# CS 441 Discrete Mathematics for CS Lecture 4. Predicate logic. CS 441 Discrete mathematics for CS. Announcements

Save this PDF as:

Size: px
Start display at page:

Download "CS 441 Discrete Mathematics for CS Lecture 4. Predicate logic. CS 441 Discrete mathematics for CS. Announcements"

## Transcription

1 CS 441 Discrete Mathematics for CS Lecture 4 Predicate logic Milos Hauskrecht 5329 Sennott Square Announcements Homework assignment 1 due today Homework assignment 2: posted on the course web page Due on Thursday January 23, 2013 Recitations today and tomorrow: Practice problems related to assignment 2 1

2 Propositional logic: limitations Propositional logic: the world is described in terms of elementary propositions and their logical combinations Elementary statements/propositions: Typically refer to objects, their properties and relations. But these are not explicitly represented in the propositional logic John is a UPitt student. John object a Upitt student a property Objects and properties are hidden in the statement, it is not possible to reason about them Propositional logic: limitations (1) Statements that hold for many objects must be enumerated John is a CS UPitt graduate John has passed cs441 Ann is a CS Upitt graduate Ann has passed cs441 Ken is a CS Upitt graduate Ken has passed cs441 Solution: make statements with variables x is a CS UPitt graduate x has passed cs441 2

3 Propositional logic: limitations (2) Statements that define the property of the group of objects All new cars must be registered. Some of the CS graduates graduate with honor. Solution: make statements with quantifiers Universal quantifier the property is satisfied by all members of the group Existential quantifier at least one member of the group satisfy the property Predicate logic Remedies the limitations of the propositional logic Explicitly models objects and their properties Allows to make statements with variables and quantify them Predicate logic: Constant models a specific object Examples: John, France, 7 Variable represents object of specific type (defined by the universe of discourse) Examples: x, y (universe of discourse can be people, students, numbers) Predicate - over one, two or many variables or constants. Represents properties or relations among objects Examples: Red(car23), student(x), married(john,ann) 3

4 Predicates Predicates represent properties or relations among objects A predicate P(x) assigns a value true or false to each x depending on whether the property holds or not for x. The assignment is best viewed as a big table with the variable x substituted for objects from the universe of discourse Assume Student(x) where the universe of discourse are people Student(John). T (if John is a student) Student(Ann). T (if Ann is a student) Student(Jane).. F (if Jane is not a student) Predicates Assume a predicate P(x) that represents the statement: x is a prime number Truth values for different x: P(2) T P(3) T P(4) F P(5) T P(6) F All statements P(2), P(3), P(4), P(5), P(6) are propositions But P(x) with variable x is not a proposition 4

5 Quantified statements Predicate logic lets us to make statements about groups of objects To do this we use special quantified expressions Two types of quantified statements: universal all CS Upitt graduates have to pass cs441 the statement is true for all graduates existential Some CS Upitt students graduate with honor. the statement is true for some people Universal quantifier Quantification converts a propositional function into a proposition by binding a variable to a set of values from the universe of discourse. Let P(x) denote x > x - 1. Assume x are real numbers. Is P(x) a proposition? No. Many possible substitutions. Is x P(x) a proposition? Yes. What is the truth value for x P(x)? True, since P(x) holds for all x. 5

6 Existential quantifier Quantification converts a propositional function into a proposition by binding a variable to a set of values from the universe of discourse. Let T(x) denote x > 5 and x is from Real numbers. Is T(x) a proposition? No. Is x T(x) a proposition? Yes. What is the truth value for x T(x)? Since 10 > 5 is true. Therefore, x T(x) is true. Summary of quantified statements When x P(x) and x P(x) are true and false? Statement When true? When false? x P(x) P(x) true for all x There is an x where P(x) is false. x P(x) There is some x for which P(x) is true. P(x) is false for all x. Suppose the elements in the universe of discourse can be enumerated as x1, x2,..., xn then: x P(x) is true whenever P(x1) P(x2)... P(xN) is true x P(x) is true whenever P(x1) P(x2)... P(xN) is true. 6

