Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Size: px
Start display at page:

Download "Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics"

Transcription

1 Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics

2 Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications Questions and Answers break Amplitude Specifications Summary Questions and Answers break Page 2

3 Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency resolution, sensitivity, and dynamic range in making analyzer measurements Outline the procedure making accurate distortion measurements Page 3

4 SPECTRUM ANALYZER 9 khz GHz Overview: What is Spectrum Analysis? 8563A Page 4

5 . Types of Tests Made Modulation Noise Distortion Page 5

6 Frequency Versus Time Domain Amplitude (power) frequency time Time domain Measurements Frequency Domain Measurements Page 6

7 Fourier Spectrum Analyzer Fourier analyzer transforms a signal over time into a frequency spectrum Display Amplitude f 1 f 2 Frequency Page 7

8 Swept-Tuned Spectrum Analyzer Filter sweeps over a frequency range Display Amplitude f 1 f 2 Frequency f Page 8

9 Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications Questions and Answers break Amplitude Specifications Summary Questions and Answers break Page 9

10 Spectrum Analyzer Block Diagram RF Input Attenuator Mixer IF Gain IF Filter Detector Input Filter Local Oscillator Frequency Reference Sweep Generator Log Amp Display Video Filter Page 10

11 The Mixer: Key to a Wide Frequency Range Input MIXER 0 f in Page 11 0 RF LO IF f LO 0 f LO -f in f LO f LO +f in RF = Radio frequency LO = local oscillator IF = intermediate frequency

12 Intermediate Frequency (IF) Filter Input IF FILTER IF Bandwidth: also known as resolution bandwidth and RBW Provides shape of frequency domain signal Page 12 Actual f Displayed f

13 Detector Input DETECTOR Amplitude Values Displayed Positive detection: largest Negative detection: smallest Sample detection: last Page 13

14 Video Filter Input VIDEO FILTER Without video filtering With video filtering Page 14

15 Local Oscillator and Sweep Generator LO SWEEP GEN frequency LCD DISPLAY Provides swept display Page 15

16 Input Attenuator and IF Gain Circuits RF INPUT ATTENUATOR IF GAIN Protects input circuits Calibrates signal amplitude Keeps signal display position constant Page 16

17 Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications Questions and Answers break Amplitude Specifications Summary Questions and Answers break Page 17

18 What Spectrum Analyzer Specifications are Important? Frequency Range Frequency and Amplitude Accuracy Frequency Resolution Sensitivity Distortion Dynamic Range Page 18

19 Frequency Range Low frequencies for baseband and IF High frequencies for harmonics and beyond Page 19

20 Getting the Frequency Range You Need 1 f if 1 f in Page 20 LO IF signal, f if Mixer 2 The input signal is displayed when f LO -f in = f IF f in Range LO Range f LO -f in f LO 0 frequency f LO +f in

21 Getting the Frequency Range You Need LO Feedthrough 3 f LO -f in f LO f LO +f in f if 1 0 f in Range f in IF filter 2 0 LO LO Range Sweep generator 4 0 Display Page 21

22 Getting the Frequency Range You Need Input signal displayed f LO -f in = f IF 3 f LO -f in f LO f LO +f in 1 f in f if 0 f in Range 2 LO f in 0 LO Range 4 0 Page 22

23 Getting the Frequency Range You Need Lower frequency limited by LO feedthrough Upper frequency limited by LO range and IF frequency Microwave frequency measurement uses harmonic mixing Page 23

24 Frequency and Amplitude Accuracy Absolute Amplitude in dbm Relative Amplitude in db Relative Frequency Frequency Page 24

25 Frequency and Amplitude Accuracy Frequency accuracy: Internal/external frequency reference Use of internal counter Amplitude accuracy: Not as good as a power meter Dependent upon measurement procedure Excellent relative measurements Page 25

26 Signal Resolution What Determines Resolution? Resolution Bandwidth Residual FM RBW Type and Selectivity Noise Sidebands Page 26

27 IF Filter Bandwidth 3 db Input Spectrum LO Mixer 3 db BW IF Filter/ Resolution Bandwidth Filter (RBW) Sweep Detector RBW Display Page 27

28 Resolving Two Equal-level Signals 10 khz RBW 3 db 10 khz Page 28

29 Resolving Two Unequal-level Signals 3 db bandwidth Selectivity (filter shape) 3 db 3 db BW 60 db 60 db BW Selectivity = 3 db BW 60 db BW Page 29

30 Resolving Two Unequal-level Signals For a RBW of 1 khz and a selectivity of 15:1, the 60 db bandwidth is 15 x 1 khz = 15 khz... so the filter skirt is 7.5 khz away from the filter s center frequency 60 db 10 khz Distortion Page khz

