Lecture 8: Resolution theorem-proving

Size: px
Start display at page:

Download "Lecture 8: Resolution theorem-proving"

Transcription

1 Comp24412 Symbolic AI Lecture 8: Resolution theorem-proving Ian Pratt-Hartmann Room KB2.38:

2 In the previous Lecture, we met SATCHMO, a first-order theorem-prover implemented in a single page of Prolog. It has nice termination properties, but it not practically very useful. This lecture introduces a more serious approach to constructing proofs in first-order logic: resolution. Resolution is the basis of many widely-used theorem-provers today.

3 We would like to be able to determine logical relationships such as validity For example, x(artist(x) y(beekeeper(y) admire(x, y))) x(beekeeper(y) y(artist(y) admire(y, x) despise(x, y))) x(artist(x) y(beekeeper(y) despises(y, x) admire(x, y)))

4 Here is a more complex example x y z(p(x, y) p(y, z) p(x, z)) x y z(q(x, y) q(y, z) q(x, z)) x y(p(x, y) p(y, x)) x y(p(x, y) q(x, y)) x yp(x, y) x yq(x, y)

5 As with Satchmo, we first convert to clause form. A literal is an atomic formula or an atomic formula prefixed by. Thus, p, q(a), r(x, y) are all literals; p p, q(x) p and r(x, y) are not literals. A clause is a literal or a collection of literals all joined by. Thus p, p q(x), p(a) r(a, b) r are all clauses; p q(a), p p and r(x, y) are not clauses.

6 The following result is easily established: Let ϕ be a quantifier-free formula. Then there exist clauses C 1,..., C n such that = ϕ (C 1 C 2... C n ). In other words, any quantifier-free formula is logically equivalent to the conjunction of some collection of clauses.

7 A formula in the predicate calculus in which all the quantifiers are at the front is said to be in prenex form. The formulas x(man(x) mortal(x)) x yloves(x, y) are in prenex form The formulas x(boy(x) y(girl(y) loves(x, y))) x((boy(x) y(girl(y) loves(x, y))) happy(x)) are not.

8 The following result can easily be established: Let ϕ be a formula. Then there exists a prenex form formula ψ such that = ϕ ψ. In other words, any formula is logically equivalent to a formula with all the quantifiers at the front.

9 Example x(boy(x) y(girl(y) loves(x, y))) is equivalent to x y(boy(x) (girl(y) loves(x, y))) Example x((boy(x) y(girl(y) loves(x, y))) happy(x)) is equivalent to x y((boy(x) girl(y) loves(x, y)) happy(x))

10 Given a prenex formula, existential quantifiers can be eliminated. Consider This is equisatisfiable with ( x)(man(x) philosopher(x)) man(a) philosopher(a). (This name must be new: i.e. not occurring in any other formulas.) Similarly is equisatisfiable with ( y)( x)(loves(x, y)) ( x)(loves(x, b)).

11 Things are different however, for: ( x)( y)(loves(x, y)). This formula is equisatisfiable with: ( x)(loves(x, f (x))) where f is a function (called a Skolem function). Note the use of a function (rather than a constant): the formula says that everyone loves someone or other but not necessarily the same person. We need a function whenever we want to eliminate an existential quantifier which is to the right of some universal quantifiers.

12 These new constants and functions are called Skolem constants and Skolem functions, respectively. The process of replacing existentially quantified variables with Skolem constants and functions is called Skolemization. Notice that Skolemization does not produce logically equivalent formulas; but it does produce equisatisfiable formulas.

13 Suppose then, we put a formula ϕ in prenex form, and Skolemize. The result will be where χ is quantifier-free. x 1... x n χ But the universal quantifiers convey no information any more, so we might as well write: Now we replace χ (the quantifier-free rump) by an equivalent collection of clauses. The result is said to be the clause form for ϕ. χ

14 So we can massage any formula of the predicate calculus into a collection of clause form expressions (containing variables) of the form L 1... L N where the L i are literals Example: has, as its clausal form, x(boy(x) y(girl(y) love(x, y))) boy(x) girl(f (x)) boy(x) love(x, f (x)) Since we can equisatisfiably convert to clausal forms, we need only inference procedures which work on clausal forms.

15 First, we look at the ground case. The rule modus ponens: Re-writing: p q Generalizing to longer clauses: q p p q p q p C p D C D

16 This gives us a way to make inferences. Consider the formulas boy(john) (girl(mary) loves(john, mary)), boy(john), girl(mary), loves(john, mary). It should be obvious that these formulas are not (simultaneously satisfiable) In clausal form: boy(john) girl(mary) loves(john, mary), boy(john), girl(mary), loves(john, mary).

