Chapter 7 - Rotational Motion w./ QuickCheck Questions

Size: px
Start display at page:

Download "Chapter 7 - Rotational Motion w./ QuickCheck Questions"

Transcription

1 Chapter 7 - Rotational Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico October 1, 2015

2 Review of Last Time Uniform and Nonuniform Circular Motion definitions: period, frequency, speed, acceleration, force Centripetal/Angular/Tangential acceleration Angular velocity, displacement, relations between linear and angular Torque - rotational equivalent to force

3 Examples of Rotational Motion

4 QuickCheck Question 7.1 A ball rolls around a circular track with an angular velocity of 4π rad/s. What is the period of the motion? A. 1/2 s B. 1 s C. 2 s D. 1/2π s E. 1/4π s

5 QuickCheck Question 7.1 A ball rolls around a circular track with an angular velocity of 4π rad/s. What is the period of the motion? A. 1/2 s B. 1 s C. 2 s D. 1/2π s E. 1/4π s Remember: T = (2π rad)/ω = (2π rad)/(4π rad/s) = 1/2 s

6 QuickCheck Question 7.7 This is the angular velocity graph of a wheel. How many revolutions does the wheel make in the first 4 s? A. 1 rev B. 2 rev C. 4 rev D. 6 rev E. 8 rev

7 QuickCheck Question 7.7 This is the angular velocity graph of a wheel. How many revolutions does the wheel make in the first 4 s? A. 1 rev B. 2 rev C. 4 rev Remember: θ = ω t D. 6 rev E. 8 rev θ = area under the curve = 1/2 (2rev/s)(2s) + (2 rev/s)(2s) = 2 rev + 4 rev = 6 rev

8 QuickCheck Question 7.2 Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia s angular velocity is that of Rasheed. A. Half B. The same as C. Twice D. Four times E. We can t say without knowing their radii.

9 QuickCheck Question 7.2 Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia s angular velocity is that of Rasheed. A. Half B. The same as C. Twice D. Four times E. We can t say without knowing their radii.

10 QuickCheck Question 7.3 Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia s speed is that of Rasheed. A. Half B. The same as C. Twice D. Four times E. We can t say without knowing their radii.

11 QuickCheck Question 7.3 Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia s speed is that of Rasheed. Remember: A. Half v = ωr B. The same as C. Twice D. Four times E. We can t say without knowing their radii. vsofia = ωrsofia = ω(2rrasheed) = 2 (ωrrasheed) = 2 vrasheed

12 QuickCheck Question 7.4 Two coins rotate on a turntable. Coin B is twice as far from the axis as coin A. A. The angular velocity of A is twice that of B B. The angular velocity of A equals that of B C. The angular velocity of A is half that of B

13 QuickCheck Question 7.4 Two coins rotate on a turntable. Coin B is twice as far from the axis as coin A. A. The angular velocity of A is twice that of B B. The angular velocity of A equals that of B C. The angular velocity of A is half that of B

14 QuickCheck Question 7.9 Starting from rest, a wheel with constant angular acceleration turns through an angle of 25 rad in a time t. Through what angle will it have turned after time 2t? A. 25 rad B. 50 rad C. 75 rad D. 100 rad E. 200 rad

15 QuickCheck Question 7.9 Starting from rest, a wheel with constant angular acceleration turns through an angle of 25 rad in a time t. Through what angle will it have turned after time 2t? A. 25 rad Remember: B. 50 rad C. 75 rad D. 100 rad θ = ω t = (α t) t θ t 2 θinitial t 2 E. 200 rad θfinal (2t) 2 4 t 2 4 θinitial

16 Angular Acceleration Angular acceleration, α, is positive when rotation is speeding up in the counter-clockwise direction or slowing down in the clockwise direction And vice-versa

17 QuickCheck Question 7.5 The fan blade is slowing down. What are the signs of ω and α? A. ω is positive and α is positive. B. ω is positive and α is negative. C. ω is negative and α is positive. D. ω is negative and α is negative. E. ω is positive and α is zero.

18 QuickCheck Question 7.5 The fan blade is slowing down. What are the signs of ω and α? Remember: Slowing down and clockwise means that ω and α have opposite signs, and that α is positive. A. ω is positive and α is positive. B. ω is positive and α is negative. C. ω is negative and α is positive. D. ω is negative and α is negative. E. ω is positive and α is zero.