31 Residual FM Page 31 Residual FM "Smears" the Signal

32 Noise Sidebands (Phase Noise) Phase Noise Page 32 Noise Sidebands can prevent resolution of unequal signals

33 Sweep Rate Swept too fast Penalty For Sweeping Too Fast Is An Uncalibrated Display Page 33

34 Analog versus Digital Resolution Bandwidths Analog Filter Digital Filter Typical Selectivity Analog 15:1 Digital 5:1 RES BW 100 Hz SPAN 3 khz Page 34

35 Rules to Analyze By: Use the Analyzer s Automatic Settings Whenever Possible When using the analyzer in its preset mode, most measurements will be easy, fast, and accurate Automatic selection of resolution bandwidth, video bandwidth, sweep time and input attenuation When manually changing the analyzer parameters, check for uncal messages Page 35

36 Are There Any Questions?

37 Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications Questions and Answers break Amplitude Specifications Summary Questions and Answers break Page 37

38 Sensitivity and Displayed Average Noise Level RF Input Mixer RES BW Filter Detector LO Page 38 Sweep A spectrum analyzer generates and amplifies noise just like any active circuit.

39 RF Input Attenuator Effects Displayed noise is a function of RF input attenuation signal level 10 db Attenuation = 10 db Attenuation = 20 db Signal-to-noise ratio decreases as RF input attenuation is increased Page 39

40 IF Filter (Resolution Bandwidth) Effects Displayed noise is a function of IF filter bandwidth Decreased BW = Decreased Noise 10 db 10 db 100 khz RBW 10 khz RBW 1 khz RBW Page 40 Best sensitivity = narrowest RBW

41 Video Bandwidth Effects Video BW smoothes noise for easier identification and measurement of lowlevel signals Page 41

42 Sensitivity - the smallest signal that can be measured Signal equals noise ~2.2 db Page 42

43 Rules to Analyze By: Getting the Best Sensitivity Requires Three Settings Narrowest resolution bandwidth Minimum RF attenuation Sufficient video filter to smooth noise (VBW < 0.01 Resolution BW) Page 43

44 Where is Distortion Generated? Mixers Generate Distortion Signal to be measured Frequency translated signals Resulting signal Page 44 Mixer-generated distortion

45 Most Influential Distortion is the Second and Third Order < -50 dbc < -40 dbc < -50 dbc Two-Toned Intermod Harmonic Distortion Page 45

46 Distortion Increases as a Function of the Fundamental s Power 2nd Fundamental Harmonic =1 db 3rd Harmonic Power in db =2 db =3 db f 2f 3f For every db fundamental level change, the 2nd changes 2 db and the 3rd changes 3 db. Page 46

47 How Distortion Amplitudes Change =1 db 1 db/db fund 2 db/db fund =2 db =3 db f 2f 3f Since distortion changes relative to the fundamental, a graphical solution is practical. Page 47

48 . Plotting Distortion as a Function of Mixer Level Page 48 Distortion, dbc Second Order Third Order Third Order Intercept - TOI Power at the mixer = Input level minus the attenuator setting, dbm

49 Rules to Analyze by: A Simple Distortion Test Is the distortion from the signal or from the analyzer? Change Input 1 Watch Signal on Screen: Attenuation by 10 db 2 RF INPUT ATTENUATOR IF GAIN No change in amplitude - distortion is part of input signal (external) Change in amplitude - at least some of the distortion is being generated inside the analyzer (internal) Page 49

50 Dynamic Range - Optimum Amplitude Difference Between Large and Small Signals Dynamic Range Page 50

51 . Displayed Noise Limits Dynamic Range Page 51 Distortion, dbc khz RBW Displayed average noise level can be plotted like distortion. Noise at 10 khz RBW Power at the mixer = Input level minus the attenuator setting, dbm

52 .. Dynamic Range as a Function of Distortion and Noise Level Distortion and Signalto-Noise, dbc Maximum 2nd Order Dynamic Range Maximum 3rd Order Dynamic Range Power at the mixer = Input level minus the attenuator setting, dbm Page 52

53 Close-in Dynamic Range Limited by Noise Sidebands Dynamic Range Limited By Noise Sidebands, dbc/hz Dynamic Range Limited By Distortion and Displayed Noise Sideband Noise Displayed Noise Level 100 khz to 1 MHz Page 53

54 Rules to Analyze by: Determining Dynamic Range Your spectrum analyzer s dynamic range is dependent upon: Internal second and/or third order distortion Displayed noise level Noise sidebands when close to large signals Page 54

