Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets"

Transcription

1 Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets 1) The following simple magnet configurations were shown to you in class - draw the magnetic field lines for each case (at least 8 lines per diagram), marking the directions of the field lines with arrows. a) bar magnet b) horseshoe magnet c) opposite poles of 2 magnets (other ends not shown)

2 d) like poles of 2 magnets (other ends not shown) e) Why do you think b) is a popular shape for a magnet? A horseshoe magnet is just a bar magnet bent around so that the N- and S- poles are near the same location. The strongest parts of the field are near the poles, so this puts the strongest part of the magnet all in one location (so that itʼs easier to pick up magnetic objects). 2) Here are some more complex configurations of magnets - using the same basic rules as you did in 1), label the magnetic field lines. (Hint: check the online lectures for a set of rules in drawing these field lines.) a) 2 bar magnets side by side, opposite-aligned b) 2 bar magnets side by side, like-aligned

3 c) 2 perpendicular bar magnets d) bar and horseshoe magnets e) 3 bar magnets f) Earth Recall that the North Pole is actually an S-pole, and the the South Pole is actually an N-pole. Also, recall that the magnetic poles are slightly offset from the actual poles.

4 Lab 38: Magnets and Magnetic Materials - Interaction of magnets with other matter - Magnetic poles of the earth - Broken magnets 3) When an object is attracted to a magnet, does it actually become a magnet? List some observations that support your answer. Yes - a magnetized object actually becomes a magnet. When you magnetized paper clips, and removed the original magnet, the paper clips retained their magnetic fields (and attracted other paper clips). Also, when you hung two paper clips from an N-pole, their opposite ends repelled, because they were also both N-poles. 4) If you break a magnet with an N and S pole, is it possible to get an N pole or an S pole by itself? Is it ever possible to break a magnet into small enough pieces to do this? What would a magnetic field diagram for a lone N-pole look like? Would this diagram break any of our rules for drawing magnetic field diagrams? If so, which rule(s)? No! If you break magnets into smaller and smaller pieces, it just becomes smaller and smaller magnets, all with both N and S poles. A magnetic field diagram for a lone N-pole (shown here) would break the rule requiring that all magnetic fields lines connect from an N-pole to an S-pole. Note that the shown field isnʼt really physically possible, because N-poles are ALWAYS paired with an S-pole. 5) For diagrams c) and d) in #1, explain for both cases how the force of the left magnet on the right magnet compares to the force of the right magnet on the left magnet. How would your answer change if you pushed or pulled the left magnet?

5 c) According to the Law of Interaction, the force on the left magnet is ALWAYS exactly equal to the force on the right magnet. d) According to the Law of Interaction, the force on the left magnet is ALWAYS exactly equal to the force on the right magnet (again). Lab 39: Electromagnets - Relation between electricity and magnetism - Magnetic field produced by a coiled wire - Building a simple motor 6) In this lab activity, you learned that an electric current produces a magnetic field. a) Why was the wire coiled around the straw or nail? Do you think any wire with a current running through it will produce a magnetic field? Yes - as we saw with the aluminum foil, ANY electric current produces a magnetic field; coiling the wire places small segments of the wire carrying current parallel to one another, so it increases the strength of the field. b) Part of this activity involved you scraping the insulation off the end of the wires with sandpaper. Why not just use non-insulated wire to save you the trouble? If non-insulated wire was wound into a tight coil, the current would flow between every point the wires touched, instead along the path of the coiled wire. c) Does the electromagnet you produced with the coiled wire have an N and S pole, or just one of these? The electromagnet has an N and S pole, just like a bar magnet. 7) When you built your motor, you blackened part of the exposed wire with a magic marker. a) Explain what purpose this served, and what would have happened if you didnʼt do this step.

