ECE 451 Automated Microwave Measurements Laboratory

Size: px
Start display at page:

Download "ECE 451 Automated Microwave Measurements Laboratory"

Transcription

1 ECE 451 Automated Microwave Measurements Laboratory Experiment No. 9 Vector Network Analyzer Measurements of Nonlinear Devices This experiment contains two portions: measurement and simulation of nonlinear characteristics of an amplifier. You will learn how to read component data sheets and verify functionality by measuring key figures-of-merit using the Vector Network Analyzer. We will be using an evaluation board for a monolithic power amplifier for nonlinear characterization in this experiment. In the first part, you will measure the S-parameters of the amplifier module to verify the small-signal parameters match with the data-sheet. Additionally, you will perform a powersweep on the VNA to characterize the 1-dB compression point for the amplifier. In the second part, you will take the measured large-signal S-parameters of the amplifier and simulate the nonlinear behavior using the Harmonic Balance simulator in the Agilent ADS software. Lastly, you will compare the simulated 1-dB compression point with the measured data and perform a circuit envelope simulation to predict the TOI points of the PA. I. Motivation Modern communications systems require high-performance active RF components to meet the increasing demands for fast data rates and reliable communication. We often strive to design circuits that are highly linear as linear systems provide the most flexibility in design and can be modeled easily. However, most systems in nature are inherently non-linear when realized physically, thus a key challenge for engineers is to effectively characterize the non-linear behavior in the circuits/systems designed so that they can accurately model the physical behavior of these circuits in simulation. Non-linear device behavior causes interference, reduces effective bandwidth and overall leads to wasted frequency spectrum, a scarce resource in the RF/Microwave world. Power-Amplifiers are the fundamental most vital and power hungry components in the transmit chain and thus need to be carefully designed such that the system overall is highly linear. Typically, we design PAs to operate only within their linear region of operation but that results in an inefficient use of the available power. PA design is different than traditional microwave amplifier design as the goal is not to simply use simultaneous conjugate for max power, instead the designer has to satisfy figures-of-merit like Power-Added-Efficiency (PAE) and TOI points that dictate the level of non-linearity in the amplifier. Since, PAs operate in the large signal regime they are often driven into the non-linear regime and thus characterization of the non-linear behavior is of utmost importance to the RF engineer. 9-1

2 II. Small-Signal S-Parameter Measurement Procedure 1) Log into the network analyzer using your NetId and Active Directory Password. The network analyzer software will open as soon as the login is complete. 2) Create the setup as shown in Figure 1 below. Make sure to turn press Output On before measuring the amplifier s S-parameters in the VNA. Figure 1: Measurement Setup for the PA 3) Click on the yellow Start Button and set it to 300 MHz. Click on green Stop Button and set it to 6 GHz. Now select Channel < Power and enter -15 dbm. Next select Sweep < Number of Points and select 1601 points. 4) Use the Calibration Wizard to do a full 2-port SOLT calibration with the 85052D 3.5mm Calibration Kit. 5) With the power supply output still off, set the current limit to 50 ma and the voltage to 12V (use the 25V controls and output). 6) With the power supply and PNA connected and calibrated turn the output of the power supply on. 7) On the left side of the screen, right click the box that says S11, go into Format and select Log Mag. This displays Log-Magnitude for each measured frequency point. Each point is connected by a straight line. 8) To save data select File < Save As. Find a directory on your personal drive, give the file the appropriate name and select Trace (*.s2p) as your Save as Type. Sample name can be PA_SmallSig.s2p 9-2

3 9) Open ADS, create a new workspace, and import all of these datasets in, giving them the same names as you saved them in above (use the same procedure from Experiment 4). See the Notes on Using ADS at the end of the procedure for some advice on dealing with multiple datasets. 10) In the Data Display plot S-parameters of the amplifier and put markers on S21 as well as S11 for each of the points listed in the data-sheet to compare measured data with manufacturer s data. III. 1-dB Compression Point Measurement Procedure a) Prepare the PNA for a Power Sweep: 1. Log into the Agilent E8357A PNA. Start up the Network Analyzer software if it doesn t start automatically 2. Add 10dB of attenuation to port 1 by selecting Channel-Power and Attenuators and change the attenuation to 10dB. 3. Set the network analyzer to perform a power sweep from -23 to +5dBm at 2 GHz by selecting Sweep-Sweep Type and choosing Power Sweep as the Sweep Type. 4. Perform a 2-port THRU Response calibration through the Calibration Wizard. Choose the 85052D 3.5mm Calibration Kit. b) Set up the Amplifier: 5. The amplifier we are using in this class needs to be biased by a 12Vdc source. Do not push the output on/off button at this time. You ll need to connect the +25V and ground/com of the power supply to the +12 and GND connections of the amplifier. 6. Connect port 1 of the PNA to the RFin of the amplifier and port 2 of the PNA to RFout of the amplifier. 7. Now turn on the output of the power supply by pushing the Output on/off button and look at the PNA output. Right click using the mouse on the PNA screen and select AUTO SCALE. Your PNA image should look similar to Figure