55 Dynamic Range is Defined by Your Application +30 dbm Maximum Power Level Measurement Range 145 db +10 dbm Signal/Noise Range 105 db Third Order Distortion Mixer Compression -35 dbm Third-order Distortion ~80 db -45 dbm Second-order Distortion Second Order Distortion ~70 db 0 dbc Noise Sidebands Noise Sidebands 60 dbc/1 khz -115 dbm Displayed Noise (1 khz RBW, 0 db attenuation) Page 55

56 Summary The RF spectrum analyzer is a heterodyne receiver Offers a narrow resolution capability over a wide frequency range Measures small signals in presence of large signals Remember to: Adjust the measurement procedure for specific application Test for internal distortion Take sideband noise into account Page 56

57 Agilent Spectrum Analyzer Product Families - Swept Tuned PSA Series Highest performance SA! 3 Hz to 50 GHz Pre-selection to 50 GHz Worlds best accuracy (0.24dB) 160 RBW settings Phase noise optimization FFT or swept at any RBW Complete set of detectors Fastest spur search Vector signal analysis. ESA-E Series Mid-Performance 30 Hz to 26.5 / 325 GHz Rugged/Portable Fast & Accurate Unparalled range of performance and application options. Remote WEB interface Page X- EC Series Super Mid-Performance 30 Hz to 50 / 325 GHz Rugged/Portable Pre-selection to 50 GHz Color LCD Display Low Phase Noise Digital 1 Hz RBW ESA-L Series Low cost 9 khz up to 26.5 GHz General Purpose Rugged/Portable Fully synthesized

58 Agilent Vector Signal Analyzer Product Families E4406A Multi-Format wireless capabilities 7 MHz - 4 GHz Fast & Accurate Simple User Interface Base-band IQ inputs Series Flexible Signal Analysis DC to 2.65 GHz 10 MHz Signal Bandwidth Block Digital demodulation Integral Signal Source Spectrum & Time waveform Analysis Complex time varying signals Color LCD Display Page Series Multi-Format & Flexible vector signal analysis DC 6.0 GHz Bandwidth: 36 MHz RF, 40 MHz Baseband RF and modulation quality of digital communications signals including WLAN. Spectrum & Time (FFT) Analysis OFDM Analysis (802.11a) Links to design software (ADS) PC Based for the Ultimate in Connectivity Analysis software links to PSA, ESA, E4406A signal analyzers Ultra-wide bandwidth 500+ MHz Signal Bandwidth! Analysis Capability Low Cost Oscilloscope Front-end for RF Scope measurements

59 FREE Agilent Updates Page 59 Subscribe Today! Choose the information YOU want. Change your preferences or unsubscribe anytime. Keep up to date on: Services and Support Information Events and Announcement - Firmware updates - New product announcement - Manuals - Technology information - Education and training courses - Application and product notes - Calibration - Seminars and Tradeshows - Additional services - eseminars Go To:

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency

More information

Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?

More information

Spectrum Analyzer Basics www. agilent.com/find/backtobasics

Spectrum Analyzer Basics www. agilent.com/find/backtobasics www. agilent.com/find/backtobasics Abstract Learn why spectrum analysis is important for a variety of applications and how to measure system and device performance using a spectrum analyzer. To introduce

More information

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative

More information

A Guide to Calibrating Your Spectrum Analyzer

A Guide to Calibrating Your Spectrum Analyzer A Guide to Calibrating Your Application Note Introduction As a technician or engineer who works with electronics, you rely on your spectrum analyzer to verify that the devices you design, manufacture,

More information

Keysight Technologies 8 Hints for Better Spectrum Analysis. Application Note

Keysight Technologies 8 Hints for Better Spectrum Analysis. Application Note Keysight Technologies 8 Hints for Better Spectrum Analysis Application Note The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope

More information

Spectrum Analysis Basics. Application Note 150

Spectrum Analysis Basics. Application Note 150 Spectrum Analysis Basics Application Note 150 Agilent Technologies dedicates this application note to Blake Peterson. Blake s outstanding service in technical support reached customers in all corners of

More information

F = S i /N i S o /N o

F = S i /N i S o /N o Noise figure Many receiver manufacturers specify the performance of their receivers in terms of noise figure, rather than sensitivity. As we shall see, the two can be equated. A spectrum analyzer is a

More information

Agilent Spectrum Analysis Basics Application Note 150

Agilent Spectrum Analysis Basics Application Note 150 Agilent Spectrum Analysis Basics Application Note 150 Contents Chapter 1 Introduction...3 What is a spectrum?...3 Why measure spectra?...4 Chapter 2 The superheterodyne spectrum analyzer...6 Tuning equation...8