7 Translation with quantifiers Sentence: All Upitt students are smart. Assume: the domain of discourse of x are Upitt students Translation: x Smart(x) Assume: the universe of discourse are students (all students): x at(x,upitt) Smart(x) Assume: the universe of discourse are people: x student(x) at(x,upitt) Smart(x) Translation with quantifiers Sentence: Someone at CMU is smart. Assume: the domain of discourse are all CMU affiliates Translation: x Smart(x) Assume: the universe of discourse are people: x at(x,cmu) Smart(x) 7

8 Translation with quantifiers Assume two predicates S(x) and P(x) Universal statements typically tie with implications All S(x) is P(x) x ( S(x) P(x) ) No S(x) is P(x) x( S(x) P(x) ) Existential statements typically tie with conjunctions Some S(x) is P(x) x (S(x) P(x) ) Some S(x) is not P(x) x (S(x) P(x) ) Nested quantifiers More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic. Every real number has its corresponding negative. Translation: Assume: a real number is denoted as x and its negative as y A predicate P(x,y) denotes: x + y =0 Then we can write: x y P(x,y) 8

9 Nested quantifiers More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic. There is a person who loves everybody. Translation: Assume: Variables x and y denote people A predicate L(x,y) denotes: x loves y Then we can write in the predicate logic: x y L(x,y) Order of quantifiers The order of nested quantifiers matters if quantifiers are of different type x y L(x,y) is not the same as y x L(x,y) Assume L(x,y) denotes x loves y Then: x y L(x,y) Translates to: Everybody loves somebody. And: y x L(x,y) Translates to: There is someone who is loved by everyone. The meaning of the two is different. 9

10 Order of quantifiers The order of nested quantifiers does not matter if quantifiers are of the same type For all x and y, if x is a parent of y then y is a child of x Assume: Parent(x,y) denotes x is a parent of y Child(x,y) denotes x is a child of y Two equivalent ways to represent the statement: x y Parent(x,y) Child(y,x) y x Parent(x,y) Child(y,x) Translation exercise Suppose: Variables x,y denote people L(x,y) denotes x loves y. Translate: Everybody loves Raymond. x L(x,Raymond) Everybody loves somebody. x y L(x,y) There is somebody whom everybody loves. y x L(x,y) There is somebody who Raymond doesn't love. y L(Raymond,y) There is somebody whom no one loves. y x L(x,y) 10

### CS 441 Discrete Mathematics for CS Lecture 5. Predicate logic. CS 441 Discrete mathematics for CS. Negation of quantifiers

CS 441 Discrete Mathematics for CS Lecture 5 Predicate logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Negation of quantifiers English statement: Nothing is perfect. Translation: x Perfect(x)

### Sets and set operations

CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used

### Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.

Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 1, due Wedneday, January 25 1.1.10 Let p and q be the propositions The election is decided and The votes have been counted, respectively.

### Integers and division

CS 441 Discrete Mathematics for CS Lecture 12 Integers and division Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Symmetric matrix Definition: A square matrix A is called symmetric if A = A T.

### The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs

The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Rules of Inference Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments

### Predicate Calculus. There are certain arguments that seem to be perfectly logical, yet they cannot be expressed by using propositional calculus.

Predicate Calculus (Alternative names: predicate logic, first order logic, elementary logic, restricted predicate calculus, restricted functional calculus, relational calculus, theory of quantification,

### Propositional Logic. A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both.

irst Order Logic Propositional Logic A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both. Are the following sentences propositions? oronto

### Predicate Logic. For example, consider the following argument:

Predicate Logic The analysis of compound statements covers key aspects of human reasoning but does not capture many important, and common, instances of reasoning that are also logically valid. For example,

### Rules of Inference Friday, January 18, 2013 Chittu Tripathy Lecture 05

Rules of Inference Today s Menu Rules of Inference Quantifiers: Universal and Existential Nesting of Quantifiers Applications Old Example Re-Revisited Our Old Example: Suppose we have: All human beings

### Lecture 16 : Relations and Functions DRAFT

CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

### Propositional Logic. Definition: A proposition or statement is a sentence which is either true or false.

Propositional Logic Definition: A proposition or statement is a sentence which is either true or false. Definition:If a proposition is true, then we say its truth value is true, and if a proposition is

### Handout #1: Mathematical Reasoning

Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

### 2. Methods of Proof Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try.

2. METHODS OF PROOF 69 2. Methods of Proof 2.1. Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try. Trivial Proof: If we know q is true then

### Chapter 1. Use the following to answer questions 1-5: In the questions below determine whether the proposition is TRUE or FALSE

Use the following to answer questions 1-5: Chapter 1 In the questions below determine whether the proposition is TRUE or FALSE 1. 1 + 1 = 3 if and only if 2 + 2 = 3. 2. If it is raining, then it is raining.

