Maglev Trains. Priyank Malik th Semester Student, Mechanical Engineering

Size: px
Start display at page:

Download "Maglev Trains. Priyank Malik th Semester Student, Mechanical Engineering"

Transcription

1 Maglev Trains Priyank Malik th Semester Student, Mechanical Engineering 5 th Abstract Technical trials on a maglev train track began in Japan in the 1970s, and a speed of 500 kph/310 mph has been reached, with a cruising altitude of 10 cm/4 in. The train is levitated by electromagnets and forward thrust is provided by linear motors aboard the cars, propelling the train along a reaction plate. The German government approved a plan to build the world's first commercial maglev The Berlin- Hamburg line will cost DM8.9 billion ( 3.5 billion). The three-hour journey time will be reduced by a third. Maglev trains in Japan have a 4 inch gap between the train and the track while in motion. When the trains in Japan slow down as they come into the station, wheels underneath the train reattach to the ground eventually bringing the train to a stop. How Maglev trains operate: Japanese Maglev train moves by the force of the magnets. Currently, Maglev trains have been created in Germany and Japan for test runs only. No commercial trains are operating. Germany and Japan are using two different types of maglev trains. Germany is using the power of magnetic "attraction", while Japan is mostly using magnetic "repulsion". In Germany the bottom of Maglev trains wrap around the track leaving only a 3/8 of an inch gap between the train and the track while in motion. In Japan, Maglev trains have magnetic tracks underneath the trains as well as on the sides of the bottom part of the train. The magnets on the side of the track correspond with those on the side of the train while the magnets on the bottom of the track correspond with those underneath the train. The Electrodynamic suspension (EDS) is one method that can be used for maglev trains. Superconductor electromagnets on the train generate a magnetic field. Propulsion coils on the guideway are used to exert a force on these magnets, and make the train move forward. Introduction Did you ever see a train without any wheels? Did you ever think of using magnets to get around? Well, Robert Goddard and a few other scientists did. I'm going to tell you about their invention, the MAGLEV TRAINS. The Magnetic Levitating Train or Maglev Train was first constructed in the 1960's. The Japanese tried to build one in the 1960's but did not have enough knowledge of magnets and it was a glichy experiment. Not until recently did they pick up on their experiment to create the maglev train. Maglev trains have come a long way. It all started with just a few trains in Germany and with one train in Japan. Now the idea has spread. 64 Department of Mechanical & Automobile Engineering

2 There are some in America and many more places. There are many more in Japan and Germany. The fastest is the MLXOI. It has a world record speed of 344 m.p.h. (miles per hour) or 554 kilometers per hour. It takes up no fossil fuels and has virtually no friction. This train is a great deal faster than a conventional train and also has a smoother ride. While most trains have a driver, most of these don't. They can be controlled by a computer. Some computer controlled maglev's are used to get people around airports, state parks, and places like that. This can provide information and perhaps convince the people to create a public maglev train. This train has a lot to do with magnetism and precision. Maglev trains are the future of high speed trains. Maglev combines the benefits of airplanes with the benefits of trains to create "flying trains". Maglev trains use electromagnetic technology to allow trains to actually hover above the ground. With the friction of wheels on rails gone, a whole new era of high speed trains is possible. Tracks for maglev trains are different from those of conventional trains. They are elevated above ground, allowing everything else to go underneath it, and nothing will stand in the way of 300mph trains. Did you ever wonder how maglev's got so fast? It's because the trains hover over a track. The train cars are actually suspended in the air above a single track. They move forward using the repulsive and attractive forces of magnetism. There is no friction to slow the train cars down. Scientists are saying they could get up to 600 to 1000 m.p.h. (966 to 1609 kilometers per hour) in the future with the advance of technology, wow! Now you know a lot about 'the trains of the future,' but I forgot to explain one thing. The word Maglev comes from MAGnetically LEVitated. Principle of Maglev Maglev is a system in which the vehicle runs levitated from the guideway (corresponding to the rail tracks of conventional railways) by using electromagnetic forces between superconducting magnets on board the vehicle and coils on the ground. The following is a general explanation of the principle of Maglev. Principle of magnetic levitation: The "8" figured levitation coils are installed on the sidewalls of the guideway. When the on-board superconducting magnets pass at a high speed about several centimeters below the center of these coils, an electric current is induced within the coils, which then act as electromagnets temporarily. As a result, there are forces which push the superconducting magnet upwards and ones which pull them upwards simultaneously, thereby levitating the Maglev vehicle. Principle of lateral guidance: The levitation coils facing each other are connected under the guideway, constituting a loop. When a running Maglev vehicle, that is a superconducting magnet, displaces laterally, an electric current is induced in the loop, resulting in a repulsive force acting on the levitation coils of the Department of Mechanical & Automobile Engineering 65