More information

Agilent Spectrum Analysis Basics. Application Note 150

Agilent Spectrum Analysis Basics. Application Note 150 Agilent Spectrum Analysis Basics Application Note 150 Table of Contents Chapter 1 Introduction.......................................................4 Frequency domain versus time domain.......................................4

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

Measurement Guide and Programming Examples

Measurement Guide and Programming Examples Measurement Guide and Programming Examples PSA and ESA Series Spectrum Analyzers This manual provides documentation for the following instruments: Agilent Technologies PSA Series E4443A (3 Hz - 6.7 GHz)

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range

More information

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal. Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

More information

Agilent E4401B, E4402B, E4404B, E4405B, and E4407B ESA-E Series Spectrum Analyzers

Agilent E4401B, E4402B, E4404B, E4405B, and E4407B ESA-E Series Spectrum Analyzers Agilent, E4402B, E4404B, E4405B, and E4407B ESA-E Series Spectrum Analyzers Technical Specifications All specifications apply over 0 C to + 55 C unless otherwise noted. The analyzer will meet its specifications

More information

Conquering Noise for Accurate RF and Microwave Signal Measurements. Presented by: Ernie Jackson

Conquering Noise for Accurate RF and Microwave Signal Measurements. Presented by: Ernie Jackson Conquering Noise for Accurate RF and Microwave Signal Measurements Presented by: Ernie Jackson The Noise Presentation Review of Basics, Some Advanced & Newer Approaches Noise in Signal Measurements-Summary

More information

Agilent 35670A - Dynamic Signal Analyzer

Agilent 35670A - Dynamic Signal Analyzer Agilent 35670A - Dynamic Signal Analyzer Two- or Four-channel high-performance FFTbased spectrum /network analyzer 122 µhz to 102.4 khz 16-bit ADC United States: Price for 35670A from USD 18,300.00 35670A

More information

Optimizing IP3 and ACPR Measurements

Optimizing IP3 and ACPR Measurements Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.

More information

2398 9 khz to 2.7 GHz Spectrum Analyzer

2398 9 khz to 2.7 GHz Spectrum Analyzer Spectrum Analyzers 2398 9 khz to 2.7 GHz Spectrum Analyzer A breakthrough in high performance spectrum analysis, combining cost effectiveness and portability in a new lightweight instrument 9 khz to 2.7

More information

Agilent N2717A Service Software Performance Verification and Adjustment Software for the Agilent ESA Spectrum Analyzers Product Overview

Agilent N2717A Service Software Performance Verification and Adjustment Software for the Agilent ESA Spectrum Analyzers Product Overview Agilent N2717A Service Software Performance Verification and Adjustment Software for the Agilent ESA Spectrum Analyzers Product Overview Reduce your cost of ownership by minimizing time to calibrate and

More information

Spectrum Analyzers vs. Monitoring Receivers. Paul Denisowski, Application Engineer Rohde & Schwarz

Spectrum Analyzers vs. Monitoring Receivers. Paul Denisowski, Application Engineer Rohde & Schwarz Spectrum Analyzers vs. Monitoring Receivers Paul Denisowski, Application Engineer Rohde & Schwarz Spectrum Management Requirements What signals are present at which frequencies? Additional responsibilities

More information

Agilent E3830 Series Wide-bandwidth Signal Analyzer Custom Systems 100 MHz Bandwidth Microwave Vector Signal Analysis

Agilent E3830 Series Wide-bandwidth Signal Analyzer Custom Systems 100 MHz Bandwidth Microwave Vector Signal Analysis Agilent E3830 Series Wide-bandwidth Signal Analyzer Custom Systems 100 MHz Bandwidth Microwave Vector Signal Analysis The measurement challenge 2 Many advanced microwave applications involve complex wideband

More information

Technology Trend in Spectrum Analyzer

Technology Trend in Spectrum Analyzer Technology Trend in Spectrum Analyzer Roberto Sacchi Application Engineer Page 1 Agenda The Wireless communication market Swept vs. FFT spectrum analyzer (resolution, selectivity) Digital modulation basics

More information

Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP

Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP Products: Spectrum Analyzer FSP Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP This application note explains the concept of Adjacent Channel Leakage Ratio (ACLR) measurement

More information

Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note

Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer Product Note 2 3 4 4 4 4 6 7 8 8 10 10 11 12 12 12 13 15 15 Introduction Table of contents Introduction