6 Blackening added insulation to the back half of the wire, so that the motor wouldnʼt turn backward halfway through, and end up stuck in one place (or bouncing back and forth...) b) Give a 1-2 sentence summary on how your motor was able to work. Running a current through your small loop turned it into a magnet - this magnet interacted with the magnetic field of the permanent magnet to give it a push. When the ring turned over to the blackened side of the end wires, inertia kept it spinning until it rotated back to where the wire conducted again, giving it another push. c) Many people doing this activity noticed their setup became quite hot. Why did this happen? The setup is actually a short circuit - in this case, the short circuit is actually wanted, because short circuits have very large currents, and a large current creates a large magnetic field. d) Gary suggests that adding a light bulb to the circuit in series might solve the heat problem. Is he correct? Why? What problems might this cause in this experiment? This would solve the heat problem, since adding a load (or resistance) reduces the electric current. However, the problem is that there now might not be enough current to generate a strong magnetic field.

7 13. Billy claims that all magnets are electromagnets, with the wires and the battery hidden inside. How would the wires have to run, to produce a bar magnet like the ones we have been using? (It might be useful to make a drawing) The coil would have to be along the length of the magnet, as shown, to create an N- and S- pole. (Reversing the current would reverse the N and S poles.) 14. If we wrapped two coils the same way around a single straw and had currents going around them in the same direction, would they attract or repel? Explain your answer. As long as the electric currents run in the same direction, as shown, the S pole of the left magnet would meet up with the N pole of the 2nd magnet, and they would attract. (If one of the currents was reversed, they would repel, since two like poles would be together. If BOTH currents were reversed, both pairs of poles would reverse, and they would again attract.)

Draft Unit 6: Electricity and Magnetism Key Ideas:

Draft Unit 6: Electricity and Magnetism Key Ideas: Unit 6: Electricity and Magnetism Key Ideas: 6.1 Observe, describe, and investigate the evidence of energy transfer in electrical circuits. 6.2 Construct and diagram an electrical circuit 6.3 Identify

More information

Build A Simple Electric Motor (example #1)

Build A Simple Electric Motor (example #1) PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet

More information

MAGNETISM AND ELECTRICITY

MAGNETISM AND ELECTRICITY MAGNETISM AND ELECTRICITY Survey/Posttest Date 1. Wait for your teacher before you begin. Your teacher will tell you how to complete this item. Object a. Sticks to magnets? b. Conducts electricity? Iron

More information

How do you measure voltage and current in electric circuits? Materials

How do you measure voltage and current in electric circuits? Materials 20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits

More information

PHY222 Lab 7 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

PHY222 Lab 7 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil PHY222 Lab 7 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil Print Your Name Print Your Partners' Names You will return this

More information

Preview of Period 16: Motors and Generators

Preview of Period 16: Motors and Generators Preview of Period 16: Motors and Generators 16.1 DC Electric Motors What causes the rotor of a motor to spin? 16.2 Simple DC Motors What causes a changing magnetic field in the simple coil motor? 16.3

More information

Electric Motors and Generators

Electric Motors and Generators Electric Motors and Generators Motors run a tremendous number of devices, from toy trains to refrigerators, from air conditions to cars. What is inside a motor and how do they work? How are motors related

More information

Energy, electricity and magnetism page The diagram below shows an object made from a battery, a nail, and some wire.

Energy, electricity and magnetism page The diagram below shows an object made from a battery, a nail, and some wire. Energy, electricity and magnetism page 3 Name: ate: 1. The diagram below shows an object made from a battery, a nail, and some wire. What will happen if you touch a metal paperclip to the nail? A. The

More information

Chapter 14 Magnets and

Chapter 14 Magnets and Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

More information

To learn how to build a simple electric motor and to determine which motor design produces the fastest rate of spin.