3 side near the car and an attractive force acting on the levitation coils of the side farther apart from the car. Thus, a running car is always located at the center of the guideway. The basic idea behind an electromagnet is extremely simple: By running electric current through a wire, you can create a magnetic field. Principle of propulsion: A repulsive force and an attractive force induced between the magnets are used to propel the vehicle (superconducting magnet). The propulsion coils located on the sidewalls on both sides of the guideway are energized by a three-phase alternating current from a substation, creating a shifting magnetic field on the guideway. The on-board superconducting magnets are attracted and pushed by the shifting field, propelling the Maglev vehicle. The repulsion of superconducting magnets and electromagnets in the track keeps a maglev train suspended above the track. By varying the strength and polarity of the track electromagnets, the train can be driven forward. The propulsion coils exert a force on the train in the same way that an electric motor works. An alternating current flowing through the coils causes a continuously varying magnetic field, that moves forward along the track. The magnets on the train line up with this field, and so the train moves. As the train moves forwards, it induces a current in another set of coils, responsible for guidance and levitation of the train. They have a figure of eight shape, and the current flowing through them induces magnetic poles in both the top and bottom halves. These poles ensure that the magnets on the train are repelled by the bottom half, and attracted by the top half, resulting in the train levitating.at slow speeds however, the current induced in these coils or flux is not large enough to support the weight of the train. For this reason the train is fitted with a retractable landing gear to support the train until it takes off. A maglev train floats about 10mm above the guideway on a magnetic field. It is propelled by the guideway itself rather than an onboard engine by changing magnetic fields. Once the train is pulled into the next section the magnetism switches so that the train is pulled on again. The Electro-magnets run the length of the guideway. Developing Technology Maglev train technology is a popular topic of transportation conversation in several countries. Germany and Japan are both developing maglev train technology, and both are currently testing prototypes of their trains. (The German company "Transrapid International" also has a train in commercial use -- more about that in the next section.) Although based on similar concepts, the German and Japanese trains have distinct differences. In Germany, engineers have developed an electromagnetic suspension (EMS) system, called Transrapid. In this system, the bottom of the train wraps 66 Department of Mechanical & Automobile Engineering

4 around a steel guideway. Electromagnets attached to the train's undercarriage are directed up toward the guideway, which levitates the train about 1/3 of an inch (1 cm) above the guideway and keeps the train levitated even when it's not moving. Other guidance magnets embedded in the train's body keep it stable during travel. Germany has demonstrated that the Transrapid maglev train can reach 300 mph with people onboard. Japanese engineers are developing a competing version of maglev trains that use an electrodynamic suspension (EDS) system, which is based on the repelling force of magnets. The key difference between Japanese and German maglev trains is that the Japanese trains use supercooled, superconducting electromagnets. This kind of electromagnet can conduct electricity even after the power supply has been shut off. In the EMS system, which uses standard electromagnets, the coils only conduct electricity when a power supply is present. By chilling the coils at frigid temperatures, Japan's system saves energy. Another difference between the systems is that the Japanese trains levitate nearly 4 inches (10 cm) above the guideway. One potential drawback in using the EDS system is that maglev trains must roll on rubber tires until they reach a liftoff speed of about 62 mph (100 kph). Japanese engineers say the wheels are an advantage if a power failure caused a shutdown of the system. Germany's Transrapid train is equipped with an emergency battery power supply. Traverser at the Miyazaki Maglev Test Track as turned toward the curved branch line Curved branch line entry test using MLU002 China test home-made maglev train Are Maglev Trains Safe? Maglev trains have proven to be exceptionally safe, quiet, and fast. Beacause there's no friction with the ground, maglev trains are much more quiet than trucks and automobiles. The only sound caused by the trains is the 'whoosh' as the train goes by from the air friction. Farmers in Germany who have trains running over their fields, when asked about how the feel about the trains running through their farm replied "We don't even know it's there". Cows don't even lift their heads when trains come through at 250mph. Maglev trains are also almost accident free. They are above any obstacles on the ground and are enclosed in or around the track. Also the propulsion system caused by the magnetic fields disallows trains to come to close to other trains on the track. German Maglev goes over farm exceeding 200mph, but is so quiet the cows don't even look up at it. Another issue with maglev trains is whether the magnetic waves, or electromegnetic fields caused by the train will harm the passengers or people living along the lines. Studies have shown that the trains generate minimal magnetic fields, not nearly enough to harm people around the track or any sensitive machinery. The tracks themselves do not generate any electromagnetic fields. The only time the magnetic waves are present is when the trains go by which is only a short time, especially when they go by at Department of Mechanical & Automobile Engineering 67