4 Figure 2: P out vs P in c) Measure your P1dB point: 8. View the log magnitude of S21 on the PNA. Set two markers to measure the 1dB gain compression input power. You can add multiple markers by selecting Marker-Select Marker choosing the marker you want to select. Use one marker to indicate the max Pout and the other marker to find the input power that gives a -1dB output power. Record this 1dB gain compression Pout and Pin. IV. ADS Simulation Setup using Harmonic Balance Harmonic Balance (HB) is a frequency-domain analysis technique for simulating nonlinear circuits and systems. The key advantage of Harmonic balance simulation is that is allows simulation of circuits with multiple input frequencies. Thus, when simulating non-linear behavior in circuits we often use the Harmonic Balance technique as it includes intermodulation frequencies, harmonics, and frequency conversion between harmonics. HB is capable of simulating the harmonics produced by the DUT and those created by the signal source (stimulus). We will design a simple PA in this part of the lab and measure its P1dB and TOI points. 1) Create new work-space in ADS and call it PA_Ex_wrk. Add the DemoKit_Non_Linear library. 9-4

5 2) Create new schematic and attach the FET_curve_tracer template as shown in the Figure 3 below: Figure 3: Attach FET DC Analysis Template 3) Add the FET1 Demo transistor to the schematic. To move the FET info click on the transistor, press F5 from keyboard and move the info to desired position on schematic. 4) Add the TechInc button from the side pallete under DemoKit_Non_Linear. Your schematic should now look like Figure 4. Figure 4: FET DC Analysis Schematic 9-5

6 5) Simulate the workspace and bias your FET at the DC operating point shown in Figure 5. Figure 5: FET DC Analysis Output 6) Save the Data Display shown above in Figure 5 as FET_cuves.dds. 7) Create a new schematic, name it Amplifer and recreate the schematic shown below in Figure 6. Figure 5: FET Amplifier Schematic 9-6

7 8) Create a symbol for the Amplifier designed in Step 7 by clicking on Window Symbol and use the Systems-Amps&Mixers Template. Your symbol should like the one shown below in Figure 6. Figure 6: FET Amplifier Symbol 9) Create a new schematic and name it HB_1tone. Place a HB Simulator in the schematic from the side pallet by navigating to Simulation-HB. Make the center frequency 7GHz, set order = 3 and choose RF_pwr as the sweep parameter. Additionally, place a P_1Tone component from Sources-Freq Domain followed by the Amplifier symbol created in step 8 by navigating to Insert Component Component Libraray Double-click on Amplifier_wrk. Your schematic at the end of this step should like the one shown in Figure 7. Figure 7: 1-Tone Swept Power Harmonic Balance Simulation Schematic 9-7

8 10) Mark the 1dB compression point on the data display. Your data display should look like the Figure 8 as shown below: Figure 8: 1-Tone Swept Power Harmonic Balance Simulation Result 9-8

9 11) Finally, we will setup the two-tone Harmonic Balance simulation to derive the TOI points for the amplifier designed. Create the schematic shown below in Figure 9 to simulate the two-tone behavior of the amplifier. Figure 9: 2-Tone Swept Power Harmonic Balance Simulation Schematic 12) Your final data display for the TOI simulations should look like Figure 10. Do the results match the data-sheet? Figure 10: 2-TOI Simulation Results 9-9

10 TA Theory and Conclusion Questions Theory: 1. What is the physical significance of P1dB? Why is it a useful metric to characterize non-linear behavior of RF circuits? 2. Describe the procedure to calculate TOI points of an amplifier. Derive the general equations for IIP3, OIP3 and show the physical interpretation of TOI points. How and why are these points useful to characterize non-linear behavior of circuits? 3. What is Harmonic Balance? How is it different than traditional SPICE simulation? List some advantages for using Harmonic Balance for studying RF circuits/systems and mention some common potential problems that could arise when using this simulation engine. 4. What is PAE? Describe why it is a useful figure-of-merit for Power-Amplifiers? Conclusion: 1. Compare your measured S21, S11, and S22 to the datasheet as shown in the table below, are they close? What may cause the discrepancies? Frequency S21 S11 S22 Measured Datasheet Measured Datasheet Measured Datasheet 1GHz 2GHz 3GHz 4GHz 5GHz 6GHz 2. Why are we not able to simulate the P1dB point from the S-parameter data measured on the VNA using Harmonic Balance simulation? 3. Are the TOI points found using Circuit-Envelop simulation in ADS valid for the PA used in this lab? If not, then what could be some potential flaws with the results? 4. Can S-parameters help characterize non-linear behavior in amplifiers? If not, what potential shortcomings do you see in the S-parameter formulism? 9-10