To learn how to build a simple electric motor and to determine which motor design produces the fastest rate of spin. Objective To learn how to build a simple electric motor and to determine which motor design produces the fastest rate of spin. Introduction So, what do windshield wipers, CD players, VCR's, blenders, ice

More information

The DC Motor. Physics 1051 Laboratory #5 The DC Motor

The DC Motor. Physics 1051 Laboratory #5 The DC Motor The DC Motor Physics 1051 Laboratory #5 The DC Motor Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force

More information

Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips)

Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips) Electric Motor Your Activity Build a simple electric motor Material D-Cell Battery Coil made out of magnet wire 2 Jumbo Safety Pins (or Paper Clips) Scissors (or sand paper) 1 Rubber Band Ceramic Magnet

More information

Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet

Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet Magnetism Magnetism Opposite poles attract and likes repel Opposite poles attract and likes repel Like electric force, but magnetic poles always come in pairs (North, South) Like electric force, but magnetic

More information

Three types of materials. 1. (Permanent) Magnet 2. Ferromagnertic 3. Non-magnetic

Three types of materials. 1. (Permanent) Magnet 2. Ferromagnertic 3. Non-magnetic Magnets Weak A magnet is a source of magnetic interactions. The poles of the magnet have the strongest magnetic interaction. There are two types of poles pole and pole. Each magnet has (at least) one pole

More information

Draw a ring around the correct answer to complete the following sentences. power supply. (1)

Draw a ring around the correct answer to complete the following sentences. power supply. (1) Q. The diagram shows a transformer made by a student. The student has designed the transformer to make a 6 V light bulb work using a 2 V power supply. (a) Draw a ring around the correct answer to complete

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles

2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles ame: Magnetic Properties 1. B What happens if you break a magnet in half? A) One half will have a north pole only and one half will have a south pole only. B) Each half will be a new magnet, with both

More information

Reading Comprehension Skills Preview the Book Compare and Contrast How to Read Charts Main Idea and Details

Reading Comprehension Skills Preview the Book Compare and Contrast How to Read Charts Main Idea and Details TM Red Edition Grade 3 4 reading level Purple Edition Grade 4 5 reading level Objectives Understand that electric charge is a property of matter. Compare static electricity and current electricity. Describe

More information

4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave?

4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave? 4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave? electric charge An electric charge is a property of some part of matter, described as positive

More information

Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism

Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism Name: Regents Physics Date: Mr. Morgante UNIT 4B Magnetism Magnetism -Magnetic Force exists b/w charges in motion. -Similar to electric fields, an X stands for a magnetic field line going into the page,

More information

Magnetic Forces. Background: Experiments:

Magnetic Forces. Background: Experiments: Magnetic Forces Magnetism is a force observed in the attraction of iron by certain metals, including magnetized iron, nickel, and cobalt. The magnetic force can be felt but it can not be seen. It can effect

More information

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets.

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets. Electromagnetic Power! Lesson Overview Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets. Suggested Grade

More information

ACTIVITY 4: Magnet powered pinwheel

ACTIVITY 4: Magnet powered pinwheel 40 PHYSICS QUEST 2008: Nikola Tesla and the Electric Fair American Physical Society January 2009 Te a c h e r s Guide ACTIVITY 4: Magnet powered pinwheel Intro In activity 3 the students saw that a moving

More information

Building an Electric Motor

Building an Electric Motor Activity 5 Building an Electric Motor Activity 5 Building an Electric Motor GOALS In this activity you will: Construct, operate, and explain a DC motor. Appreciate accidental discovery in physics. Measure

More information

Chapter 14: Magnets and Electromagnetism

Chapter 14: Magnets and Electromagnetism Chapter 14: Magnets and Electromagnetism 1. Electrons flow around a circular wire loop in a horizontal plane, in a direction that is clockwise when viewed from above. This causes a magnetic field. Inside

More information

6. The diagram below represents magnetic lines of force within a region of space.

6. The diagram below represents magnetic lines of force within a region of space. 1. As the distance between two opposite magnetic poles increases, the flux density midway between them decreases remains the same increases 6. The diagram below represents magnetic lines of force within

More information

ELECTROMAGNETISM I. CAUSES OF MAGNETISM

ELECTROMAGNETISM I. CAUSES OF MAGNETISM I. CAUSES OF MAGNETISM ELECTROMAGNETISM 1. Moving electric fields (moving charges) cause magnetism. Yes, that current moving in electric circuits cause a magnetic field. More later! 2. Elementary nature