5 300mph. The magnetic field inside the cabin of the trains is just barely higher than earth's normal magnetic field. So if test runs go alright we could have fast, flying trains operating in the near future. Issues Related to Magnetic Levitating Trains Magnetic Fields Intensity of magnetic field effects of Maglev is extremely low (below everyday household devices) Hair dryer, toaster, or sewing machine produce stronger magnetic fields Energy Consumption Maglev uses 30% less energy than a highspeed train travelling at the same speed. (1/3 more power for the same amount of energy) Noise Levels No noise caused by wheel rolling or engine Maglev noise is lost among general ambient noise At 100m - Maglev produces noise at 69 db At 100m - Typical city center road traffic is 80 db Vibrations Just below human threshold of perception Power Supply 110kV lines fed separately via two substations Power Failure Batteries on board automatically are activated to bring car to next station Batteries charged continuously Fire Resistance of vehicles Latest non-pvc material used that is noncombustible and poor trasmitter of heat Maglev vehicle carries no fuel to increase fire hazard Safety 20 times safer than an airplane 250 times safer than other conventional railways 700 times safer than travel by road Collision is impossible because only sections of the track are activated as needed. The vehicles always travel in synchronization and at the same speed, further reducing the chances of a crash. Operation Costs Virtually no wear. Main cause of mechanical wear is friction. Magnetic levitation requires no contact, and hence no friction. Components normally subjected to mechanical wear are on the whole replaced by electronic comonents which do not suffer any wear Specific energy consumption is less than all other comparable means of transportation. Faster train turnaround time means fewer vehicles The Most Interesting Facts About Maglevs Current speed record is held by MLX01 at the Yamanashi Maglev Test Line: 581 km / h. The possible top speed of Maglev in a vacuum-filled tunnel (no air resistance): km /hr! First approval of a Maglev line: 1996 Germany,, it would have linked Hamburg and Berlin, but the project was cancelled in Department of Mechanical & Automobile Engineering

6 The first official Maglev line: 2004, Shanghai opened line between the airport and the financial district. The lenght of this line is 30km, the possible top speed on this route: 432km / hr. Maglev is an acronym for: Magnetic Levitated. Maglev Suspension Versus Wheeled Suspension Cited advantages of maglev trains over wheeled trains (1, 12) include: 1. Wheels produce medium to high environmental noise levels. 2. Wheeled systems rely on propulsion through wheel-rail friction, and the high aerodynamic drag forces lead to upper speed limits due to limited wheel-rail adhesion. 3. Maglev vehicles can accelerate and decelerate rapidly and bank steeply on curves. 4. Suspension through point contact (up to 70,000 psi or 482 MPa) leads to increased structural requirements and increased wear/maintenance. Frequently Asked Questions How fast can maglev trains travel? As long as the track is straight enough that the train doesn't experience severe accelerations up, down, left, or right, there is no limit to how fast it can go. In fact, the levitation process becomes more and more energy efficient as the speed increases. However, the moving train does experience a pressure drag force (a type of air resistance) that increases roughly as the square of the train's speed. The power needed to overcome this drag force increases as the cube of the train's speed, making it impractical to propel the train forward above a certain speed. What would be a legitimate form of propulsion for magnetic trains? The most sensible propulsion system for a magnetically levitated train would be a linear electric motor. This motor would consist of electromagnets on the train and electromagnets on the track. By turning these electromagnets on and off at carefully chosen moments, they can be used to pull or push the train forward for propulsion or backward for breaking. The timing is important because, for propulsion, the magnet on the train must always be attracted toward the track magnet in front of it and repelled by the track magnet behind it. For breaking, this relationship must be reversed. How does a magnetic train work? How can I make an experiment with it for a school project? There are many techniques for supporting a train on magnetic forces, but the simplest and most promising involves electrodynamic levitation. In this technique, the train has a strong magnet under it and it rides on an aluminum track. The train leaves the station on rubber wheels and then begins to fly on a cushion of magnetic forces when its speed is high enough. Its moving magnet induces electric currents in the aluminum track and these currents are themselves magnetic. The train and track repel one another so strongly with magnetic forces that the train hovers tens of centimeters above the track. To demonstration this effect, you can lower a very strong magnet above a rapidly spinning aluminum disk. In my class, I spin a sturdy aluminum disk with a motor and lower a 5 cm diameter disk magnet onto its surface. I hold the magnet firmly with a strap made of duct tape, so that the magnet won't fly across the room or flip over as it descends. Instead of touching the spinning disk, the magnet floats about 2 cm above it. If you try this experiment, don't spin the aluminum disk too fast or it will tear itself apart. It should spin about as fast as an electric fan on high speed. Also, be careful with the magnet, because it will experience magnetic drag forces as well as the magnetic lift force. If you don't hold tight, it will be yanked out of your hand. For a simpler experiment that anyone can do, float an aluminum pie plate in a basin of water and circle one pole of a strong magnet just above its surface. The pie plate will begin to spin with the magnet. You are again inducing currents in the aluminum, making it magnetic. While the forces here are too weak to lift the magnet in your hand, they are enough to cause the pie plate to begin spinning, even though you never actually Department of Mechanical & Automobile Engineering 69