EE 186 LAB 2 FALL 2004. Network Analyzer Fundamentals and Two Tone Linearity

EE 186 LAB 2 FALL 2004. Network Analyzer Fundamentals and Two Tone Linearity Network Analyzer Fundamentals and Two Tone Linearity Name: Name: Name: Objective: To become familiar with the basic operation of a network analyzer To use the network analyzer to characterize the in-band

More information

Performing Amplifier Measurements with the Vector Network Analyzer ZVB

Performing Amplifier Measurements with the Vector Network Analyzer ZVB Product: Vector Network Analyzer R&S ZVB Performing Amplifier Measurements with the Vector Network Analyzer ZVB Application Note This document describes typical measurements that are required to be made

More information

A Network Analyzer For Active Components

A Network Analyzer For Active Components A Network Analyzer For Active Components EEEfCom 29-30 Juni ULM Marc Vanden Bossche, NMDG Engineering Remi Tuijtelaars, BSW Copyright 2005 NMDG Engineering Version 2 Outline Review of S-parameters Theory

More information

Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX

Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX High Gain, High IP3 Monolithic Amplifier 50Ω 0.01 to 6 GHz The Big Deal High Gain Broadband High Dynamic Range without external Matching Components May be used as a replacement to RFMD SBB5089Z a,b SOT-89

More information

Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX

Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX Ultra Linear Low Noise Monolithic Amplifier 50Ω The Big Deal 0.05 to 4 GHz Ultra High IP3 Broadband High Dynamic Range without external Matching Components May be used as a replacement for RFMD SPF-5189Z

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

Monolithic Amplifier PMA2-43LN+ Ultra Low Noise, High IP3. 50Ω 1.1 to 4.0 GHz. The Big Deal

Monolithic Amplifier PMA2-43LN+ Ultra Low Noise, High IP3. 50Ω 1.1 to 4.0 GHz. The Big Deal Ultra Low Noise, High IP3 Monolithic Amplifier 50Ω 1.1 to 4.0 GHz The Big Deal Ultra low noise figure, 0.46 db High gain, high IP3 Small size, 2 x 2 x 1mm 2mm x 2mm Product Overview Mini-Circuits is an

More information

Using S-Parameter and Load Pull Measurements to Validate Transistor Large-Signal Fundamental and Harmonic Tuning Performance

Using S-Parameter and Load Pull Measurements to Validate Transistor Large-Signal Fundamental and Harmonic Tuning Performance Using S-Parameter and Load Pull Measurements to Validate Transistor Large-Signal Fundamental and Harmonic Tuning Performance R.Varanasi 1,J.Liu 1, J.Paviol 2, L. Dunleavy 1,3, W.Clausen 3 rvaranas@eng.usf.edu

More information

High Power Amplifier Measurements Using Agilent s Nonlinear Vector Network Analyzer

High Power Amplifier Measurements Using Agilent s Nonlinear Vector Network Analyzer High Power Amplifier Measurements Using Agilent s Nonlinear Vector Network Analyzer Application Note 1408-19 Table of Contents Introduction...2 PNA-X Performance...3 Hardware Setup...6 Setup Examples...12

More information

LARGE-SIGNAL NETWORK ANALYZER MEASUREMENTS AND THEIR USE IN DEVICE MODELLING

LARGE-SIGNAL NETWORK ANALYZER MEASUREMENTS AND THEIR USE IN DEVICE MODELLING Ewout Vandamme (Agilent Technologies, NMDG), Wladek Grabinski (Motorola, Geneva), Dominique Schreurs (K.U.Leuven), and Thomas Gneiting (ADMOS) LARGE-SIGNAL NETWORK ANALYZER MEASUREMENTS AND THEIR USE IN

More information

Using ADS to simulate Noise Figure

Using ADS to simulate Noise Figure Using ADS to simulate Noise Figure ADS can be used to design low noise amplifiers much in the same way you have already used it for MAG or MSG designs. Noise circles and available gain circles are the