19 QuickCheck Question 7.5 The fan blade is speeding up. What are the signs of ω and α? A. ω is positive and α is positive. B. ω is positive and α is negative. C. ω is negative and α is positive. D. ω is negative and α is negative.

20 QuickCheck Question 7.5 The fan blade is speeding up. What are the signs of ω and α? Remember: Speeding up and clockwise means that ω and α have the same signs, not that α is negative. A. ω is positive and α is positive. B. ω is positive and α is negative. C. ω is negative and α is positive. D. ω is negative and α is negative.

21 QuickCheck Question 7.8 Starting from rest, a wheel with constant angular acceleration spins up to 25 rpm in a time t. What will its angular velocity be after time 2t? A. 25 rpm B. 50 rpm C. 75 rpm D. 100 rpm E. 200 rpm

22 QuickCheck Question 7.8 Starting from rest, a wheel with constant angular acceleration spins up to 25 rpm in a time t. What will its angular velocity be after time 2t? Remember: A. 25 rpm B. 50 rpm C. 75 rpm D. 100 rpm E. 200 rpm ω = α t t ω t ωinitial t ωfinal 2t 2 ωinitial

23 QuickCheck Question 7.10 The four forces shown have the same strength. Which force would be most effective in opening the door? A. Force F 1 B. Force F 2 C. Force F 3 D. Force F 4 E. Either F 1 or F 3

24 QuickCheck Question 7.10 The four forces shown have the same strength. Which force would be most effective in opening the door? A. Force F 1 B. Force F 2 C. Force F 3 D. Force F 4 E. Either F 1 or F 3 Remember: Your intuition likely led you to choose F 1. The reason is that F 1 exerts the largest torque about the hinge. The farther away you apply the force perpendicular to the rigid rod, the less force you hav to apply.

25 Net Torque Just like the net force, the net torque is the sum of all the torques due to the applied forces, τnet = (r F sin φ)

26 QuickCheck Question 7.11 Which third force on the wheel, applied at point P, will make the net torque zero?

27 QuickCheck Question 7.11 Which third force on the wheel, applied at point P, will make the net torque zero? Remember: Since D > d, we know that the force at P has to be larger than the force at D, i.e. FP > FD, and perpendicular to the line segment d for the torques to cancel out d r No torque D φ = 90 A.

28 Gravitational Torque

29 Gravitational Torque Each particle in an object experiences torque due to gravity

30 Gravitational Torque Each particle in an object experiences torque due to gravity This torque is calculated assuming that the net force (weight) acts as a single point called the center of gravity

31 Example 7.12: The torque on a flagpole A 3.2 kg flagpole extends from a wall at an angle of 25 from the horizontal. Its center of gravity is 1.6 m from the point where the pole is attached to the wall. What is the gravitational torque on the flagpole about the point of attachment?

32 Example 7.12: The torque on a flagpole A 3.2 kg flagpole extends from a wall at an angle of 25 from the horizontal. Its center of gravity is 1.6 m from the point where the pole is attached to the wall. What is the gravitational torque on the flagpole about the point of attachment? PREPARE The figure shows the situation. For the purpose of calculating torque, we can consider the entire weight of the pole as acting at the center of gravity. Because the moment arm r is simple to visualize here, we ll use Equation 7.11 for the torque.

33 Example 7.12: The torque on a flagpole SOLVE From the figure, the moment arm is r = (1.6 m) cos 25

34 Example 7.12: The torque on a flagpole SOLVE From the figure, the moment arm is r = (1.6 m) cos 25 = 1.45 m The gravitational torque on the flagpole, about the point where it attaches to the wall, is thus

35 Example 7.12: The torque on a flagpole SOLVE From the figure, the moment arm is r = (1.6 m) cos 25 = 1.45 m The gravitational torque on the flagpole, about the point where it attaches to the wall, is thus

36 Example 7.12: The torque on a flagpole SOLVE From the figure, the moment arm is r = (1.6 m) cos 25 = 1.45 m The gravitational torque on the flagpole, about the point where it attaches to the wall, is thus ASSESS If the pole were attached to the wall by a hinge, the gravitational torque would cause the pole to fall. However, the actual rigid connection provides a counteracting (positive) torque to the pole that prevents this. The net torque is zero.