7 touch it. This technique is used in many electric motors. That's physics for you--the same principles just keep showing up in seemingly different machines. If magnetic trains are to work,, wouldn't friction on the bottom of the train create thermal energy which would destroy the magnetism of the train? When a magnetically levitated train is operating properly, it doesn't touch the track and experiences no friction. In principle, it shouldn't get hot at all. The magnetic drag effect will warm the track slightly, but that won't matter to the train's magnets. Actually, the train's magnets will almost certainly be superconducting wire coils with currents flowing in them. That type of magnet doesn't depend on the magnetic order of permanent magnets. It's the magnetic order of permanent magnets that is destroyed by heat. An electromagnetic coil will stay magnetic as long as current flows through it, even if it's so hot that it's ready to melt. 70 Department of Mechanical & Automobile Engineering

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Level 3 Pre-U Certificate Principal Subject

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Level 3 Pre-U Certificate Principal Subject UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Level 3 Pre-U Certificate Principal Subject PHYSICS 9792/02 Paper 2 Part A Written Paper May/June 2012 PRE-RELEASED MATERIAL The

More information

The Shanghai Maglev Route

The Shanghai Maglev Route The Shanghai Maglev Route 1 Contents 1. About the Shanghai Maglev... 3 2. Background information about EMS Technology... 4 3. Your train... 5 3.1 Getting to know the cab... 5 3.2 Central DMI screen additional

More information

Section 9.5 Electric Motors

Section 9.5 Electric Motors Power connection Brush Commutator Bearing Electromagnet Armature haft Bearing Cooling fan ection 9.5 Electric Motors Electric motors spin the parts of many household machines. ometimes this rotary motion

More information

HSR THE TRAIN OF THE FUTURE New technologies and research trends

HSR THE TRAIN OF THE FUTURE New technologies and research trends HSR THE TRAIN OF THE FUTURE New technologies and research trends Manuel S. Pereira* * ERRAC Vice-Chairman JUL 2008 The third dimension: Competitiveness & innovation ENERGY/POWER BIOMECHANICS HUMAN/MACHINE

More information

UAQ 4 MAGNETIC LEVITATING TRAIN WITH NEAR ZERO ENERGY CONSUMPTION

UAQ 4 MAGNETIC LEVITATING TRAIN WITH NEAR ZERO ENERGY CONSUMPTION Transportation Dept. UAQ 4 MAGNETIC LEVITATING TRAIN WITH NEAR ERO ENERGY CONSUMPTION UAQ 4 is the most advanced and ecological train in the world. The system is a guided train using superconductors and

More information

Overview. My opinion (Rick Canine, CEO Federal Maglev) is that they need to:

Overview. My opinion (Rick Canine, CEO Federal Maglev) is that they need to: Welcome to a Game-Changing Technology St. Louis Port Working Group October, 5 th 2011 What is now proved was once only imagined. -- William Blake (1757-1827) English Poet Federal Maglev, Inc Rick Canine,

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

The future is already here

The future is already here Transrapid International A joint company of Siemens and ThyssenKrupp The future is already here The Transrapid maglev system in Shanghai The future is already here in Shanghai Shanghai is a city of superlatives

More information

Student Reader. Energy Systems UNIT 7. E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM

Student Reader. Energy Systems UNIT 7. E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM Student Reader UNIT 7 Energy Systems E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM Front Cover: The cover shows a photograph of a sled that is not in motion. The movement of a sled from one place

More information

RUF climate solutions

RUF climate solutions RUF climate solutions Palle R Jensen, RUF International, prj@ruf.dk, www.ruf.dk Resumé Recent studies (Stern 2006) have shown that in order to avoid catastrophic climate effects, the equivalent CO2 emission

More information

Advance your thinking. Experience the future Transrapid

Advance your thinking. Experience the future Transrapid Advance your thinking. Experience the future Transrapid efficient rail solutions Floating on cloud nine Innovation in travel The invention of the railroad revolutionized travel more than anything that

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets.