### Decision making in the presence of uncertainty II

CS 274 Knowledge representation Lecture 23 Decision making in the presence of uncertainty II Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Information-gathering actions Many actions and their

### Semantics for the Predicate Calculus: Part I

Semantics for the Predicate Calculus: Part I (Version 0.3, revised 6:15pm, April 14, 2005. Please report typos to hhalvors@princeton.edu.) The study of formal logic is based on the fact that the validity

### Invalidity in Predicate Logic

Invalidity in Predicate Logic So far we ve got a method for establishing that a predicate logic argument is valid: do a derivation. But we ve got no method for establishing invalidity. In propositional

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

### CHAPTER 1. Logic, Proofs Propositions

CHAPTER 1 Logic, Proofs 1.1. Propositions A proposition is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: Paris is in France (true), London

### Announcements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets

CompSci 230 Discrete Math for Computer Science Sets September 12, 2013 Prof. Rodger Slides modified from Rosen 1 nnouncements Read for next time Chap. 2.3-2.6 Homework 2 due Tuesday Recitation 3 on Friday

### Subjects, Predicates and The Universal Quantifier

Introduction to Logic Week Sixteen: 14 Jan., 2008 Subjects, Predicates and The Universal Quantifier 000. Office Hours this term: Tuesdays and Wednesdays 1-2, or by appointment; 5B-120. 00. Results from

### Deduction by Daniel Bonevac. Chapter 5 Quantifiers

Deduction by Daniel Bonevac Chapter 5 Quantifiers Limitations of sentential logic Sentential logic is useful, but there are many logical relationships that it simply can not represent. For example, sentential

### First-order logic. Chapter 8. Chapter 8 1

First-order logic Chapter 8 Chapter 8 1 Outline Why FOL? Syntax and semantics of FOL Fun with sentences Wumpus world in FOL Chapter 8 2 Pros and cons of propositional logic Propositional logic is declarative:

### If an English sentence is ambiguous, it may allow for more than one adequate transcription.

Transcription from English to Predicate Logic General Principles of Transcription In transcribing an English sentence into Predicate Logic, some general principles apply. A transcription guide must be

### CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

### Introduction to formal semantics -

Introduction to formal semantics - Introduction to formal semantics 1 / 25 structure Motivation - Philosophy paradox antinomy division in object und Meta language Semiotics syntax semantics Pragmatics

### Reported speech: On the other hand, if the reporting verb is in the past tense, then usually we change the tenses in the reported speech:

Reported Speech Reported Statements When do we use reported speech? Sometimes someone says a sentence, for example "I'm going to the cinema tonight". Later, maybe we want to tell someone else what the

### CmSc 175 Discrete Mathematics Lesson 10: SETS A B, A B

CmSc 175 Discrete Mathematics Lesson 10: SETS Sets: finite, infinite, : empty set, U : universal set Describing a set: Enumeration = {a, b, c} Predicates = {x P(x)} Recursive definition, e.g. sequences

### 1 Propositional Logic

1 Propositional Logic Propositions 1.1 Definition A declarative sentence is a sentence that declares a fact or facts. Example 1 The earth is spherical. 7 + 1 = 6 + 2 x 2 > 0 for all real numbers x. 1 =

### (LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.

(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of first-order logic will use the following symbols: variables connectives (,,,,

### The Syntax of Predicate Logic

The Syntax of Predicate Logic LX 502 Semantics I October 11, 2008 1. Below the Sentence-Level In Propositional Logic, atomic propositions correspond to simple sentences in the object language. Since atomic

### Generalized Modus Ponens

Generalized Modus Ponens This rule allows us to derive an implication... True p 1 and... p i and... p n p 1... p i-1 and p i+1... p n implies p i implies q implies q allows: a 1 and... a i and... a n implies

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### Problems on Discrete Mathematics 1

Problems on Discrete Mathematics 1 Chung-Chih Li 2 Kishan Mehrotra 3 Syracuse University, New York L A TEX at January 11, 2007 (Part I) 1 No part of this book can be reproduced without permission from