More information

PHY 212 LAB Magnetic Field As a Function of Current

PHY 212 LAB Magnetic Field As a Function of Current PHY 212 LAB Magnetic Field As a Function of Current Apparatus DC Power Supply two D batteries one round bulb and socket a long wire 10-Ω resistor set of alligator clilps coil Scotch tape function generator

More information

ELECTRICITYt. Electromagnetism

ELECTRICITYt. Electromagnetism ELECTRICITYt Electromagnetism Subject area : Physics Topic focus : magnetic properties, magnetic field, the Earth s magnetic field, magnetic field of an electric wire. Learning Aims : Polarity of bar magnets

More information

Field Lines Domains. Horseshoe Ring/Disc

Field Lines Domains. Horseshoe Ring/Disc Magnets Info Lab (25 pts) 1. nickel, cobalt, iron 2.Iron, Nickel,and Cobalt have an unmatched electron spinning either UP or DOWN. The result is an atom with a net spin and thus a magnetic field. 3, Field

More information

Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction

Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Diagram below shows a freely suspended magnetic needle. A copper wire is held parallel to the axis of magnetic

More information

How do magnets really work?

How do magnets really work? How do magnets work?, Rick Hoadley 6/8/15 How do magnets really work? A magnet is something that creates a magnetic field, and in order to create a magnetic field, electrons have to move. This means there

More information

10.2 Electromagnets. What is an electromagnet? Chapter 10

10.2 Electromagnets. What is an electromagnet? Chapter 10 In the last section you learned about permanent magnets and magnetism. There is another type of magnet, one that is created by electric current. This type of magnet is called an. What is an? Why do magnets

More information

Making an Electromagnet Grade 4

Making an Electromagnet Grade 4 TEACHING LEARNING COLLABORATIVE (TLC) PHYSICAL SCIENCE Making an Electromagnet Grade 4 Created by: Maria Schetter (Terrace Heights Elementary School), Stella Winckler (Lucerne Elementary School), Karen

More information

BASANT S SCIENCE ACADEMY STUDY MATERIAL MAGNETIC EFFECT OF CURRENT

BASANT S SCIENCE ACADEMY STUDY MATERIAL MAGNETIC EFFECT OF CURRENT BASANT S SCIENCE ACADEMY Why does a compass needle get deflected when brought near a bar magnet? A compass needle is a small bar magnet. When it is brought near a bar magnet, its magnetic field lines interact

More information

How Does a Generator Work?

How Does a Generator Work? How Does a Generator Work? Clifford Power Systems is one of the largest full service generator providers in the United States. Our generator experts specialize in equipment, service, parts and rental of

More information

STUDY GUIDE: ELECTRICITY AND MAGNETISM

STUDY GUIDE: ELECTRICITY AND MAGNETISM 319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

More information

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential

More information

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

More information

Make it into a magnet

Make it into a magnet Make it into a magnet O nce a magnet, always a magnet? Not necessarily. Some magnets keep their magnetic effect for years. Others lose their magnetic effect in just minutes. There are also magnets that

More information

Electricity, Energy and Magnetism

Electricity, Energy and Magnetism Electricity, Energy and Magnetism A. What's a Magnet? A magnet is a substance with two opposite poles: orth and outh. Like opposite charges, opposite poles attract, so the north pole of one magnet will

More information

Motor Fundamentals. DC Motor

Motor Fundamentals. DC Motor Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

More information

FORCE ON A CURRENT IN A MAGNETIC FIELD

FORCE ON A CURRENT IN A MAGNETIC FIELD 7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v

More information

1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field.