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets. Electromagnetic Power! Lesson Overview Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets. Suggested Grade

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

Dispelling the Top Ten Myths of Maglev by Laurence E. Blow President, MaglevTransport, Inc.

Dispelling the Top Ten Myths of Maglev by Laurence E. Blow President, MaglevTransport, Inc. Dispelling the Top Ten Myths of Maglev by Laurence E. Blow President, MaglevTransport, Inc. Dispelling the Myths of Maglev Overview In keeping with the objectives of the newly established North American

More information

What is a Mouse-Trap

What is a Mouse-Trap What is a Mouse-Trap Car and How does it Work? A mouse-trap car is a vehicle that is powered by the energy that can be stored in a wound up mouse-trap spring. The most basic design is as follows: a string

More information

Teacher Answer Key: Measured Turns Introduction to Mobile Robotics > Measured Turns Investigation

Teacher Answer Key: Measured Turns Introduction to Mobile Robotics > Measured Turns Investigation Teacher Answer Key: Measured Turns Introduction to Mobile Robotics > Measured Turns Investigation Phase 1: Swing Turn Path Evaluate the Hypothesis (1) 1. When you ran your robot, which wheel spun? The

More information

MODEL OF THE ELECTROMAGNETIC LEVITATION DEVICE

MODEL OF THE ELECTROMAGNETIC LEVITATION DEVICE MODEL OF THE ELECTROMAGNETIC LEVITATION DEVICE Tomáš Hron CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of Electrical Engineering Department of Electrotechnology 1. Introduction From the principal point

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage

More information

This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism.

This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism. Magnetism Introduction This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism. Key concepts of magnetism The activities

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

Date R. Mirshahi. Forces are all around us. Without forces, nothing can move and no work can be done.

Date R. Mirshahi. Forces are all around us. Without forces, nothing can move and no work can be done. Name Date R. Mirshahi Forces and Movement: Balanced and Unbalanced Forces Forces are all around us. Without forces, nothing can move and no work can be done. There are different types of forces. Some forces

More information

Preview of Period 16: Motors and Generators

Preview of Period 16: Motors and Generators Preview of Period 16: Motors and Generators 16.1 DC Electric Motors What causes the rotor of a motor to spin? 16.2 Simple DC Motors What causes a changing magnetic field in the simple coil motor? 16.3

More information

Uses of Energy. reflect. look out!

Uses of Energy. reflect. look out! reflect Take a moment to think about three common objects: a flashlight, a computer, and a toaster. A flashlight provides light. A computer stores information and displays it on a screen. A toaster cooks

More information

Written By: Walter Galan

Written By: Walter Galan ipad 2 GSM Rear Camera Replacement Replace the rear camera in your ipad 2 GSM. Written By: Walter Galan INTRODUCTION Use this guide to replace a broken rear camera. TOOLS: ifixit Opening Picks set of 6

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

STUDY GUIDE: ELECTRICITY AND MAGNETISM

STUDY GUIDE: ELECTRICITY AND MAGNETISM 319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

More information

Interaction at a Distance

Interaction at a Distance Interaction at a Distance Lesson Overview: Students come in contact with and use magnets every day. They often don t consider that there are different types of magnets and that they are made for different

More information

How Rockets Work Newton s Laws of Motion

How Rockets Work Newton s Laws of Motion How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter IT S UNIVERSAL GRAVITY CONCEPTS Gravity is the universal force of attraction between all matter Weight is a measure of the gravitational force pulling objects toward Earth Objects seem weightless when

More information

Motor Fundamentals. DC Motor

Motor Fundamentals. DC Motor Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

More information

5-Minute Refresher: FRICTION

5-Minute Refresher: FRICTION 5-Minute Refresher: FRICTION Friction Key Ideas Friction is a force that occurs when two surfaces slide past one another. The force of friction opposes the motion of an object, causing moving objects to

More information

Chapter 4 DEFENSIVE DRIVING

Chapter 4 DEFENSIVE DRIVING Chapter 4 DEFENSIVE DRIVING Chapter 4 Table of Contents Chapter 4 DEFENSIVE DRIVING... 4-1 DEFENSIVE DRIVING... 4-3 Positioning The Bus... 4-3 When Making a Turn at an Intersection... 4-3 Making the perfect

More information

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1 Solar Car Teach build learn renewable Energy! Page 1 of 1 Background Not only is the sun a source of heat and light, it s a source of electricity too! Solar cells, also called photovoltaic cells, are used

More information

Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets

Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets 1) The following simple magnet configurations were shown to you in class - draw the magnetic field lines

More information

Magnets. Electromagnets. and. Thomas Jefferson National Accelerator Facility - Office of Science Education http://education.jlab.