More information

MATRIX TECHNICAL NOTES

MATRIX TECHNICAL NOTES 200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR

More information

Technical Note. The Basis of Spectrum Analyzers

Technical Note. The Basis of Spectrum Analyzers Technical Note The Basis of Spectrum Analyzers The Basis of Spectrum Analyzers Ver.3.1 Anritsu Corporation Slide 1 Contents 1. What is a Spectrum Analyzer? 2. Measurement Categories 3. Principals of a

More information

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement

More information

Phase Noise Measurement Methods and Techniques

Phase Noise Measurement Methods and Techniques Phase Noise Measurement Methods and Techniques Presented by: Kay Gheen, Agilent Technologies Introduction Extracting electronic signals from noise is a challenge for most electronics engineers. As engineers

More information

Fast and Accurate Test of Mobile Phone Boards

Fast and Accurate Test of Mobile Phone Boards Products: R&S FSP Fast and Accurate Test of Mobile Phone Boards Short test times in conjunction with accurate and repeatable measurement results are essential when testing and calibrating mobile phones

More information

HP 8590 E-Series Portable Spectrum Analyzers Technical Specifications

HP 8590 E-Series Portable Spectrum Analyzers Technical Specifications HP 8590 E-Series Portable Spectrum Analyzers Technical Specifications Product Specifications and data These specifications apply to the, 8593E, 8594E, 8595E, and 8596E spectrum analyzers. Specifications

More information

AM/FM/ϕM Measurement Demodulator FS-K7

AM/FM/ϕM Measurement Demodulator FS-K7 Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FS-K7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters

More information

Using Spectrum Analyzers For Signal Monitoring

Using Spectrum Analyzers For Signal Monitoring Using Spectrum Analyzers For Signal Monitoring Presented by: 3 March 004 1 1 At the completion of this module you will have an understanding of how commercially available spectrum analyzers can be used

More information

Tx/Rx A high-performance FM receiver for audio and digital applicatons

Tx/Rx A high-performance FM receiver for audio and digital applicatons Tx/Rx A high-performance FM receiver for audio and digital applicatons This receiver design offers high sensitivity and low distortion for today s demanding high-signal environments. By Wayne C. Ryder

More information

Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth

Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth Product Note The Agilent Technologies 89400 series vector signal analyzers provide unmatched signal analysis

More information

Keysight N9000A CXA Signal Analyzer

Keysight N9000A CXA Signal Analyzer Keysight N9000A CXA Signal Analyzer Notice: This document contains references to Agilent. Please note that Agilent s Test and Measurement business has become Keysight Technologies. For more information,

More information

Optimizing VCO PLL Evaluations & PLL Synthesizer Designs

Optimizing VCO PLL Evaluations & PLL Synthesizer Designs Optimizing VCO PLL Evaluations & PLL Synthesizer Designs Today s mobile communications systems demand higher communication quality, higher data rates, higher operation, and more channels per unit bandwidth.

More information

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV 0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV The treatment given here is introductory, and will assist the reader who wishes to consult the standard texts

More information

Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

More information

RFSPACE CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO

RFSPACE CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO 1 - SPECIFICATIONS Cloud-IQ INTRODUCTION The Cloud-IQ is a high performance, direct sampling software radio with an ethernet interface. It offers outstanding

More information

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1 WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)

Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques

More information

RAPID PROTOTYPING FOR RF-TRANSMITTERS AND RECEIVERS

RAPID PROTOTYPING FOR RF-TRANSMITTERS AND RECEIVERS RAPID PROTOTYPING FOR -TRANSMITTERS AND RECEIVERS Robert Langwieser email: robert.langwieser@nt.tuwien.ac.at Michael Fischer email: michael.fischer@nt.tuwien.ac.at Arpad L. Scholtz email: arpad.scholtz@tuwien.ac.at

More information

HP 8970B Option 020. Service Manual Supplement

HP 8970B Option 020. Service Manual Supplement HP 8970B Option 020 Service Manual Supplement Service Manual Supplement HP 8970B Option 020 HP Part no. 08970-90115 Edition 1 May 1998 UNIX is a registered trademark of AT&T in the USA and other countries.

More information

EE 186 LAB 2 FALL 2004. Network Analyzer Fundamentals and Two Tone Linearity

EE 186 LAB 2 FALL 2004. Network Analyzer Fundamentals and Two Tone Linearity Network Analyzer Fundamentals and Two Tone Linearity Name: Name: Name: Objective: To become familiar with the basic operation of a network analyzer To use the network analyzer to characterize the in-band

More information

Calibration Guide. Agilent Technologies ESG Vector Signal Generator

Calibration Guide. Agilent Technologies ESG Vector Signal Generator Calibration Guide Agilent Technologies ESG Vector Signal Generator This guide applies to signal generator models and associated serial number prefixes listed below. Depending on your firmware revision,

More information

Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7

Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7 Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7 - + - + - + - + Table of Contents Page Introduction......................................................................