1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field. Chapter 25 EXERCISE key 1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field. 2. Magnetic induction will not occur in nylon, since it has no magnetic

More information

3. Ancient people discovered magnetic rocks called lodestone. What did they use them for?

3. Ancient people discovered magnetic rocks called lodestone. What did they use them for? Grade 5 Standard 3 Unit Test A Magnetism Multiple Choice 1. What substance is attracted to a magnet? A. silver B. lead C. water D. iron 2. What characteristics do magnetic substances have? A. They can

More information

Unit 3 Lesson 4 Magnets and Magnetism. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 4 Magnets and Magnetism. Copyright Houghton Mifflin Harcourt Publishing Company Stuck on You What are some properties of magnets? The term magnet describes any material that attracts iron or objects made of iron. Many magnets are made of iron, nickel, cobalt, or mixtures of these

More information

Electromagnetic Laboratory Stations

Electromagnetic Laboratory Stations Electromagnetic Laboratory Stations The following laboratory exercises are designed to help you study magnetic fields produced by magnets and current carrying wires, and study other well-known electromagnetic

More information

Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!

Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero! Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets

More information

Magnetic Force. For centuries, humans observed strange force. Between iron and special stones called lodestones. Force couldn't be gravity or electric

Magnetic Force. For centuries, humans observed strange force. Between iron and special stones called lodestones. Force couldn't be gravity or electric MAGNETIC FIELD Magnetic Force For centuries, humans observed strange force Between iron and special stones called lodestones Force couldn't be gravity or electric Not enough mass or electric charge to

More information

DC Motor Annotated Handout American Physical Society

DC Motor Annotated Handout American Physical Society DC Motor Annotated Handout American Physical Society A. What You Already Know Make a labeled drawing to show what you think is inside the motor. Write down how you think the motor works. Please do this

More information

PINBALL MACHINE HOW SCIENTIFIC IS A PINBALL MACHINE? WRITTEN AND CREATED BY: KATHRYN WILMOT JAYCE GRUPPEN LUKE HULSMAN

PINBALL MACHINE HOW SCIENTIFIC IS A PINBALL MACHINE? WRITTEN AND CREATED BY: KATHRYN WILMOT JAYCE GRUPPEN LUKE HULSMAN PINBALL MACHINE HOW SCIENTIFIC IS A PINBALL MACHINE? WRITTEN AND CREATED BY: LUKE HULSMAN KATHRYN WILMOT JAYCE GRUPPEN Table of Contents Chapter Author Page Marbles on a ramp Kathryn Wilmot 3 Making a

More information

II. Eighth Grade, Electric and Magnetic Mischief 2003 Colorado Summer Writing Institute 1

II. Eighth Grade, Electric and Magnetic Mischief 2003 Colorado Summer Writing Institute 1 Electric and Magnetic Mischief Grade Level or Special Area: 8 th Grade Science Written by: Lucia Gonzales, Bromley East Charter School, Brighton, Colorado Length of Unit: Six Lessons and a Culminating

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

Teacher Content Brief

Teacher Content Brief Teacher Content Brief Electric Motors Introduction Motors convert electric energy into mechanical energy. This mechanical energy turns the propellers on your Sea Perch. But what makes a motor spin? To

More information

ASSESSMENT MAGNETISM AND ELECTRICITY WASHINGTON EDITION. See page 2

ASSESSMENT MAGNETISM AND ELECTRICITY WASHINGTON EDITION. See page 2 WASHINGTON EDITION ASSESSMENT MAGNETISM AND ELECTRICITY NOTE: This edition is the result of collaboration among FOSS staff at Lawrence Hall of Science, the Science and Math Education Resource Center (SMERC)

More information

PET. Evaluating Magnetism Models Introduction. MSE Unit M Extension B. Next Gen

PET. Evaluating Magnetism Models Introduction. MSE Unit M Extension B. Next Gen Evaluating Magnetism Models Introduction Previously you developed and tested your initial model of magnetism. You probably found that your initial model could explain some phenomena (e.g., the two-ended

More information

Objectives: Vocabulary: Materials: Students will: Safety: Magnet Electricity Electromagnet Charge Current Magnetic Field