Magnets. Electromagnets. and. Thomas Jefferson National Accelerator Facility - Office of Science Education http://education.jlab. Magnets and Electromagnets Magnets and Electromagnets Can you make a magnet from a nail, some batteries and some wire? Problems Can the strength of an electromagnet be changed by changing the voltage of

More information

harbor cub Electric Remote Control Airplane Model 92906 assembly & Operating Instructions

harbor cub Electric Remote Control Airplane Model 92906 assembly & Operating Instructions harbor cub Electric Remote Control Airplane Model 92906 assembly & Operating Instructions IMPORTANT: If damage is caused due to a crash, your warranty is void. Visit our website at: http://www.harborfreight.com

More information

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

More information

Electricity. Atoms. Protons, Neutrons, and Electrons. Electricity is Moving Electrons. Atom

Electricity. Atoms. Protons, Neutrons, and Electrons. Electricity is Moving Electrons. Atom Electricity is a mysterious force. We can t see it like we see the sun. We can t hold it like we hold coal. We know when it is working, but it is hard to know exactly what it is. Before we can understand

More information

general, accidents caused by misjudging

general, accidents caused by misjudging Unit 3: The Effect of Natural Forces on your Vehicle Page 1 of 11 Purpose: Acquaint the student with some of the natural forces acting on a vehicle while stopping, maneuvering, and during a crash. Explain

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3: To define the efficiency

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

Written By: Walter Galan

Written By: Walter Galan ipad 2 GSM LCD Replacement Replace the LCD in your ipad 2 GSM. Written By: Walter Galan INTRODUCTION Use this guide to replace a broken LCD. TOOLS: iopener (1) Phillips #00 Screwdriver (1) Plastic Opening

More information

Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

More information

Contents. Stage 7. Stage 8. Stage 9. Contents. Key: Enquiry / Extension / Review BOLD PAGE NO. = in this booklet

Contents. Stage 7. Stage 8. Stage 9. Contents. Key: Enquiry / Extension / Review BOLD PAGE NO. = in this booklet Contents Contents Stage 7 1 1.1 Introduction to forces 8 1.2 Balanced forces 10 1.3 Friction 12 1.4 Gravity 14 1.5 Enquiry: Questions, evidence and explanations 16 1.6 Air resistance 18 1.7 Enquiry: Planning

More information

Making an Electromagnet Grade 4

Making an Electromagnet Grade 4 TEACHING LEARNING COLLABORATIVE (TLC) PHYSICAL SCIENCE Making an Electromagnet Grade 4 Created by: Maria Schetter (Terrace Heights Elementary School), Stella Winckler (Lucerne Elementary School), Karen

More information

RC HELICOPTER INSTRUCTION MANUAL

RC HELICOPTER INSTRUCTION MANUAL AGE 14+ RC HELICOPTER INSTRUCTION MANUAL 1. Smart R/C system 2. Full scale remote control 3. Omnidirectional flight 4. Smooth hover performance 5. Newly designed electricity saving functionality 6. Longer

More information

H ello, I ll be demonstrating

H ello, I ll be demonstrating Magnetic Pulser MP6 How-to Video Transcription H ello, I ll be demonstrating the use of the SOTA Magnetic Pulser. The latest model is shown here, our Model MP6. Before we get started I just want to draw

More information

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

More information

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor At first glance, a brushless direct-current (BLDC) motor might seem more complicated than a permanent magnet brushed DC motor,

More information

Rubber Band Race Car

Rubber Band Race Car Rubber Band Race Car Physical Science Unit Using LEGO Mindstorms NXT Copyright 2009 by Technically Learning 1 of 17 Overview: Through a series of hands-on activities, students will design a rubber band

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet

Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet Magnetism Magnetism Opposite poles attract and likes repel Opposite poles attract and likes repel Like electric force, but magnetic poles always come in pairs (North, South) Like electric force, but magnetic

More information

Written By: Walter Galan

Written By: Walter Galan ipad 2 GSM Front Panel Replacement Replace the front panel in your ipad 2 GSM. Written By: Walter Galan INTRODUCTION Note: this is a complete guide for replacing a plain front panel. If you have a Front