17 We can apply resolution repeatedly as follows: loves(j, m) boy(j). girl(m) boy(j) girl(m) loves(j, m) boy(j) loves(j, m) loves(j, m) Since the empty clause has been derived, it is evident (even to a computer) that the formulas we started with are not satisfiable.

18 This gives us a way to test validity. For suppose we want to test whether We convert ϕ 1,... ϕ n = ψ. ϕ 1,... ϕ n, ψ to clausal form and try to use resolution and factoring to obtain a contradiction. If we succeed, the sequent is valid. In particular, we have shown the validity of the argument with premises boy(john) (girl(mary) loves(john, mary)) girl(mary) boy(john) and conclusion loves(john, mary).

19 Next, we look at the non-ground case. To apply resolution to non-ground clauses, we need the concept of unification. If A and A are atoms, we say that A and A are unifiable if there is a substitution σ of terms for variables such that Aσ = A σ.

20 Example 1: man(x) man(socrates) unify, under the substitution σ : x socrates. Example 2: q(x, f (x)) q(u, v) unify, under the substitution σ : u x; v f (x). Example 3: p(x) q(u) do not unify. Example 4: p(x, f (x)) p(f (y), y) do not unify either.

21 We noted that q(x, f (x)) q(u, v) unify, under the substitution making the common term σ : u x; v f (x) q(x, f (x)). But they also unify under the substitution, say, making the common term σ : u a; v f (a); x a, q(a, f (a)).

22 If A and A are unifiable, then there is a substitution θ such that Aθ = A θ and, for any substitution σ such that Aσ = A σ, we have σ = θρ for some substitution ρ. We say that θ is a most general unifier (m.g.u). The m.g.u. is unique up to renaming of variables. It can be efficiently computed...

23 Now back to the analogue of modus ponens for non-ground clauses: p(x) q(x) p(a). q(a) Generalizing again: A C A D, (C D)θ where A and A are unifiable atoms with m.g.u. θ This rule of inference is known as the resolution rule

24 It is obvious that we can remove repeated literals from clauses: p p p C p C Generalizing to the non-ground case gives the factoring rule: C (Cθ) 0, with θ the m.g.u of some literals in C and 0 denoting deletion of repeated literals,

25 Again, we can use resolution and factoring to construct proofs: lv(john, mary) boy(john). girl(mary) boy(x) girl(y) lv(x, y) boy(x) lv(x, mary) lv(john, mary) If clause C is derivable from a set C of clauses by means of resolution and factoring, we write C C.

26 As before, this gives us a way to make inferences. Consider the formulas x(boy(x) y(girl(y) loves(x, y))) girl(mary) boy(john) loves(john, mary). In clausal form: boy(x) girl(y) loves(x, y) girl(mary) boy(john) loves(john, mary). But these clauses imply. Therefore, the original set of formulas is unsatisfiable.

27 As before: to test whether ϕ 1,... ϕ n = ψ, convert ϕ 1,... ϕ n, ψ to clausal form and try to use resolution and factoring to obtain a contradiction. If you succeed, the sequent is valid

28 In particular, in showing that the set of formulas x(boy(x) y(girl(y) loves(x, y))) girl(mary) boy(john) loves(john, mary). is unsatisfiable, we have shown that the argument x(boy(x) y(girl(y) loves(x, y))) boy(john) girl(mary) loves(john, mary) is valid.

29 In fact, the following result can be proved: Theorem Let C be a set of clauses. Then C if and only if the universal closure of C is unsatisfiable. This means that resolution and factoring are all the rules we need to determine entailments We say that the proof system in question is (sound and) complete. To think about: Why does this not give us an algorithm for testing validity?

30 Let A be the collection of all atoms (over some signature). Let be a partial order on A. We say that is an A-ordering if, for all substitutions θ, A A implies Aθ A θ. We extend any A-ordering to literals by ignoring negations.

31 Example of A-ordering: A 2 A iff A involves a unary predicate and Example of A-ordering: A d A iff d(a) < d(a ) and A involves a binary predicate. d(x, A) < d(x, A ) for all variables x in A, where d(a) is the depth of A and d(x, A) is the term depth of x in A.

32 Given an A-ordering, ordered resolution is the same as resolution, namely A C A D, (C D)θ subject to the added restriction that, for every literal L in C, A L, and for every literal L in D, A L. Similarly with ordered factoring. If clause C is derivable from a set C of clauses by means of -ordered resolution and factoring, we write C C.

33 Amazingly, ordering restrictions never compromise completeness Theorem Let C be a set of clauses and an A-ordering. Then C if and only if C is unsatisfiable.