Objectives: Vocabulary: Materials: Students will: Safety: Magnet Electricity Electromagnet Charge Current Magnetic Field Electromagnets Author: Jane Earle, Lauren Downing, Kevin Dilley Date Created: July 2007 Subject: Physics Level: High School Standards: New York State- Physics (www.emsc.nysed.gov/ciai/) Standard 1- Analysis,

More information

Material World: Electricity

Material World: Electricity 17. Coulomb s Law The force, F, between two objects with charge q 1 and q 2, is given by: k q 1 q F - 2, where r = distance between the two charges in meters 2 r k = Coulomb's constant = 9 X 10 9 m 2 /C

More information

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

More information

Magnetic Forces On Current-Carrying Wires

Magnetic Forces On Current-Carrying Wires Magnetic Forces On Current-Carrying Wires The purpose of this experiment is to get you familiar with the forces on a currentcarrying piece of wire when it is in a magnetic field. You will use the AC/DC

More information

Brushless Motors: HOW DO THEY WORK?

Brushless Motors: HOW DO THEY WORK? Brushless Motors: HOW DO THEY WORK? Brushless DC motors are simple enough: magnets attached to a shaft are pushed and pulled by electromagnetic fields that are managed by an electronic speed control. This

More information

Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles

Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

GENERATORS AND MOTORS

GENERATORS AND MOTORS GENERATORS AND MOTORS A device that converts mechanical energy (energy of motion windmills, turbines, nuclear power, falling water, or tides) into electrical energy is called an electric generator. The

More information

Electricity, Conductors and insulators

Electricity, Conductors and insulators reflect Imagine you want to make pasta for dinner. How do we do it? We put water in a pan and put the pan on a stove. Soon the heat from the stove burner makes the water hot enough to boil. The handle

More information

ACTIVITY 2: Dancing compasses

ACTIVITY 2: Dancing compasses 24 PHYIC QUET 2008: ikola Tesla and the Electric Fair American Physical ociety January 2009 Te a c h e r s Guide ACTIVITY 2: Dancing compasses Intro Electricity and magnetism are often thought of as two

More information

Investigating Electrical Energy Workshop. QUT Extreme Engineering

Investigating Electrical Energy Workshop. QUT Extreme Engineering Investigating Electrical Energy Workshop QUT Extreme Engineering Investigating Electrical Energy Introduction This workshop is designed for grades 6-7, to give them some hands-on experience in building

More information

Activity 9b Electrical Generator PHYS 010. To demonstrate a basic electric motor using common lab materials

Activity 9b Electrical Generator PHYS 010. To demonstrate a basic electric motor using common lab materials Name: Date: Partners: Part 1. The Generator Effect. Purpose: To demonstrate a basic electric motor using common lab materials Materials: 1. 6 rare earth magnets 2. 1 AA battery 3. Masking tape or scotch

More information

R Ch 36 Magnetism pg 1. Text Qs pg 575 RQ 1, 2, 4, 5, 7-9,12,13,19

R Ch 36 Magnetism pg 1. Text Qs pg 575 RQ 1, 2, 4, 5, 7-9,12,13,19 R Ch 36 Magnetism pg 1 Text Qs pg 575 RQ 1, 2, 4, 5, 7-9,12,13,19 R Ch 36 Magnetism pg 2 Magnets are essential for modern life, they are used in generators, motors, lights etc. Originally called loadstones

More information

This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism.

This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism. Magnetism Introduction This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism. Key concepts of magnetism The activities

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

Magnets and Electromagnets

Magnets and Electromagnets Magnets and Electromagnets Y8 Programme of Study JM July 2015! Y8 MAGNETS & ELECTROMAGNETS!1 Magnets and Electromagnets Y8 - Scheme of Work Content Copyright Wigmore High School - Physics Dept. 2015 All

More information

Vocabulary Electrical Energy Negative charge Electric Field Conductor Insulator Voltage Current Circuit breaker Fuse. Chapter 17.