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

More information

Basics of RF Amplifier Measurements with the E5072A ENA Series Network Analyzer

Basics of RF Amplifier Measurements with the E5072A ENA Series Network Analyzer Basics of RF Amplifier Measurements with the E5072A ENA Series Network Analyzer Application Note Introduction The RF power amplifier is a key component used in a wide variety of industries such as wireless

More information

Power Amplifier Gain Compression Measurements

Power Amplifier Gain Compression Measurements Technical Brief Power Amplifier Gain Compression Measurements GPIB Private Bus Sweep Out Sweep In Pulse In AC Mod Out Blank/Marker Out Blanking In Overview The 1 db gain compression of an amplifier describes

More information

Field Calibration Software

Field Calibration Software SIGNAL HOUND Field Calibration Software User s Manual Version 1.1.0 7/8/2016 This information is being released into the public domain in accordance with the Export Administration Regulations 15 CFR 734

More information

Revision 1.10 April 7, 2015 Method of Implementation (MOI) for 100BASE-TX Ethernet Cable Tests Using Keysight E5071C ENA Option TDR

Revision 1.10 April 7, 2015 Method of Implementation (MOI) for 100BASE-TX Ethernet Cable Tests Using Keysight E5071C ENA Option TDR Revision 1.10 April 7, 2015 Method of Implementation (MOI) for 100BASE-TX Ethernet Cable Tests Using Keysight E5071C ENA Option TDR 1 Table of Contents 1. Revision History... 3 2. Purpose... 3 3. References...

More information

Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note

Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer Product Note 2 3 4 4 4 4 6 7 8 8 10 10 11 12 12 12 13 15 15 Introduction Table of contents Introduction

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v2.71 HMC42ST8 / 42ST8E AMPLIFIER,.4-2.2

More information

Optimizing IP3 and ACPR Measurements

Optimizing IP3 and ACPR Measurements Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.

More information

Basic of Load Pull Measurements Active and Passive load pull & Harmonic load pull testbench

Basic of Load Pull Measurements Active and Passive load pull & Harmonic load pull testbench Basic of Load Pull Measurements Active and Passive load pull & Harmonic load pull testbench credits to Prof. Andrea Ferrero, Politecnico di Torino Basics of load-pull Definitions Load-pull Controlling

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is input and output internally

More information

Simulating Envelope Tracking with Keysight Advanced Design System. Application Note

Simulating Envelope Tracking with Keysight Advanced Design System. Application Note Simulating Envelope Tracking with Keysight Advanced Design System Application Note 1.0 Introduction Modern modulated signals often have high peak-to-average power ratios (PAPR). Use of such high PAPR signals

More information

Microwave Amplifier Design (part 1)

Microwave Amplifier Design (part 1) San Jose State University Department of Electrical Engineering ELECTRICAL ENGINEERING SENIOR PROJECT Microwave Amplifier Design (part 1) by Steve Garcia Jaime Cordoba Inderpreet Obhi December 15, 2003

More information

Experiment 7: Familiarization with the Network Analyzer

Experiment 7: Familiarization with the Network Analyzer Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).

More information

DESIGN OF CLASS-E RADIO FREQUENCY POWER AMPLIFIER. Saad Al-Shahrani DOCTOR OF PHILOSOPHY. Electrical Engineering.

DESIGN OF CLASS-E RADIO FREQUENCY POWER AMPLIFIER. Saad Al-Shahrani DOCTOR OF PHILOSOPHY. Electrical Engineering. DESIGN OF CLASS-E RADIO FREQUENCY POWER AMPLIFIER by Saad Al-Shahrani Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

Advanced Nonlinear Device Characterization Utilizing New Nonlinear Vector Network Analyzer and X-parameters

Advanced Nonlinear Device Characterization Utilizing New Nonlinear Vector Network Analyzer and X-parameters Advanced Nonlinear Device Characterization Utilizing New Nonlinear Vector Network Analyzer and X-parameters presented by: Loren Betts Research Scientist Presentation Outline Nonlinear Vector Network Analyzer

More information

ATSv5 AUTOMATED TUNER SYSTEM SOFTWARE MT993 Series Introduction

ATSv5 AUTOMATED TUNER SYSTEM SOFTWARE MT993 Series Introduction MAURY MICROWAVE CORPORATION Series MT993 ATSv5 AUTOMATED TUNER SYSTEM SOFTWARE MT993 Series Introduction The Maury Automated Tuner System Software (ATSv5) is the easiest-to-use, yet most advanced, and

More information

2. The Vector Network Analyzer

2. The Vector Network Analyzer ECE 584 Laboratory Experiments 2. The Vector Network Analyzer Introduction: In this experiment we will learn to use a Vector Network Analyzer to measure the magnitude and phase of reflection and transmission

More information

ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER

ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER Latest revision: October 1999 Introduction A vector network analyzer (VNA) is a device capable of measuring both the magnitude and phase of a sinusoidal

More information

UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040)

UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040) UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040 Overview This application note reviews noise theory & measurements and S-parameter measurements used to characterize transistors and amplifiers at

More information

One Port Network Analyzer

One Port Network Analyzer 99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431 Visit us at www.testequipmentdepot.com One Port Network Analyzer 5.4GHz Impendance : 50Ω(75Ωconnectors via adapters) Test

More information

Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?