34 Let us say that the 1-variable fragment is the set of clauses C satisfying either of the following conditions: every literal of C is ground; there is a variable x such that, for every literal L of C, Vars(L) = {x}. The clauses p(a) q(b, f (a)), p(x) r(h(x, g(x)), x) are in the 1-variable fragment, but p(a) q(x, f (a)), p(x) r(y, x) are not in the 1-variable fragment. Note that resolution and factoring preserve membership in the 1-variable fragment.

35 In general, resolution increases the functional depth of clauses: p(x) q(fx) r(gx ) s(x ) q(x ) p(x) r(gfx) s(fx) However, d -ordered resolution and factoring do not: p(x) q(fx) r(x ) s(x ) q(x ) p(x) r(fx) s(fx)

36 Suppose we take a set C of clauses in the 1-variable fragment, and keep applying resolution and factoring to them. Obviously, only clauses featuring the signature of C will be generated. Because the functional depth is not increased, the total number of clauses that can be generated from C by d -ordered resolution and factoring is bounded by an exponential function of the size of the signature. Hence, the satisfiability of clauses in the 1-variable fragment (with a fixed depth-bound) can be algorithmically decided in exponential time.

AUTOMATED REASONING SLIDES 3: RESOLUTION The resolution rule Unification Refutation by resolution Factoring Clausal Form and Skolemisation

AUTOMATED REASONING SLIDES 3: RESOLUTION The resolution rule Unification Refutation by resolution Factoring Clausal Form and Skolemisation AUTOMATED REASONING SLIDES 3: RESOLUTION The resolution rule Unification Refutation by resolution Factoring Clausal Form and Skolemisation KB - AR - 09 Resolution Resolution is a clausal refutation system

More information

Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.

Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal. Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is

More information

Logic in general. Inference rules and theorem proving

Logic in general. Inference rules and theorem proving Logical Agents Knowledge-based agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledge-based agents Inference engine Knowledge base Domain-independent

More information

Lecture 13 of 41. More Propositional and Predicate Logic

Lecture 13 of 41. More Propositional and Predicate Logic Lecture 13 of 41 More Propositional and Predicate Logic Monday, 20 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Sections 8.1-8.3, Russell and Norvig

More information

ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS

ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2012 1 p. 43 48 ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS I nf or m at i cs L. A. HAYKAZYAN * Chair of Programming and Information

More information

(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.

(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine. (LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of first-order logic will use the following symbols: variables connectives (,,,,

More information

Certamen 1 de Representación del Conocimiento

Certamen 1 de Representación del Conocimiento Certamen 1 de Representación del Conocimiento Segundo Semestre 2012 Question: 1 2 3 4 5 6 7 8 9 Total Points: 2 2 1 1 / 2 1 / 2 3 1 1 / 2 1 1 / 2 12 Here we show one way to solve each question, but there

More information

Sound and Complete Inference Rules in FOL

Sound and Complete Inference Rules in FOL Sound and Complete Inference Rules in FOL An inference rule i is called sound if KB = α whenever KB i α An inference rule i is called complete if KB i α whenever KB = α Generalised Modus-Ponens (equivalently,

More information

Predicate Logic. For example, consider the following argument:

Predicate Logic. For example, consider the following argument: Predicate Logic The analysis of compound statements covers key aspects of human reasoning but does not capture many important, and common, instances of reasoning that are also logically valid. For example,

More information

The Modal Logic Programming System MProlog

The Modal Logic Programming System MProlog The Modal Logic Programming System MProlog Linh Anh Nguyen Institute of Informatics, University of Warsaw ul. Banacha 2, 02-097 Warsaw, Poland nguyen@mimuw.edu.pl Abstract. We present the design of our

More information

Foundational Proof Certificates

Foundational Proof Certificates An application of proof theory to computer science INRIA-Saclay & LIX, École Polytechnique CUSO Winter School, Proof and Computation 30 January 2013 Can we standardize, communicate, and trust formal proofs?

More information

Computational Methods for Database Repair by Signed Formulae

Computational Methods for Database Repair by Signed Formulae Computational Methods for Database Repair by Signed Formulae Ofer Arieli (oarieli@mta.ac.il) Department of Computer Science, The Academic College of Tel-Aviv, 4 Antokolski street, Tel-Aviv 61161, Israel.