37 Center of Gravity An object free to rotate about a pivot will come to rest with the center of gravity below or above that pivot point

38 Center of Gravity An object free to rotate about a pivot will come to rest with the center of gravity below or above that pivot point

39 Center of Gravity An object free to rotate about a pivot will come to rest with the center of gravity below or above that pivot point There is no torque acting at these positions

40 QuickCheck Question 7.12 Which point could be the center of gravity of this L-shaped piece?

41 QuickCheck Question 7.12 Which point could be the center of gravity of this L-shaped piece? (a)

42 Finding the Center of Gravity The torque due to gravity when the pivot is at the center of gravity is 0

43 Finding the Center of Gravity The torque due to gravity when the pivot is at the center of gravity is 0

44 Finding the Center of Gravity The torque due to gravity when the pivot is at the center of gravity is 0 To calculate the position of the center of gravity we find the torque on each side of the pivot

45 Finding the Center of Gravity The torque due to gravity when the pivot is at the center of gravity is 0 To calculate the position of the center of gravity we find the torque on each side of the pivot The position of the center of gravity is denoted by xcg

46 Finding the Center of Gravity The torque on the left side of the pivot due to m1 is

47 Finding the Center of Gravity The torque on the left side of the pivot due to m1 is

48 Finding the Center of Gravity The torque on the left side of the pivot due to m1 is The torque on the right side of the pivot due to m2 is

49 Finding the Center of Gravity The torque on the left side of the pivot due to m1 is The torque on the right side of the pivot due to m2 is

50 Finding the Center of Gravity The total torque then is due to both m1 and m2 is

51 Finding the Center of Gravity The total torque then is due to both m1 and m2 is

52 Finding the Center of Gravity The total torque then is due to both m1 and m2 is Solving for the position of the center of gravity, xcg, we have

53 Finding the Center of Gravity The total torque then is due to both m1 and m2 is Solving for the position of the center of gravity, xcg, we have

54 Finding the Center of Gravity We see from the relation of the center of gravity to the masses

55 Finding the Center of Gravity We see from the relation of the center of gravity to the masses that it should lie closer to the heavier mass that makes up the object

56 Finding the Center of Gravity We see from the relation of the center of gravity to the masses that it should lie closer to the heavier mass that makes up the The center of mass or pivot point is closer to the heavier mass object

57 Finding the Center of Gravity

58 Rotation Dynamics Torque causes angular acceleration

59 Rotation Dynamics Torque causes angular acceleration Angular and tangential accelerations are defined as

60 Rotation Dynamics Torque causes angular acceleration Angular and tangential accelerations are defined as

61 Rotation Dynamics Comparing the torque with the acceleration, a relationship is found

62 Rotation Dynamics Comparing the torque with the acceleration, a relationship is found

63 Rotation Dynamics Comparing the torque with the acceleration, a relationship is found Yielding a torque of

64 Rotation Dynamics Comparing the torque with the acceleration, a relationship is found Yielding a torque of

65 Newton s Second Law for Rotational Motion All objects are composed of many particles

66 Newton s Second Law for Rotational Motion All objects are composed of many particles All particles on an object rotating about a fixed axis exhibit the same angular acceleration

67 Newton s Second Law for Rotational Motion Each particle s torque contributes to the net torque on the object

68 Newton s Second Law for Rotational Motion Each particle s torque contributes to the net torque on the object

69 Newton s Second Law for Rotational Motion Each particle s torque contributes to the net torque on the object

70 Newton s Second Law for Rotational Motion The quantity of Σmr 2 is called the moment of inertia, denoted by I

71 Newton s Second Law for Rotational Motion The quantity of Σmr 2 is called the moment of inertia, denoted by I

72 Newton s Second Law for Rotational Motion The quantity of Σmr 2 is called the moment of inertia, denoted by I It has units of kg m 2 and depends on the axis of rotation

73 Newton s Second Law for Rotational Motion

74 Newton s Second Law for Rotational Motion Net torque is the cause of angular acceleration!

75 Interpreting the Moment of Inertia It is the rotational equivalent to mass

76 Interpreting the Moment of Inertia It is the rotational equivalent to mass It depends on the object s mass and on how the mass is distributed around the rotation axis

77 Interpreting the Moment of Inertia

78 Example 7.15: Calculating the Moment of Inertia An abstract sculpture that consists of three small, heavy spheres attached by very lightweight 10-cm-long rods is shown. The spheres have masses m 1 = 1.0 kg, m 2 = 1.5 kg, and m 3 = 1.0 kg. What is the object s moment of inertia if it is rotated about axis A? About axis B?