More information

Rockets: Taking Off! Racing Balloon

Rockets: Taking Off! Racing Balloon Rockets: Taking Off! For every action there is an equal and opposite reaction. Rockets and Balloons What happens when you blow up a balloon then let it go? Does the balloon move through the air? Did you

More information

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket. Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

More information

Chen. Vibration Motor. Application note

Chen. Vibration Motor. Application note Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table

More information

TESTING WHETHER THE TEMPERATURE OF A MAGNET WILL AFFECT HOW FAR ITS MAGNETIC FIELD IS

TESTING WHETHER THE TEMPERATURE OF A MAGNET WILL AFFECT HOW FAR ITS MAGNETIC FIELD IS TESTING WHETHER THE TEMPERATURE OF A MAGNET WILL AFFECT HOW FAR ITS MAGNETIC FIELD IS Kenan Balkas Cary Academy ABSTRACT The purpose of this experiment is about testing to see what the strengths will be

More information

Resistance in the Mechanical System. Overview

Resistance in the Mechanical System. Overview Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when

More information

BUT PRECAUTIONS MUST BE TAKEN OR SERIOUS BURNS CAN RESULT.

BUT PRECAUTIONS MUST BE TAKEN OR SERIOUS BURNS CAN RESULT. Cooling System Operation Below is an explanation of this system's operation Radiator The radiator is a device designed to dissipate the heat which the coolant has absorbed from the engine. It is constructed

More information

2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia 2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

More information

The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics

The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics The DC Motor/Generator Commutation Mystery One small, yet vital piece of the DC electric motor puzzle is the carbon brush. Using the correct carbon brush is a key component for outstanding motor life,

More information

BACKING UP PROCEDURES FOR SCHOOL BUS DRIVERS

BACKING UP PROCEDURES FOR SCHOOL BUS DRIVERS LEADER S GUIDE 2498-LDG-E BACKING UP PROCEDURES FOR SCHOOL BUS DRIVERS Quality Safety and Health Products, for Today...and Tomorrow Introduction This video is designed to demonstrate backing up training

More information

Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

More information

Explore 3: Crash Test Dummies

Explore 3: Crash Test Dummies Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first

More information

A Short Course on Wheel Alignment

A Short Course on Wheel Alignment A Short Course on Wheel Alignment In its most basic form, a wheel alignment consists of adjusting the angles of the wheels so that they are perpendicular to the ground and parallel to each other. The purpose

More information

Friction and Gravity. Friction. Section 2. The Causes of Friction

Friction and Gravity. Friction. Section 2. The Causes of Friction Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

More information

ZAPPY 3 OWNER S MANUAL. Read this manual completely before riding your Electric ZAPPY 3.

ZAPPY 3 OWNER S MANUAL. Read this manual completely before riding your Electric ZAPPY 3. ZAPPY 3 OWNER S MANUAL Read this manual completely before riding your Electric ZAPPY 3. TECHNICAL INFORMATION Model No. : ZAPPY 3 Product size Type of motor Motor power Battery type Battery Charger Charging

More information

F output. F input. F = Force in Newtons ( N ) d output. d = distance ( m )

F output. F input. F = Force in Newtons ( N ) d output. d = distance ( m ) Mechanical Advantage, Speed Ratio, Work and Efficiency Machines Make Work Easier Machines help people do things that they normally couldn t do on their own. Mechanical Advantage A machine makes work easier

More information

Maglev Trains A Look into Economic Concessions. By: Binyam Abeye Alan Tang Stephen Wong Harsh Mishra Khai Van

Maglev Trains A Look into Economic Concessions. By: Binyam Abeye Alan Tang Stephen Wong Harsh Mishra Khai Van Maglev Trains A Look into Economic Concessions By: Binyam Abeye Alan Tang Stephen Wong Harsh Mishra Khai Van Abstract The primary purpose of this report is to provide an efficient solution for the current

More information

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics From Harcourt Science Teacher Ed. Source (Grade Level) Title Pages Concept Harcourt Science (4) The Layers of

More information

Optimizing Sortation Throughput in High Volume Distribution Centers

Optimizing Sortation Throughput in High Volume Distribution Centers Optimizing Sortation Throughput in High Volume Distribution Centers From the pre merge through sortation, the FlexSort integrated sortation sub systemrecently released by Dematic is redefining efficiency

More information

Odyssey of the Mind Technology Fair. Simple Electronics

Odyssey of the Mind Technology Fair. Simple Electronics Simple Electronics 1. Terms volts, amps, ohms, watts, positive, negative, AC, DC 2. Matching voltages a. Series vs. parallel 3. Battery capacity 4. Simple electronic circuit light bulb 5. Chose the right