More information

Keysight Technologies N9320B RF Spectrum Analyzer

Keysight Technologies N9320B RF Spectrum Analyzer Keysight Technologies N9320B RF Spectrum Analyzer 9 khz to 3.0 GHz Data Sheet Definitions and Conditions The spectrum analyzer will meet its specifications when: It is within its calibration cycle It has

More information

Keysight N9320B RF Spectrum Analyzer

Keysight N9320B RF Spectrum Analyzer Keysight N9320B RF Spectrum Analyzer 9 khz to 3.0 GHz Data Sheet 02 Keysight N9320B RF Spectrum Analyzer - Data Sheet Definitions and Conditions Specifications describe the performance of parameters covered

More information

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,

More information

How To Use A Sound Card With A Subsonic Sound Card

How To Use A Sound Card With A Subsonic Sound Card !"## $#!%!"# &"#' ( "#' )*! #+ #,# "##!$ -+./0 1" 1! 2"# # -&1!"#" (2345-&1 #$6.7 -&89$## ' 6! #* #!"#" +" 1##6$ "#+# #-& :1# # $ #$#;1)+#1#+

More information

Maximizing Receiver Dynamic Range for Spectrum Monitoring

Maximizing Receiver Dynamic Range for Spectrum Monitoring Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

Choosing a Phase Noise Measurement Technique Concepts and Implementation Terry Decker Bob Temple

Choosing a Phase Noise Measurement Technique Concepts and Implementation Terry Decker Bob Temple Choosing a Phase Noise Measurement Technique Concepts and Implementation Terry Decker Bob Temple RF & Microwave Measurement Symposium and Exhibition Terry Decker, received her BA in Physics from Carleton

More information

Measurement, analysis, and monitoring of RF signals

Measurement, analysis, and monitoring of RF signals NRA-2500, NRA-3000 and NRA-6000 Narda Remote Spectrum Analyzer Measurement, analysis, and monitoring of RF signals 19" rack mountable Spectrum Analyzer for remote controlled measurements and analysis of

More information

A Low Frequency Adapter for your Vector Network Analyzer (VNA)

A Low Frequency Adapter for your Vector Network Analyzer (VNA) Jacques Audet, VE2AZX 7525 Madrid St, Brossard, QC, Canada J4Y G3: jacaudet@videotron.ca A Low Frequency Adapter for your Vector Network Analyzer (VNA) This compact and versatile unit extends low frequency

More information

RF Communication System. EE 172 Systems Group Presentation

RF Communication System. EE 172 Systems Group Presentation RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components

More information

SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION

SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION 1 SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION By Lannes S. Purnell FLUKE CORPORATION 2 This paper shows how standard signal generators can be used as leveled sine wave sources for calibrating oscilloscopes.

More information

HF Receiver Testing. Issues & Advances. (also presented at APDXC 2014, Osaka, Japan, November 2014)

HF Receiver Testing. Issues & Advances. (also presented at APDXC 2014, Osaka, Japan, November 2014) HF Receiver Testing: Issues & Advances (also presented at APDXC 2014, Osaka, Japan, November 2014) Adam Farson VA7OJ/AB4OJ Copyright 2014 North Shore Amateur Radio Club 1 HF Receiver Performance Specs

More information

Lecture 1: Communication Circuits

Lecture 1: Communication Circuits EECS 142 Lecture 1: Communication Circuits Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture

More information

Application Note Noise Frequently Asked Questions

Application Note Noise Frequently Asked Questions : What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

More information

A Network Analyzer For Active Components

A Network Analyzer For Active Components A Network Analyzer For Active Components EEEfCom 29-30 Juni ULM Marc Vanden Bossche, NMDG Engineering Remi Tuijtelaars, BSW Copyright 2005 NMDG Engineering Version 2 Outline Review of S-parameters Theory

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

More information

1975-2004 GOOD WILL Instrument Co., Ltd. All rights reserved.

1975-2004 GOOD WILL Instrument Co., Ltd. All rights reserved. Introduction to 3GHz Spectrum Analyzer of Instek Front side Features Rear side 1Frequency Adjustment 2Ref. Input 3Ref. Out 4Ext. Trigger 5GPIB 6RS232 11 12 13 7USB 8VGA Output 9Ear Phone DC Input 11 Battery

More information

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

More information

MXE Instrument Software Revision History (Windows 7 Only)

MXE Instrument Software Revision History (Windows 7 Only) MXE Instrument Software Revision History (Windows 7 Only) It is recommended that all instruments be kept up to date by installing the most recent version of software available. The most recent version

More information

Spectrum Analyzers And Network Analyzers. The Whats, Whys and Hows...