More information

S-parameter Simulation and Optimization

S-parameter Simulation and Optimization S-parameter Simulation and Optimization Slide 5-1 S-parameters are Ratios Usually given in db as 20 log of the voltage ratios of the waves at the ports: incident, reflected, or transmitted. S-parameter

More information

Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform

Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform Application Note Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform By: Richard Komar Introduction With the rapid development of wireless technologies, it has become

More information

NBB-402. RoHS Compliant & Pb-Free Product. Typical Applications

NBB-402. RoHS Compliant & Pb-Free Product. Typical Applications Typical Applications Narrow and Broadband Commercial and Military Radio Designs Linear and Saturated Amplifiers 0 RoHS Compliant & Pb-Free Product NBB-402 CASCADABLE BROADBAND GaAs MMIC AMPLIFIER DC TO

More information

Automatic compression measurement using network analyzers

Automatic compression measurement using network analyzers Automatic compression measurement using network analyzers Introduction The dynamic range of an amplifier is determined by noise figure and compression. In multi carrier applications third order intercept

More information

A 1 to 2 GHz, 50 Watt Push-Pull Power Amplifier Using SiC MESFETs. high RF power. densities and cor- capacitances per watt.

A 1 to 2 GHz, 50 Watt Push-Pull Power Amplifier Using SiC MESFETs. high RF power. densities and cor- capacitances per watt. From June 2006 High Frequency Electronics Copyright 2006 Summit Technical Media A 1 to 2 GHz, 50 Watt Push-Pull Power Amplifier Using SiC MESFETs By Raymond S. Pengelly and Carl W. Janke Cree, Inc. Because

More information

GaAs, phemt, MMIC, 0.25 W Power Amplifier, DC to 40 GHz HMC930A

GaAs, phemt, MMIC, 0.25 W Power Amplifier, DC to 40 GHz HMC930A Data Sheet GaAs, phemt, MMIC,.25 W Power Amplifier, DC to 4 GHz HMC9A FEATURES High output power for 1 db compression (P1dB): 22 dbm High saturated output power (PSAT): dbm High gain: 13 db High output

More information

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications

More information

Typical Performance 1. IS-95C ACPR 21.0 - - - dbm WCDMA ACLR - 19.5 18.5 - dbm

Typical Performance 1. IS-95C ACPR 21.0 - - - dbm WCDMA ACLR - 19.5 18.5 - dbm Device Features OIP3 = 45.0 dbm @ 1900 MHz Gain = 15.0 db @ 1900 MHz Output P1 db = 27.5 dbm @ 1900 MHz 50 Ω Cascadable Patented Over Voltage Protection Circuit Lead-free/RoHS-compliant SOT-89 SMT package

More information

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative

More information

Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters

Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters Purpose: This technical note presents single-ended insertion loss ( SE IL) and return loss ( SE RL) data generated

More information

Lab 1: Introduction to PSpice

Lab 1: Introduction to PSpice Lab 1: Introduction to PSpice Objectives A primary purpose of this lab is for you to become familiar with the use of PSpice and to learn to use it to assist you in the analysis of circuits. The software

More information

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV 0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV The treatment given here is introductory, and will assist the reader who wishes to consult the standard texts

More information

Symbol Parameters Units Frequency Min. Typ. Max. 850 MHz 14.8 16.3 17.8

Symbol Parameters Units Frequency Min. Typ. Max. 850 MHz 14.8 16.3 17.8 Product Description Sirenza Microdevices SGC-689Z is a high performance SiGe HBT MMIC amplifier utilizing a Darlington configuration with a patented active-bias network. The active bias network provides

More information

Jitter Transfer Functions in Minutes

Jitter Transfer Functions in Minutes Jitter Transfer Functions in Minutes In this paper, we use the SV1C Personalized SerDes Tester to rapidly develop and execute PLL Jitter transfer function measurements. We leverage the integrated nature

More information

R&S ZVA Vector Network Analyzer High performance up to 110 GHz with up to four test ports