More information

A Method for Generating Electricity by Fast Moving Vehicles

A Method for Generating Electricity by Fast Moving Vehicles A Method for Generating Electricity by Fast Moving Vehicles S.Bharathi 1, G.Balaji 2, and M. Manoj Kumar 2 1 Angel College of Engineering & Technology/ECE, Tirupur, India Email: bharathiseven@gmail.com

More information

Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips)

Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips) Electric Motor Your Activity Build a simple electric motor Material D-Cell Battery Coil made out of magnet wire 2 Jumbo Safety Pins (or Paper Clips) Scissors (or sand paper) 1 Rubber Band Ceramic Magnet

More information

Professional Truck Driver Training Course Syllabus

Professional Truck Driver Training Course Syllabus Professional Truck Driver Training Course Syllabus The curriculum standards of this course incorporate the curricular recommendations of the U. S. Department of Transportation s Federal Highway Administration

More information

SPEED, VELOCITY, AND ACCELERATION

SPEED, VELOCITY, AND ACCELERATION reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

More information

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

More information

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon? Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

More information

KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE

KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE ADVANCED ENGINEERING 3(2009)1, ISSN 1846-5900 KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE Cibulka, J. Abstract: This paper deals with the design of Kinetic Energy Recovery Systems

More information

Safety Rules. Car Washes CORPORATE HEADQUARTERS 518 EAST BROAD STREET COLUMBUS, OHIO 43215 614.464.5000 STATEAUTO.COM

Safety Rules. Car Washes CORPORATE HEADQUARTERS 518 EAST BROAD STREET COLUMBUS, OHIO 43215 614.464.5000 STATEAUTO.COM TM Safety Rules Car Washes CORPORATE HEADQUARTERS 518 EAST BROAD STREET COLUMBUS, OHIO 43215 614.464.5000 STATEAUTO.COM TM Disclaimer: The information contained in this publication was obtained from sources

More information

Emergency Response Guide

Emergency Response Guide Emergency Response Guide Honda Fuel Cell Vehicle Prepared for Fire Service, Law Enforcement, Emergency Medical, and Professional Towing Personnel by American Honda Motor Co., Inc. Contents Key Components...2

More information

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor. DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

More information

Permanent Magnet Motor Kit, Magnetic Reed Type. (SKY-ReedMotorKit) Instructions

Permanent Magnet Motor Kit, Magnetic Reed Type. (SKY-ReedMotorKit) Instructions Permanent Magnet Motor Kit, Magnetic Reed Type (SKY-ReedMotorKit) Instructions This kit contains powerful permanent magnets. Exercise caution when handling them as they can pull on iron tools and snap

More information

GOING FOR A SPIN: Making a Model Steam Turbine

GOING FOR A SPIN: Making a Model Steam Turbine GOING FOR A SPIN: Making a Model Steam Turbine PLANNING OVERVIEW SUBJECT AREAS: Physical Science, Math, Language Arts TIMING: Preparation: 30-60 minutes Activity: 1-2 45-minute class periods Note: Going

More information

Operating Vehicle Control Devices

Operating Vehicle Control Devices Module 2 Topic 3 Operating Vehicle Control Devices 1. Identify the vehicle controls in the pictures below: 1. 2. 3. 4. 7. 7. 5. 6. 1. accelerator 2. parking brake 3. foot brake 4. gear shift lever_ 5.

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

COOPER S PULLEY UPGRADE KIT INSTALLATION INSTRUCTIONS PART NUMBER NME5011

COOPER S PULLEY UPGRADE KIT INSTALLATION INSTRUCTIONS PART NUMBER NME5011 COOPER S PULLEY UPGRADE KIT INSTALLATION INSTRUCTIONS PART NUMBER NME5011 Below are instructions for the Mini Mania Pulley Upgrade Kit, Part Number NME5011. Please take all necessary precautions for working

More information

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

More information

Proof of the conservation of momentum and kinetic energy

Proof of the conservation of momentum and kinetic energy Experiment 04 Proof of the conservation of momentum and kinetic energy By Christian Redeker 27.10.2007 Contents 1.) Hypothesis...3 2.) Diagram...7 3.) Method...7 3.1) Apparatus...7 3.2) Procedure...7 4.)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

Build A Simple Electric Motor (example #1)

Build A Simple Electric Motor (example #1) PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

The Taxman Game. Robert K. Moniot September 5, 2003

The Taxman Game. Robert K. Moniot September 5, 2003 The Taxman Game Robert K. Moniot September 5, 2003 1 Introduction Want to know how to beat the taxman? Legally, that is? Read on, and we will explore this cute little mathematical game. The taxman game

More information

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information