Spectrum Analyzers And Network Analyzers. The Whats, Whys and Hows... Spectrum Analyzers And Network Analyzers The Whats, Whys and Hows... Bertrand Zauhar, VE2ZAZ ve2zaz@amsat.org June 2010 Today's Program Definitions of Spectrum and Network Analyzers, Differences between

More information

Visual System Simulator White Paper

Visual System Simulator White Paper Visual System Simulator White Paper UNDERSTANDING AND CORRECTLY PREDICTING CRITICAL METRICS FOR WIRELESS RF LINKS Understanding and correctly predicting cellular, radar, or satellite RF link performance

More information

@'pproved for release by NSA on 12-01-2011, Transparency Case# 6385~SSIFIED. Receiver Dynamics

@'pproved for release by NSA on 12-01-2011, Transparency Case# 6385~SSIFIED. Receiver Dynamics @'pproved for release by NSA on 12-01-2011, Transparency Case# 6385~SSIFIED Receiver Dynamics STATUTORILY EXEMPT Editor's Note: This paper was written before the author retired (1995), In K4 we use a number

More information

Site Master Cable and Antenna Analyzer with Spectrum Analyzer

Site Master Cable and Antenna Analyzer with Spectrum Analyzer Maintenance Manual Site Master Cable and Antenna Analyzer with Spectrum Analyzer S331E, 2 MHz to 4 GHz S332E, 2 MHz to 4 GHz, Spectrum Analyzer, 100 khz to 4 GHz S361E, 2 MHz to 6 GHz S362E, 2 MHz to 6

More information

Agilent Technologies. Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360

Agilent Technologies. Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360 Agilent Technologies Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360 Table of Contents Introduction...............................................................................3

More information

FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.

FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D. FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing

More information

R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz

R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz The new R&S FSW 43 and R&S FSW 50 signal and spectrum analyzers make the outstanding features of the R&S FSW family available now also

More information

Handheld Spectrum Analyzer

Handheld Spectrum Analyzer 9101 Handheld Spectrum Analyzer The 9101 Handheld Spectrum Analyzer provides RF engineers with the excellent performance of a workbench analyzer in a handheld form, at a competitive price. Highlights Covering

More information

Errata. Agilent Technologies PSA Series Spectrum Analyzers

Errata. Agilent Technologies PSA Series Spectrum Analyzers Errata Agilent Technologies PSA Series Spectrum Analyzers This document contains supplemental information for instruments with firmware A.11.21 The latest revision of the firmware can be found at http://www.agilent.com/find/psa_firmware

More information

X-Series Signal Analysis. Future-ready instruments Consistent measurement framework Broadest set of applications and software

X-Series Signal Analysis. Future-ready instruments Consistent measurement framework Broadest set of applications and software X-Series Signal Analysis Future-ready instruments Consistent measurement framework Broadest set of applications and software Arrive Ahead with X-Series We can t predict the future, but Agilent can help

More information

Network analyzer and spectrum analyzer two in one

Network analyzer and spectrum analyzer two in one R&S ZVL Vector Network Analyzer Network analyzer and spectrum analyzer two in one The R&S ZVL is the lightest and smallest vector network analyzer in its class. On top of this, it can be used as a full-featured

More information

Network Analyzer Operation

Network Analyzer Operation Network Analyzer Operation 2004 ITTC Summer Lecture Series John Paden Purposes of a Network Analyzer Network analyzers are not about computer networks! Purposes of a Network Analyzer Measures S-parameters

More information

Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832)

Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Agilent E4406A Vector Signal Analyzer Data Sheet The Agilent Technologies E4406A vector signal analyzer (VSA) is a full-featured

More information

RF Sensors for Spectrum Monitoring Applications: Fundamentals and RF Performance Test Plan

RF Sensors for Spectrum Monitoring Applications: Fundamentals and RF Performance Test Plan NTIA Report 15-519 RF Sensors for Spectrum Monitoring Applications: Fundamentals and RF Performance Test Plan Jeffery A. Wepman Brent L. Bedford Heather Ottke Michael G. Cotton report series U.S. DEPARTMENT

More information

How To Measure Two Tone, Third Order Intermodulation Distortion

How To Measure Two Tone, Third Order Intermodulation Distortion Improve Two-Tone, Third-Order Intermodulation Testing First, it's important to define the significance of input levels. Then, details on the measurement technique will be given. Two-tone, third-order intermodulation