R&S ZVA Vector Network Analyzer High performance up to 110 GHz with up to four test ports R&S ZVA Vector Network Analyzer High performance up to 110 GHz with up to four test ports Test & Measurement Product Brochure 09.00 R&S ZVA Vector Network Analyzer At a glance The R&S ZVA series is the

More information

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to

More information

HP 8970B Option 020. Service Manual Supplement

HP 8970B Option 020. Service Manual Supplement HP 8970B Option 020 Service Manual Supplement Service Manual Supplement HP 8970B Option 020 HP Part no. 08970-90115 Edition 1 May 1998 UNIX is a registered trademark of AT&T in the USA and other countries.

More information

S-PARAMETER MEASUREMENTS OF MEMS SWITCHES

S-PARAMETER MEASUREMENTS OF MEMS SWITCHES Radant MEMS employs adaptations of the JMicroTechnology test fixture depicted in Figure 1 to measure MEMS switch s-parameters. RF probeable JMicroTechnology microstrip-to-coplanar waveguide adapter substrates

More information

Agilent Test Solutions for Multiport and Balanced Devices

Agilent Test Solutions for Multiport and Balanced Devices Agilent Test Solutions for Multiport and Balanced Devices Duplexer test solutions 8753ES option H39/006 During design and final alignment of duplexers, it is often necessary to see both the transmit-antenna

More information

BITxxPA. RF Power Amplifier. Applications. Product Description. Key Features

BITxxPA. RF Power Amplifier. Applications. Product Description. Key Features RF Power Amplifier Applications o RF front end o 433/868 MHz ISM band systems o Consumer Electronics o Wireless audio o Alarm and security systems o Home and building automation o Wireless sensor networks

More information

AN11357. BGU8009 Matching Options for 850 MHz / 2400 MHz Jammer Immunity. Document information. Keywords

AN11357. BGU8009 Matching Options for 850 MHz / 2400 MHz Jammer Immunity. Document information. Keywords BGU89 Matching Options for 85 MHz / 24 MHz Jammer Immunity Rev. 1 27 May 213 Application Note Document information Info Content Keywords LNA, GNSS, GPS, BGU89, WLAN, GSM-85, GSM-9 Abstract This document

More information

Basics of RF Amplifier Test with the Vector Network Analyzer (VNA)

Basics of RF Amplifier Test with the Vector Network Analyzer (VNA) Basics of RF Amplifier Test with the Vector Network Analyzer (VNA) Taku Hirato Product Marketing Engineer CTD-Kobe, EMG Agilent Technologies Mar. 13, 2012 Objectives Understand what types of amplifier

More information

Michael Hiebel. Fundamentals of Vector Network Analysis

Michael Hiebel. Fundamentals of Vector Network Analysis Michael Hiebel Fundamentals of Vector Network Analysis TABIH OF CONTENTS Table of contents 1 Introduction 12 1.1 What is a network analyzer? 12 1.2 Wave quantities and S-parameters 13 1.3 Why vector network

More information

Large-Signal Network Analysis

Large-Signal Network Analysis Large-Signal Network Analysis Going beyond S-parameters Dr. Jan Verspecht URL: http://www.janverspecht.com This presentation contains several slides which are used with the permission of Agilent Technologies,

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK PLL & PLL with Integrated VCO Evaluation

More information

RF System Design and Analysis Software Enhances RF Architectural Planning

RF System Design and Analysis Software Enhances RF Architectural Planning From April 2010 High Frequency Electronics Copyright 2010 Summit Technical Media, LLC RF System Design and Analysis Software Enhances RF Architectural Planning By Dale D. Henkes Applied Computational Sciences

More information

Circuit Simulation: Here are some of ADS analysis:

Circuit Simulation: Here are some of ADS analysis: Advanced Design System (ADS) Tutorial: ADS is a simulator like spice, cadence. But it focuses on the RF and microwave design, so most of its devices on the library are microwave devices. Circuit Simulation:

More information

R&S ZVA Vector Network Analyzer High performance up to 67 GHz with up to four test ports

R&S ZVA Vector Network Analyzer High performance up to 67 GHz with up to four test ports Test & Measurement Product Brochure 06.01 ООО "Техэнком" Контрольно-измерительные приборы и оборудование www.tehencom.com R&S ZVA Vector Network Analyzer High performance up to 67 GHz with up to four test

More information

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency

More information

Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note 1364-1

Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note 1364-1 Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer Application Note 1364-1 Introduction Traditionally RF and microwave components have been designed in packages with