79 Example 7.15: Calculating the Moment of Inertia An abstract sculpture that consists of three small, heavy spheres attached by very lightweight 10-cm-long rods is shown. The spheres have masses m 1 = 1.0 kg, m 2 = 1.5 kg, and m 3 = 1.0 kg. What is the object s moment of inertia if it is rotated about axis A? About axis B? PREPARE We ll use for the moment of inertia: I = m 1 r m 2 r m 3 r 3 2 In this expression, r 1, r 2, and r 3 are the distances of each particle from the axis of rotation, so they depend on the axis chosen.

80 Example 7.15: Calculating the Moment of Inertia Particle 1 lies on both axes, so r 1 = 0 cm in both cases. Particle 2 lies 10 cm (0.10 m) from both axes. Particle 3 is 10 cm from axis A but farther from axis B. We can find r 3 for axis B by using the Pythagorean theorem, which gives r 3 = 14.1 cm. These distances are indicated in the figure.

81 Example 7.15: Calculating the Moment of Inertia SOLVE For each axis, we can prepare a table of the values of r, m, and mr 2 for each particle, then add the values of mr 2. For axis A we have

82 Example 7.15: Calculating the Moment of Inertia SOLVE For axis B we have ASSESS We ve already noted that the moment of inertia of an object is higher when its mass is distributed farther from the axis of rotation. Here, m 3 is farther from axis B than from axis A, leading to a higher moment of inertia about that axis.

83 Moment of Inertia of Common Shapes

84 Using Newton s 2 nd Law of Rotation

85 Example 7.18: Starting an airplane engine The engine in a small air-plane has a torque of 500 N m. This engine drives a 2.0-m-long, 40 kg singleblade propeller. On start-up, how long does it take the propeller to reach 2000 rpm?

86 Example 7.18: Starting an airplane engine The engine in a small air-plane has a torque of 500 N m. This engine drives a 2.0-m-long, 40 kg singleblade propeller. On start-up, how long does it take the propeller to reach 2000 rpm? PREPARE The propeller can be modeled as a rod that rotates about its center. The engine exerts a torque on the propeller. The figure shows the propeller and the rotation axis.

87 Example 7.18: Starting an airplane engine SOLVE The moment of inertia of a rod rotating about its center is found in Table 7.1:

88 Example 7.18: Starting an airplane engine SOLVE The moment of inertia of a rod rotating about its center is found in Table 7.1:

89 Example 7.18: Starting an airplane engine SOLVE The moment of inertia of a rod rotating about its center is found in Table 7.1: The 500 N m torque of the engine causes an angular acceleration of

90 Example 7.18: Starting an airplane engine SOLVE The moment of inertia of a rod rotating about its center is found in Table 7.1: The 500 N m torque of the engine causes an angular acceleration of

91 Example 7.18: Starting an airplane engine The time needed to reach is ω f = 2000 rpm = 33.3 rev/s = 209 rad/s

92 Example 7.18: Starting an airplane engine The time needed to reach is ω f = 2000 rpm = 33.3 rev/s = 209 rad/s

93 Example 7.18: Starting an airplane engine ASSESS We ve assumed a constant angular acceleration, which is reasonable for the first few seconds while the propeller is still turning slowly. Eventually, air resistance and friction will cause opposing torques and the angular acceleration will decrease. At full speed, the negative torque due to air resistance and friction cancels the torque of the engine. Then and the propeller turns at constant angular velocity with no angular acceleration.