### Propositional Logic. 'Fun and games... detail from The Secret Player' - René Magritte

Propositional Logic 01/17/13 'Fun and games... detail from The Secret Player' - René Magritte Discrete Structures (CS 173) Derek Hoiem, University of Illinois Real-world Problem: Textual Entailment Textual

### Introduction to tuple calculus Tore Risch 2011-02-03

Introduction to tuple calculus Tore Risch 2011-02-03 The relational data model is based on considering normalized tables as mathematical relationships. Powerful query languages can be defined over such

### Introduction to Predicate Logic. Ling324 Reading: Meaning and Grammar, pg

Introduction to Predicate Logic Ling324 Reading: Meaning and Grammar, pg. 113-141 Usefulness of Predicate Logic for Natural Language Semantics While in propositional logic, we can only talk about sentences

### Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

### Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

### UNIT 5 VOCABULARY: POLYNOMIALS

2º ESO Bilingüe Page 1 UNIT 5 VOCABULARY: POLYNOMIALS 1.1. Algebraic Language Algebra is a part of mathematics in which symbols, usually letters of the alphabet, represent numbers. Letters are used to

### Solving Inequalities Examples

Solving Inequalities Examples 1. Joe and Katie are dancers. Suppose you compare their weights. You can make only one of the following statements. Joe s weight is less than Kate s weight. Joe s weight is

### Lecture 8: Resolution theorem-proving

Comp24412 Symbolic AI Lecture 8: Resolution theorem-proving Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2014 15 In the previous Lecture, we met SATCHMO, a first-order theorem-prover implemented

Lecture Notes in Discrete Mathematics Marcel B. Finan Arkansas Tech University c All Rights Reserved 2 Preface This book is designed for a one semester course in discrete mathematics for sophomore or junior

### Logic in Computer Science: Logic Gates

Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers

### Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof. Harper Langston New York University

Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof Harper Langston New York University Proof and Counterexample Discovery and proof Even and odd numbers number n from Z is called

### CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

Propositional Logic: logical operators Negation ( ) Conjunction ( ) Disjunction ( ). Exclusive or ( ) Conditional statement ( ) Bi-conditional statement ( ): Let p and q be propositions. The biconditional

### 10.4 Traditional Subject Predicate Propositions

M10_COPI1396_13_SE_C10.QXD 10/22/07 8:42 AM Page 445 10.4 Traditional Subject Predicate Propositions 445 Continuing to assume the existence of at least one individual, we can say, referring to this square,

### Predicate Logic Review

Predicate Logic Review UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane 1 Grammar A term is an individual constant or a variable. An individual constant is a lowercase letter from the beginning

### Basic Proof Techniques

Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

### Artificial Intelligence. Knowledge Representation

RC Chakraborty 03/03 to 08/3, 2007, Lecture 15 to 22 (8 hrs) Slides 1 to 79 myreaders, http://myreaders.wordpress.com/, rcchak@gmail.com (Revised Feb. 02, 2008) Artificial Intelligence Knowledge Representation

### (2)Russell. (1) The professor was drunk.

15 4 15 Russell (1) The professor was drunk. (2)Russell "On denoting", Mind 14,1905 x (professor (x) y (professor (y) x y) drunk(x) ) "There is an x who is a professor, and there is no y such that y is

### INTRODUCTORY SET THEORY

M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

### CS 580: Software Specifications

CS 580: Software Specifications Lecture 2: Sets and Relations Slides originally Copyright 2001, Matt Dwyer, John Hatcliff, and Rod Howell. The syllabus and all lectures for this course are copyrighted

### 2. The Language of First-order Logic

2. The Language of First-order Logic KR & R Brachman & Levesque 2005 17 Declarative language Before building system before there can be learning, reasoning, planning, explanation... need to be able to

### CS510 Software Engineering

CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se

### Homework 1 Solutions

Homework 1 Solutions Chapter 1B Multiple Negations. Explain the meaning of the given statement, then answer the question that follows. 23. Sarah did not decline the offer to go to dinner. Did Sarah go