More information

Agilent 8720 Family Microwave Vector Network Analyzers

Agilent 8720 Family Microwave Vector Network Analyzers Agilent 8720 Family Microwave Vector Network Analyzers Product Overview High-Performance Solutions for Your Measurement Challenges Now more choices for solving your measurement challenges What's new in

More information

Transmitter Interface Program

Transmitter Interface Program Transmitter Interface Program Operational Manual Version 3.0.4 1 Overview The transmitter interface software allows you to adjust configuration settings of your Max solid state transmitters. The following

More information

Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance

Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance The Performance Leader in Microwave Connectors Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance.050 *.040 c S11 Re REF 0.0 Units 10.0 m units/.030.020.010 1.0 -.010 -.020

More information

802.11ac Power Measurement and Timing Analysis

802.11ac Power Measurement and Timing Analysis 802.11ac Power Measurement and Timing Analysis Using the 8990B Peak Power Analyzer Application Note Introduction There are a number of challenges to anticipate when testing WLAN 802.11ac [1] power amplifier

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction: ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure

More information

Visual System Simulator White Paper

Visual System Simulator White Paper Visual System Simulator White Paper UNDERSTANDING AND CORRECTLY PREDICTING CRITICAL METRICS FOR WIRELESS RF LINKS Understanding and correctly predicting cellular, radar, or satellite RF link performance

More information

Recommendations for TDR configuration for channel characterization by S-parameters. Pavel Zivny IEEE 802.3 100GCU Singapore, 2011/03 V1.

Recommendations for TDR configuration for channel characterization by S-parameters. Pavel Zivny IEEE 802.3 100GCU Singapore, 2011/03 V1. Recommendations for TDR configuration for channel characterization by S-parameters Pavel Zivny IEEE 802.3 100GCU Singapore, 2011/03 V1.0 Agenda TDR/TDT measurement setup TDR/TDT measurement flow DUT electrical

More information

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

More information

Agilent Technologies. Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360

Agilent Technologies. Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360 Agilent Technologies Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360 Table of Contents Introduction...............................................................................3

More information

iva Cable & Antenna Analyzer

iva Cable & Antenna Analyzer iva Cable & Antenna Analyzer VSWR, Return Loss Measurement & Distance to Fault The iva Series Cable & Antenna Analyzer is an exciting new product from Kaelus that enables users to accurately measure VSWR/return

More information

MATRIX TECHNICAL NOTES

MATRIX TECHNICAL NOTES 200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR

More information

Making Spectrum Measurements with Rohde & Schwarz Network Analyzers

Making Spectrum Measurements with Rohde & Schwarz Network Analyzers Making Spectrum Measurements with Rohde & Schwarz Network Analyzers Application Note Products: R&S ZVA R&S ZVB R&S ZVT R&S ZNB This application note describes how to configure a Rohde & Schwarz Network

More information

Mobile Phone Testing using Impedance Tuners

Mobile Phone Testing using Impedance Tuners Mobile Phone Testing using Impedance Tuners Roman Meierer and Steve Dudkiewicz Your Complete Measurement & Modeling Solutions Partner 1 We Live in a 50 World The components have been designed for ideal

More information

Lecture 27: Mixers. Gilbert Cell

Lecture 27: Mixers. Gilbert Cell Whites, EE 322 Lecture 27 Page 1 of 9 Lecture 27: Mixers. Gilbert Cell Mixers shift the frequency spectrum of an input signal. This is an essential component in electrical communications (wireless or otherwise)

More information

A Guide to Calibrating Your Spectrum Analyzer

A Guide to Calibrating Your Spectrum Analyzer A Guide to Calibrating Your Application Note Introduction As a technician or engineer who works with electronics, you rely on your spectrum analyzer to verify that the devices you design, manufacture,

More information

How To Measure Two Tone, Third Order Intermodulation Distortion

How To Measure Two Tone, Third Order Intermodulation Distortion Improve Two-Tone, Third-Order Intermodulation Testing First, it's important to define the significance of input levels. Then, details on the measurement technique will be given. Two-tone, third-order intermodulation

More information

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the

More information

Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

More information

2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model

2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model ECE45A/8A Notes et #4 Port Parameters Two-ways of describing device: A. Equivalent - Circuit-Model Physically based Includes bias dependence Includes frequency dependence Includes size dependence - scalability

More information

Scalar Network Analysis with the HP 8590 Series Spectrum Analyzers Product Overview

Scalar Network Analysis with the HP 8590 Series Spectrum Analyzers Product Overview This literature was published years prior to the establishment of Agilent Technologies as a company independent from Hewlett-Packard and describes products or services now available through Agilent. It