94 Constraints Due to Ropes and Pulleys Assuming a nonslipping rope, the pulley rim speed and acceleration is equal to the speed and acceleration of the rope and object attached to the rope

95 Constraints Due to Ropes and Pulleys Assuming a nonslipping rope, the pulley rim speed and acceleration is equal to the speed and acceleration of the rope and object attached to the rope

96 Rolling Motion A combination or rotational and translational motion

97 Rolling Motion A combination or rotational and translational motion Straight line trajectory

98 Rolling Motion A combination or rotational and translational motion Straight line trajectory

99 Rolling Motion In one revolution, the center moves forward by exactly one circumference (Δx = 2πR), with velocity

100 Rolling Motion Since the angular velocity, ω = 2π/T, we see that the velocity is equivalent to

101 Rolling Motion Since the angular velocity, ω = 2π/T, we see that the velocity is equivalent to This is the rolling constraint

102 Rolling Motion The bottom has translational and rotational velocities in the opposing directions, canceling each other out

103 Rolling Motion The bottom has translational and rotational velocities in the opposing directions, canceling each other out The point at the point is instantaneously at rest

104 Example 7.20: Rotating your Tires The diameter of your tires is 0.60 m. You take a 60 mile trip at a speed of 45 mph. a. During this trip, what was your tires angular speed? b. How many times did they revolve?

105 Example 7.20: Rotating your Tires The diameter of your tires is 0.60 m. You take a 60 mile trip at a speed of 45 mph. a. During this trip, what was your tires angular speed? b. How many times did they revolve? PREPARE The angular speed is related to the speed of a wheel s center by ν = ωr. Because the center of the wheel turns on an axle fixed to the car, the speed v of the wheel s center is the same as that of the car. We prepare by converting the car s speed to SI units:

106 Example 7.20: Rotating your Tires The diameter of your tires is 0.60 m. You take a 60 mile trip at a speed of 45 mph. a. During this trip, what was your tires angular speed? b. How many times did they revolve? PREPARE The angular speed is related to the speed of a wheel s center by ν = ωr. Because the center of the wheel turns on an axle fixed to the car, the speed v of the wheel s center is the same as that of the car. We prepare by converting the car s speed to SI units:

107 Example 7.20: Rotating your Tires PREPARE The angular speed is related to the speed of a wheel s center by ν = ωr. Because the center of the wheel turns on an axle fixed to the car, the speed v of the wheel s center is the same as that of the car. We prepare by converting the car s speed to SI units: Once we know the angular speed, we can find the number of times the tires turned from the rotational-kinematic equation Δθ = ω Δt. We ll need to find the time traveled Δt from ν = Δx/Δt.

108 Example 7.20: Rotating your Tires SOLVE a. From the equation, ν = ωr, we have

109 Example 7.20: Rotating your Tires SOLVE a. From the equation, ν = ωr, we have

110 Example 7.20: Rotating your Tires SOLVE a. From the equation, ν = ωr, we have b. The time of the trip is

111 Example 7.20: Rotating your Tires SOLVE a. From the equation, ν = ωr, we have b. The time of the trip is

112 Example 7.20: Rotating your Tires Thus the total angle through which the tires turn is

113 Example 7.20: Rotating your Tires Thus the total angle through which the tires turn is

114 Example 7.20: Rotating your Tires Thus the total angle through which the tires turn is Because each turn of the wheel is 2π rad, the number of turns is

115 Example 7.20: Rotating your Tires Thus the total angle through which the tires turn is Because each turn of the wheel is 2π rad, the number of turns is

116 Example 7.20: Rotating your Tires ASSESS You probably know from seeing tires on passing cars that a tire rotates several times a second at 45 mph. Because there are 3600 s in an hour, and your 60 mile trip at 45 mph is going to take over an hour say, 5000 s you would expect the tire to make many thousands of revolutions. So 51,000 turns seems to be a reasonable answer. You can see that your tires rotate roughly a thousand times per mile. During the lifetime of a tire, about 50,000 miles, it will rotate about 50 million times!