### The last three chapters introduced three major proof techniques: direct,

CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

### WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

### Predicate logic is an Extension of sentence logic. Several new vocabulary items are found in predicate logic.

Atomic Sentences of Predicate Logic Predicate Logic and Sentence Logic Predicate logic is an Extension of sentence logic. All items of the vocabulary of sentence logic are items of the vocabulary of predicate

### WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology

First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Mid-Session Test Summer Session 008-00

### Applications of Methods of Proof

CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

### MAT-71506 Program Verication: Exercises

MAT-71506 Program Verication: Exercises Antero Kangas Tampere University of Technology Department of Mathematics September 11, 2014 Accomplishment Exercises are obligatory and probably the grades will

### TERMS. Parts of Speech

TERMS Parts of Speech Noun: a word that names a person, place, thing, quality, or idea (examples: Maggie, Alabama, clarinet, satisfaction, socialism). Pronoun: a word used in place of a noun (examples:

### Sentence Semantics. General Linguistics Jennifer Spenader, February 2006 (Most slides: Petra Hendriks)

Sentence Semantics General Linguistics Jennifer Spenader, February 2006 (Most slides: Petra Hendriks) Data to be analyzed (1) Maria slaapt. (2) Jan slaapt. (3) Maria slaapt en Jan slaapt. (4) Iedereen

### Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

### CS 2750 Machine Learning. Lecture 1. Machine Learning. CS 2750 Machine Learning.

Lecture 1 Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x-5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

### MATH 241: DISCRETE MATHEMATICS FOR COMPUTER SCIENCE, Winter 2010-2011. CLASSROOM: Alumni Hall 112 Tuesdays and Thursdays, 6:00-8:15 pm

MATH 241: DISCRETE MATHEMATICS FOR COMPUTER SCIENCE, Winter 2010-2011 PROFESSOR: Melody Rashidian CLASSROOM: Alumni Hall 112 TIME: Tuesdays and Thursdays, 6:00-8:15 pm CONTACT INFORMATION: WEB PAGE: mrashidi@clunet.edu

### Mathematical Induction

Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How

### p: I am elected q: I will lower the taxes

Implication Conditional Statement p q (p implies q) (if p then q) is the proposition that is false when p is true and q is false and true otherwise. Equivalent to not p or q Ex. If I am elected then I

### ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2012 1 p. 43 48 ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS I nf or m at i cs L. A. HAYKAZYAN * Chair of Programming and Information

### UNBOUND ANAPHORIC PRONOUNS: E-TYPE, DYNAMIC, AND STRUCTURED-PROPOSITIONS APPROACHES

FRIEDERIKE MOLTMANN UNBOUND ANAPHORIC PRONOUNS: E-TYPE, DYNAMIC, AND STRUCTURED-PROPOSITIONS APPROACHES ABSTRACT. Unbound anaphoric pronouns or E-type pronouns have presented notorious problems for semantic

### FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE KNOWLEDGE REPRESENTATION AND NETWORKED SCHEMES

Riga Technical University Faculty of Computer Science and Information Technology Department of Systems Theory and Design FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE Lecture 7 KNOWLEDGE REPRESENTATION AND NETWORKED

### Logic is a systematic way of thinking that allows us to deduce new information

CHAPTER 2 Logic Logic is a systematic way of thinking that allows us to deduce new information from old information and to parse the meanings of sentences. You use logic informally in everyday life and

### Logic in general. Inference rules and theorem proving

Logical Agents Knowledge-based agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledge-based agents Inference engine Knowledge base Domain-independent

### Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula

Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula An equation is a mathematical statement that two mathematical expressions are equal For example the statement 1 + 2 = 3 is read as

### Chapter 7. Functions and onto. 7.1 Functions

Chapter 7 Functions and onto This chapter covers functions, including function composition and what it means for a function to be onto. In the process, we ll see what happens when two dissimilar quantifiers

### Perfect being theology and modal truth

Perfect being theology and modal truth Jeff Speaks February 9, 2016 Perfect being theology is the attempt to use the principle that God is the greatest possible being to derive claims about the divine

### Journal of Philosophy, Inc.

Journal of Philosophy, Inc. Counterparts of Persons and Their Bodies Author(s): David Lewis Reviewed work(s): Source: The Journal of Philosophy, Vol. 68, No. 7 (Apr. 8, 1971), pp. 203-211 Published by:

### A Primer in the Semantics of English

A Primer in the Semantics of English Some Nuts and Bolts 2000-2010 by Terence Parsons A Primer in the Semantics of English Some Nuts and Bolts Chapter 0: Preliminary Issues 0.1 What Sentences Do 0.2 Standing-for

### University of Lethbridge LOGI 1000 XOL/YOL/ZOL. Critical Thinking

1 University of Lethbridge LOGI 1000 XOL/YOL/ZOL Critical Thinking Krzysztof Swiatek e-mail: swiak0@uleth.ca U of L Calendar description: Logic is the general examination of arguments and the distinction

### Lecture 13 of 41. More Propositional and Predicate Logic

Lecture 13 of 41 More Propositional and Predicate Logic Monday, 20 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Sections 8.1-8.3, Russell and Norvig

### Introduction to Symbolic Logic Vaishali Khandekar, PhD Course Description: PREREQUISITE(S): CO-REQUISITE(S): FREQUENT REQUISITES

Introduction to Symbolic Logic PHIL 2303-77400 Fall 2013 (3 Credit Hours) HCC Northwest College Tuesday, Thursday 11:00 AM 12:30 PM Instructor: Vaishali Khandekar, PhD Katy Campus, Room 347 Vaishali.khandekar@hccs.edu

### BASIC COMPOSITION.COM USING LOGIC

BASIC COMPOSITION.COM USING LOGIC As we have noted, Aristotle advocated that persuasion comes from the use of different kinds of support, including natural and artificial forms of support. We have discussed

### SQL Database queries and their equivalence to predicate calculus

SQL Database queries and their equivalence to predicate calculus Russell Impagliazzo, with assistence from Cameron Helm November 3, 2013 1 Warning This lecture goes somewhat beyond Russell s expertise,

### Quine on truth by convention

Quine on truth by convention March 8, 2005 1 Linguistic explanations of necessity and the a priori.............. 1 2 Relative and absolute truth by definition.................... 2 3 Is logic true by convention?...........................

### 4 Domain Relational Calculus

4 Domain Relational Calculus We now present two relational calculi that we will compare to RA. First, what is the difference between an algebra and a calculus? The usual story is that the algebra RA is

### Computing Functions with Turing Machines

CS 30 - Lecture 20 Combining Turing Machines and Turing s Thesis Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata

### First-Order Logics and Truth Degrees

First-Order Logics and Truth Degrees George Metcalfe Mathematics Institute University of Bern LATD 2014, Vienna Summer of Logic, 15-19 July 2014 George Metcalfe (University of Bern) First-Order Logics

### LLCC Study Skills Center 8-8. Tips on How to Study Math. 2. Unlike many other textbooks, math textbooks have:

LLCC Study Skills Center 8-8 Tips on How to Study Math What s Different About Math Textbooks 1. Math textbooks must be studied very slowly. 2. Unlike many other textbooks, math textbooks have: No repetition

### 3. Logical Reasoning in Mathematics

3. Logical Reasoning in Mathematics Many state standards emphasize the importance of reasoning. We agree disciplined mathematical reasoning is crucial to understanding and to properly using mathematics.

### Fuzzy Implication Rules. Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey

Fuzzy Implication Rules Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey Fuzzy If-Then Rules Remember: The difference between the semantics of fuzzy mapping rules

### We now explore a third method of proof: proof by contradiction.

CHAPTER 6 Proof by Contradiction We now explore a third method of proof: proof by contradiction. This method is not limited to proving just conditional statements it can be used to prove any kind of statement

### WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology

First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Final Examination Spring Session 2008 WUCT121

### Fact and Opinion. How to Tell the Difference

Fact and Opinion How to Tell the Difference Facts Facts are statements that can be proven. Facts may be true or false. Examples 1. Statistically, women live longer than men. 2. Most buses weigh more than

### def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true

### Resolution. Informatics 1 School of Informatics, University of Edinburgh

Resolution In this lecture you will see how to convert the natural proof system of previous lectures into one with fewer operators and only one proof rule. You will see how this proof system can be used

### 2. SEMANTIC RELATIONS

2. SEMANTIC RELATIONS 2.0 Review: meaning, sense, reference A word has meaning by having both sense and reference. Sense: Word meaning: = concept Sentence meaning: = proposition (1) a. The man kissed the