Vocabulary Electrical Energy Negative charge Electric Field Conductor Insulator Voltage Current Circuit breaker Fuse. Chapter 17. Introduction to Electricity Table of Contents Bellringer Write a definition for electric charge in your own words in your science journal. When do you experience electric charges most, in winter or in

More information

MAGNETISM Suggested Grades: 4 th and 5 th

MAGNETISM Suggested Grades: 4 th and 5 th MAGNETISM Suggested Grades: 4 th and 5 th K-STATE RESEARCH AND EXTENSION- SEDGWICK COUNTY 7001 W. 21st St. North Wichita, KS 67205-1759 (316) 660-0112 FAX (316) 722-1432 Drescher@ksu.edu http://www.sedgwickcountyextension.org

More information

Chapter 4: DC Generators

Chapter 4: DC Generators Chapter 4: DC Generators Creating an AC Voltage The voltage produced in a DC generator is inherently AC and only becomes DC after rectification Consider an AC generator, consisting of a coil on the rotor

More information

Electricity. Short Answer Questions QUESTIONS

Electricity. Short Answer Questions QUESTIONS S.N O Electricity Short Answer Questions QUESTIONS 1 A child has drawn the electric circuit to study Ohm s law as shown in Figure. His teacher told that the circuit diagram needs correction. Study the

More information

Circuits Review KEY Interpreting Diagrams Use the diagram below to answer the following questions.

Circuits Review KEY Interpreting Diagrams Use the diagram below to answer the following questions. Circuits Review KEY Interpreting Diagrams Use the diagram below to answer the following questions. 1. Look at the arrows which indicate the direction of the flow of electrons. Label the negative and the

More information

DC Motors. Program Support Notes. Middle - Senior High. 25mins. Physics. VEA Bringing Learning to Life. Suitable for:

DC Motors. Program Support Notes. Middle - Senior High. 25mins. Physics. VEA Bringing Learning to Life. Suitable for: VEA Bringing Learning to Life Program Support Notes Middle - Senior High DC Motors 25mins Teacher Notes by Dr John Nicholson, B Sc (Hons), Dip Ed, Ph D (La Trobe); Grad Dip Comp Ed, M Ed (Melbourne) Produced

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

6 MAGNETISM. (c) horseshoe magnet (d) magnetic compass 7. The surest test for magnetism is :

6 MAGNETISM. (c) horseshoe magnet (d) magnetic compass 7. The surest test for magnetism is : 6 MAGNETISM I. Tick ( ) the most appropriate answer. 1. When a bar magnet is suspended freely, it comes to rest : (a) east-west direction (b) north-east direction (c) north-south direction (d) north-west

More information

Magnets and the Magnetic Force

Magnets and the Magnetic Force Magnets and the Magnetic Force We are generally more familiar with magnetic forces than with electrostatic forces. Like the gravitational force and the electrostatic force, this force acts even when the

More information

Student Reader. Energy Systems UNIT 7. E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM

Student Reader. Energy Systems UNIT 7. E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM Student Reader UNIT 7 Energy Systems E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM Front Cover: The cover shows a photograph of a sled that is not in motion. The movement of a sled from one place

More information

Electrical discharge in air e.g. lightning

Electrical discharge in air e.g. lightning Static Electricity electron transfer causes static electricity results from an imbalance of charges can occur by induction, friction, and contact You need to describe the direction of motion of charges

More information

Using a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance

Using a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance Name: Date: Using a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance Background Information and Pre-Lab Activity Materials: One solar module One small DC

More information

1. Separation is easy with a magnet (try it and be amazed!).

1. Separation is easy with a magnet (try it and be amazed!). EXERCISES 1. Separation is easy with a magnet (try it and be amazed!). 2. All magnetism originates in moving electric charges. For an electron there is magnetism associated with its spin about its own

More information

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Lab 9 Magnetic Interactions

Lab 9 Magnetic Interactions Lab 9 Magnetic nteractions Physics 6 Lab What You Need To Know: The Physics Electricity and magnetism are intrinsically linked and not separate phenomena. Most of the electrical devices you will encounter