117 Summary

118 Summary

119 Summary

120 Summary

121 Summary

122 Summary

123 Summary

124 Summary

125 Summary

126 Summary

127 Things that are due Homework #6 Due October 8, 2015 by 11:59 pm Exam #2 October 6, 2015 at 5:00 pm

128 EXAM #2 Covers Chapters 4-7 & Lectures 7-13 Tuesday, October 6, 2015 Bring a calculator and cheat sheet (turn in with exam, one side of 8.5 x11 piece of paper) Practice exam will be available on website along with solutions

129 QUESTIONS?

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Angular acceleration α

Angular acceleration α Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6 Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Rotational Motion: Moment of Inertia

Rotational Motion: Moment of Inertia Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

More information

Chapter 8: Rotational Motion of Solid Objects

Chapter 8: Rotational Motion of Solid Objects Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

Wind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6

Wind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6 Wind Turbines 1 Wind Turbines 2 Introductory Question Wind Turbines You and a child half your height lean out over the edge of a pool at the same angle. If you both let go simultaneously, who will tip

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 5_31_2012 Goals for Chapter

More information

Chapter 7 Homework solutions

Chapter 7 Homework solutions Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

More information

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi. SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

11. Describing Angular or Circular Motion

11. Describing Angular or Circular Motion 11. Describing Angular or Circular Motion Introduction Examples of angular motion occur frequently. Examples include the rotation of a bicycle tire, a merry-go-round, a toy top, a food processor, a laboratory

More information

Solution: Angular velocity in consistent units (Table 8.1): 753.8. Velocity of a point on the disk: Rate at which bits pass by the read/write head:

Solution: Angular velocity in consistent units (Table 8.1): 753.8. Velocity of a point on the disk: Rate at which bits pass by the read/write head: Problem P8: The disk in a computer hard drive spins at 7200 rpm At the radius of 0 mm, a stream of data is magnetically written on the disk, and the spacing between data bits is 25 μm Determine the number

More information

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5 Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

More information

EXPERIMENT: MOMENT OF INERTIA

EXPERIMENT: MOMENT OF INERTIA OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in

More information

Answer, Key { Homework 6 { Rubin H Landau 1 This print-out should have 24 questions. Check that it is complete before leaving the printer. Also, multiple-choice questions may continue on the next column

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture 04-1 1. ask a physicist

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture 04-1 1. ask a physicist Welcome back to Physics 211 Today s agenda: Rotations What s on the exam? Relative motion Physics 211 Spring 2014 Lecture 04-1 1 ask a physicist Why are neutrinos faster than light (photons)? I thought

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

14 Engineering physics

14 Engineering physics Option B 14 Engineering physics ESSENTIAL IDEAS The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual objects have dimensions and they require an expansion

More information

E X P E R I M E N T 8

E X P E R I M E N T 8 E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

More information

Rotational Inertia Demonstrator

Rotational Inertia Demonstrator WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information

1 of 40 03/20/2010 03:49 PM

1 of 40 03/20/2010 03:49 PM Manage this Assignment: Print Version with Answers HW8-S10 Due: 1:00am on Thursday, March 18, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy Shooting a Block up

More information

Objective: Equilibrium Applications of Newton s Laws of Motion I

Objective: Equilibrium Applications of Newton s Laws of Motion I Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

3 Work, Power and Energy

3 Work, Power and Energy 3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Simple Machines. Figure 2: Basic design for a mousetrap vehicle

Simple Machines. Figure 2: Basic design for a mousetrap vehicle Mousetrap Vehicles Figure 1: This sample mousetrap-powered vehicle has a large drive wheel and a small axle. The vehicle will move slowly and travel a long distance for each turn of the wheel. 1 People

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

Torque and Rotation. Physics

Torque and Rotation. Physics Torque and Rotation Physics Torque Force is the action that creates changes in linear motion. For rotational motion, the same force can cause very different results. A torque is an action that causes objects

More information

Unit 1 - Radian and Degree Measure Classwork

Unit 1 - Radian and Degree Measure Classwork Unit 1 - Radian and Degree Measure Classwork Definitions to know: Trigonometry triangle measurement Initial side, terminal side - starting and ending Position of the ray Standard position origin if the

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold. Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,

More information

Universal Law of Gravitation

Universal Law of Gravitation Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies

More information

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24 Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces action-at-a-distance Instead of Q 1 exerting a force directly on Q at a distance,

More information

Physics 1401 - Exam 2 Chapter 5N-New

Physics 1401 - Exam 2 Chapter 5N-New Physics 1401 - Exam 2 Chapter 5N-New 2. The second hand on a watch has a length of 4.50 mm and makes one revolution in 60.00 s. What is the speed of the end of the second hand as it moves in uniform circular

More information