Winter Term 2009/2010 Claudia Vogel (EUV) Microeconomics Winter Term 2009/2010 1 / 25 Lecture Outline Part III Market Structure and Competitive Strategy 12 Monopolistic

More information

An Example of a Repeated Partnership Game with Discounting and with Uniformly Inefficient Equilibria

An Example of a Repeated Partnership Game with Discounting and with Uniformly Inefficient Equilibria An Example of a Repeated Partnership Game with Discounting and with Uniformly Inefficient Equilibria Roy Radner; Roger Myerson; Eric Maskin The Review of Economic Studies, Vol. 53, No. 1. (Jan., 1986),

More information

A Game Theoretical Framework on Intrusion Detection in Heterogeneous Networks Lin Chen, Member, IEEE, and Jean Leneutre

A Game Theoretical Framework on Intrusion Detection in Heterogeneous Networks Lin Chen, Member, IEEE, and Jean Leneutre IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL 4, NO 2, JUNE 2009 165 A Game Theoretical Framework on Intrusion Detection in Heterogeneous Networks Lin Chen, Member, IEEE, and Jean Leneutre

More information

Mikroekonomia B by Mikolaj Czajkowski. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Mikroekonomia B by Mikolaj Czajkowski. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Mikroekonomia B by Mikolaj Czajkowski Test 12 - Oligopoly Name Group MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The market structure in which

More information

Chapter 2 Portfolio Management and the Capital Asset Pricing Model

Chapter 2 Portfolio Management and the Capital Asset Pricing Model Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that

More information

Hacking-proofness and Stability in a Model of Information Security Networks

Hacking-proofness and Stability in a Model of Information Security Networks Hacking-proofness and Stability in a Model of Information Security Networks Sunghoon Hong Preliminary draft, not for citation. March 1, 2008 Abstract We introduce a model of information security networks.

More information

Multi-variable Calculus and Optimization

Multi-variable Calculus and Optimization Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus

More information

Decentralised bilateral trading, competition for bargaining partners and the law of one price

Decentralised bilateral trading, competition for bargaining partners and the law of one price ECONOMICS WORKING PAPERS Decentralised bilateral trading, competition for bargaining partners and the law of one price Kalyan Chatterjee Kaustav Das Paper Number 105 October 2014 2014 by Kalyan Chatterjee

More information

Working Paper Does retailer power lead to exclusion?

Working Paper Does retailer power lead to exclusion? econstor www.econstor.eu Der Open-Access-Publikationsserver der ZBW Leibniz-Informationszentrum Wirtschaft The Open Access Publication Server of the ZBW Leibniz Information Centre for Economics Rey, Patrick;

More information

Chapter 9 Basic Oligopoly Models

Chapter 9 Basic Oligopoly Models Managerial Economics & Business Strategy Chapter 9 Basic Oligopoly Models McGraw-Hill/Irwin Copyright 2010 by the McGraw-Hill Companies, Inc. All rights reserved. Overview I. Conditions for Oligopoly?

More information