More information

6. ELECTROMAGNETIC INDUCTION

6. ELECTROMAGNETIC INDUCTION 6. ELECTROMAGNETIC INDUCTION Questions with answers 1. Name the phenomena in which a current induced in coil due to change in magnetic flux linked with it. Answer: Electromagnetic Induction 2. Define electromagnetic

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Magnetism: Electromagnets

Magnetism: Electromagnets Electromagnets Page 1 Magnetism: Electromagnets Power Supply for Electromagnets 2 A Simple Switch 3 Electricity and Magnetism I 4 Electricity and Magnetism II 5 What is a Solenoid? 6 Make an Electromagnet

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Part 60: Last updated: 3rd February 2006 Author: Patrick J. Kelly Electrical power is frequently generated by spinning the shaft of a generator which has some arrangement

More information

Copyright 2014 Edmentum - All rights reserved.

Copyright 2014 Edmentum - All rights reserved. Copyright 2014 Edmentum - All rights reserved. Science Physics Electromagnetic Blizzard Bag 2014-2015 1. Two coils of insulated wire are placed side by side, as shown in the illustration. The blue lines

More information

Electricity 4 th Grade Kelly Krupa

Electricity 4 th Grade Kelly Krupa Electricity 4 th Grade Kelly Krupa Benchmark: SLC 7: Students will select appropriate resources and tools to make accurate observations to gain desired results given the stated conditions (i.e., if a desired

More information

MAGNETISM AND ELECTRICITY

MAGNETISM AND ELECTRICITY MAGNETISM AND ELECTRICITY Magnetism is a natural phenomenon first documented by the Greeks who observed that a naturally occurring substance, magnetite would attract pieces of iron. Later on, the Chinese

More information

Electric Circuits. HPP Activity 69v1. Exploration. Equipment: Chirping Chick

Electric Circuits. HPP Activity 69v1. Exploration. Equipment: Chirping Chick HPP Activity 69v1 Electric Circuits Chirping Chick GE 1 1. Obtain a chirping chick and make the chick chirp. Without taking the chick apart, where do you suspect the chick gets the energy needed to produce

More information

Two bar magnets are brought near each other as shown. The magnets... A) attract B) repel C) exert no net force on each other.

Two bar magnets are brought near each other as shown. The magnets... A) attract B) repel C) exert no net force on each other. Magnetic Fields and Forces Learning goals: Students will be able to Predict the direction of the magnet field for different locations around a bar magnet and an electromagnet. Relate magnetic field strength

More information

CPO Electric Motor Equipment Module

CPO Electric Motor Equipment Module CPO Electric Motor Equipment Module Equipment Includes: 5 switch plates 1 electric motor body with permanent turn-crank 1 ew high-output electromagnet motor modules (Black) 1 electromagnet generator modules

More information

Magnets & Motors Focus: Physics Grades: suggested for grade level 3-12

Magnets & Motors Focus: Physics Grades: suggested for grade level 3-12 Magnets & Motors Focus: Physics Grades: suggested for grade level 3-12 Background: The purpose for this demo is to interest students in magnetism and the applications of magnetism in the form of electromagnets

More information

y Equipment Video: Electric Motor y Skill and Practice Sheets y Whiteboard Resources y Animation: Rotor Magnets y Student Reading: Electromagnets

y Equipment Video: Electric Motor y Skill and Practice Sheets y Whiteboard Resources y Animation: Rotor Magnets y Student Reading: Electromagnets Collaborative Learning This investigation is Exploros-enabled for tablets. See page xiii for details. Key Question: How does a motor work? The electric motor revolutionized human technology. With an electric

More information

The Simple DC Motor: A Teacher s Guide

The Simple DC Motor: A Teacher s Guide The Simple DC Motor: A Teacher s Guide Kristy Beauvais Research Experience for Teachers Center for Materails Science and Engineering Massachusetts Institute of Technology August 2003 Motor Design: Steven

More information