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

Agilent 10 Hints for Making Better Network Analyzer Measurements. Application Note 1291-1B

Agilent 10 Hints for Making Better Network Analyzer Measurements. Application Note 1291-1B Agilent 10 Hints for Making Better Network Analyzer Measurements Application Note 1291-1B Contents HINT 1. Measuring high-power amplifiers HINT 2. Compensating for time delay in cable HINT 3. Improving

More information

February 2010 Number 201001. Vector Network Analyzer upgrade to SureCAL Power Sensor and RF Components Packages

February 2010 Number 201001. Vector Network Analyzer upgrade to SureCAL Power Sensor and RF Components Packages February 2010 Number 201001 Vector Network Analyzer upgrade to SureCAL Power Sensor and RF Components Packages Overview: This Technical Note describes the addition of Vector Network Analyzer (VNA) measurement

More information

23-26GHz Reflective SP4T Switch. GaAs Monolithic Microwave IC in SMD leadless package

23-26GHz Reflective SP4T Switch. GaAs Monolithic Microwave IC in SMD leadless package CHS2411-QDG Description GaAs Monolithic Microwave IC in SMD leadless package The CHS2411-QDG (CHS2412-QDG, see Note) is a monolithic reflective SP4T switch in K-Band. Positive supply voltage only is required.

More information

RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs These 90 W RF power LDMOS transistors are designed for wideband RF power amplifiers covering the frequency

More information

iva Cable & Antenna Analyzer

iva Cable & Antenna Analyzer iva Cable & Antenna Analyzer VSWR, Return Loss Measurement & Distance to Fault The iva Series Cable & Antenna Analyzer is an exciting new product from Kaelus that enables users to accurately measure VSWR/return

More information

MAAD-007084-0001TB. Digital Attenuator 15.5 db, 5-Bit, TTL Driver, DC-2.0 GHz Rev. V2. Features. Schematic with Off-Chip Components.

MAAD-007084-0001TB. Digital Attenuator 15.5 db, 5-Bit, TTL Driver, DC-2.0 GHz Rev. V2. Features. Schematic with Off-Chip Components. MAAD-007084-00000 5.5, 5-Bit, TTL Driver, DC-2.0 GHz Rev. 2 Features Attenuation: 0.5 Steps to 5.5 Low DC Power Consumption Integral TTL Driver 50 ohm Impedance Test Boards are Available Tape and Reel

More information

RF Communication System. EE 172 Systems Group Presentation

RF Communication System. EE 172 Systems Group Presentation RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

The Phase Modulator In NBFM Voice Communication Systems

The Phase Modulator In NBFM Voice Communication Systems The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called

More information

CMOS 5GHz WLAN 802.11a/n/ac RFeIC WITH PA, LNA, AND SPDT

CMOS 5GHz WLAN 802.11a/n/ac RFeIC WITH PA, LNA, AND SPDT CMOS 5GHz WLAN 802.11a/n/ac RFeIC WITH PA, LNA, AND SPDT Description RFX8055 is a highly integrated, single-chip, single-die RFeIC (RF Front-end Integrated Circuit) which incorporates key RF functionality

More information

Conquering Noise for Accurate RF and Microwave Signal Measurements. Presented by: Ernie Jackson

Conquering Noise for Accurate RF and Microwave Signal Measurements. Presented by: Ernie Jackson Conquering Noise for Accurate RF and Microwave Signal Measurements Presented by: Ernie Jackson The Noise Presentation Review of Basics, Some Advanced & Newer Approaches Noise in Signal Measurements-Summary

More information

Application Note Noise Frequently Asked Questions

Application Note Noise Frequently Asked Questions : What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

More information

Network analyzer and spectrum analyzer two in one

Network analyzer and spectrum analyzer two in one R&S ZVL Vector Network Analyzer Network analyzer and spectrum analyzer two in one The R&S ZVL is the lightest and smallest vector network analyzer in its class. On top of this, it can be used as a full-featured

More information

Agilent PNA Network Analyzers 10 MHz to 110 GHz

Agilent PNA Network Analyzers 10 MHz to 110 GHz Agilent PNA Network Analyzers 10 MHz to 110 GHz Meeting your measurement needs today and into the future... Exceptional performance Advanced automation Flexible connectivity Easy-to-use PNA Network Analyzers

More information

LS RS. Figure 1: Assumed inductor model

LS RS. Figure 1: Assumed inductor model Characterizing Inductors at HF and VHF Inductors are a key component in RF circuits. Their performance makes a great difference in the operation of amplifiers, oscillators, and other circuit blocks --

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information