More information

Spectrum analyzer with USRP, GNU Radio and MATLAB

Spectrum analyzer with USRP, GNU Radio and MATLAB Spectrum analyzer with USRP, GNU Radio and MATLAB António José Costa, João Lima, Lúcia Antunes, Nuno Borges de Carvalho {antoniocosta, jflima, a30423, nbcarvalho}@ua.pt January 23, 2009 Abstract In this

More information

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

More information

HD Radio FM Transmission System Specifications Rev. F August 24, 2011

HD Radio FM Transmission System Specifications Rev. F August 24, 2011 HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

More information

Software Defined Radio

Software Defined Radio Software Defined Radio GNU Radio and the USRP Overview What is Software Defined Radio? Advantages of Software Defined Radio Traditional versus SDR Receivers SDR and the USRP Using GNU Radio Introduction

More information

Power Amplifier Gain Compression Measurements

Power Amplifier Gain Compression Measurements Technical Brief Power Amplifier Gain Compression Measurements GPIB Private Bus Sweep Out Sweep In Pulse In AC Mod Out Blank/Marker Out Blanking In Overview The 1 db gain compression of an amplifier describes

More information

Tackling the Challenges of Pulsed Signal Measurements

Tackling the Challenges of Pulsed Signal Measurements Tackling the Challenges of Pulsed Signal Measurements Application Note This Application Note describes characterization of devices used in radar systems with pulsed signals. The emphasis is on measurements

More information

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods

More information

Raptor RXi Ultra-fast scanning Countersurveillance Receiver

Raptor RXi Ultra-fast scanning Countersurveillance Receiver data sheet RAPTOR RXi DATA SHEET A MATTER A MATTER OF OF NATIONAL SECURITY Raptor RXi Ultra-fast scanning Countersurveillance Receiver Features + Scans 26GHz in less than 4 seconds at 3kHz resolution (approx.

More information

DSA800 Series Spectrum Analyzer

DSA800 Series Spectrum Analyzer DSA800 Series Spectrum Analyzer Configuration Guide This guide is used to help users to configure DSA800 series spectrum analyzer according to their requirements. You can get an overall understanding of

More information

Ralph L. Brooker, Member, IEEE. Andrew Corporation, Alexandria, VA 22314, USA

Ralph L. Brooker, Member, IEEE. Andrew Corporation, Alexandria, VA 22314, USA Spectral-Null Pulse Waveform For Characterizing Gain and Phase Distortion in Devices with Uncorrelated Frequency Translation or Limited CW Power Capability Ralph L. Brooker, Member, IEEE Andrew Corporation,

More information

VCO Phase noise. Characterizing Phase Noise

VCO Phase noise. Characterizing Phase Noise VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which

More information

The demo guide contains

The demo guide contains The demo guide contains 1. Demo configuration, units are available in the Agilent demstock 2. Remote Demo, a remote setup is available in Böblingen. Booking is possible via a demo outlook calendar. Please

More information

Welcome. Rulon VanDyke RF System Architect, Agilent Technologies. David Leiss Senior RF Simulation Consultant, Agilent Technologies

Welcome. Rulon VanDyke RF System Architect, Agilent Technologies. David Leiss Senior RF Simulation Consultant, Agilent Technologies Welcome Rulon VanDyke RF System Architect, Agilent Technologies David Leiss Senior RF Simulation Consultant, Agilent Technologies January 12, 2012 Agenda RF Architecture Definition Costs of Poor Architecture

More information

Summer of LabVIEW The Sunny Side of System Design

Summer of LabVIEW The Sunny Side of System Design Summer of LabVIEW The Sunny Side of System Design 30th June - 18th July 1 Real Time Spectrum Monitoring and Signal Intelligence Abhay Samant Section Manager RF and PXI Aerospace and Defence National Instruments

More information

Michael Hiebel. Fundamentals of Vector Network Analysis

Michael Hiebel. Fundamentals of Vector Network Analysis Michael Hiebel Fundamentals of Vector Network Analysis TABIH OF CONTENTS Table of contents 1 Introduction 12 1.1 What is a network analyzer? 12 1.2 Wave quantities and S-parameters 13 1.3 Why vector network

More information

Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform

Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform Application Note Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform By: Richard Komar Introduction With the rapid development of wireless technologies, it has become

More information

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction: ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure

More information

Making Spectrum Measurements with Rohde & Schwarz Network Analyzers

Making Spectrum Measurements with Rohde & Schwarz Network Analyzers Making Spectrum Measurements with Rohde & Schwarz Network Analyzers Application Note Products: R&S ZVA R&S ZVB R&S ZVT R&S ZNB This application note describes how to configure a Rohde & Schwarz Network

More information