More information

Computational Logic and Cognitive Science: An Overview

Computational Logic and Cognitive Science: An Overview Computational Logic and Cognitive Science: An Overview Session 1: Logical Foundations Technical University of Dresden 25th of August, 2008 University of Osnabrück Who we are Helmar Gust Interests: Analogical

More information

First-Order Stable Model Semantics and First-Order Loop Formulas

First-Order Stable Model Semantics and First-Order Loop Formulas Journal of Artificial Intelligence Research 42 (2011) 125-180 Submitted 03/11; published 10/11 First-Order Stable Model Semantics and First-Order Loop Formulas Joohyung Lee Yunsong Meng School of Computing,

More information

Repair Checking in Inconsistent Databases: Algorithms and Complexity

Repair Checking in Inconsistent Databases: Algorithms and Complexity Repair Checking in Inconsistent Databases: Algorithms and Complexity Foto Afrati 1 Phokion G. Kolaitis 2 1 National Technical University of Athens 2 UC Santa Cruz and IBM Almaden Research Center Oxford,

More information

CS510 Software Engineering

CS510 Software Engineering CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se

More information

CHAPTER 7 GENERAL PROOF SYSTEMS

CHAPTER 7 GENERAL PROOF SYSTEMS CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes

More information

Correspondence analysis for strong three-valued logic

Correspondence analysis for strong three-valued logic Correspondence analysis for strong three-valued logic A. Tamminga abstract. I apply Kooi and Tamminga s (2012) idea of correspondence analysis for many-valued logics to strong three-valued logic (K 3 ).

More information

Computing divisors and common multiples of quasi-linear ordinary differential equations

Computing divisors and common multiples of quasi-linear ordinary differential equations Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France Dmitry.Grigoryev@math.univ-lille1.fr

More information

University of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees

University of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees University of Ostrava Institute for Research and Applications of Fuzzy Modeling Reasoning in Description Logic with Semantic Tableau Binary Trees Alena Lukasová Research report No. 63 2005 Submitted/to

More information

Question Answering and the Nature of Intercomplete Databases

Question Answering and the Nature of Intercomplete Databases Certain Answers as Objects and Knowledge Leonid Libkin School of Informatics, University of Edinburgh Abstract The standard way of answering queries over incomplete databases is to compute certain answers,

More information

The Syntax of Predicate Logic

The Syntax of Predicate Logic The Syntax of Predicate Logic LX 502 Semantics I October 11, 2008 1. Below the Sentence-Level In Propositional Logic, atomic propositions correspond to simple sentences in the object language. Since atomic

More information

Turing Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005

Turing Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005 Turing Degrees and Definability of the Jump Theodore A. Slaman University of California, Berkeley CJuly, 2005 Outline Lecture 1 Forcing in arithmetic Coding and decoding theorems Automorphisms of countable

More information

15-780: Graduate AI Lecture 3. FOL proofs. Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

15-780: Graduate AI Lecture 3. FOL proofs. Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman 15-780: Graduate AI Lecture 3. FOL proofs Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman Admin 2 HW1 Out today Due Tue, Feb. 1 (two weeks) hand in hardcopy at beginning of class

More information

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

High Integrity Software Conference, Albuquerque, New Mexico, October 1997. Meta-Amphion: Scaling up High-Assurance Deductive Program Synthesis Steve Roach Recom Technologies NASA Ames Research Center Code IC, MS 269-2 Moffett Field, CA 94035 sroach@ptolemy.arc.nasa.gov Jeff Van

More information

Summary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation)

Summary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation) Summary Summary Last Lecture sequent calculus Automated Reasoning Georg Moser Institute of Computer Science @ UIBK Winter 013 (Normalisation and Strong Normalisation) let Π be a proof in minimal logic

More information

Summary of Last Lecture. Automated Reasoning. Outline of the Lecture. Definition. Example. Lemma non-redundant superposition inferences are liftable

Summary of Last Lecture. Automated Reasoning. Outline of the Lecture. Definition. Example. Lemma non-redundant superposition inferences are liftable Summary Automated Reasoning Georg Moser Institute of Computer Science @ UIBK Summary of Last Lecture C A D B (C D)σ C s = t D A[s ] (C D A[t])σ ORe OPm(L) C s = t D u[s ] v SpL (C D u[t] v)σ C s t Cσ ERR

More information

Applied Logic in Engineering

Applied Logic in Engineering Applied Logic in Engineering Logic Programming Technische Universität München Institut für Informatik Software & Systems Engineering Dr. Maria Spichkova M. Spichkova WS 2012/13: Applied Logic in Engineering

More information

Introduction to Logic in Computer Science: Autumn 2006

Introduction to Logic in Computer Science: Autumn 2006 Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding

More information

Schema Mappings and Data Exchange

Schema Mappings and Data Exchange Schema Mappings and Data Exchange Phokion G. Kolaitis University of California, Santa Cruz & IBM Research-Almaden EASSLC 2012 Southwest University August 2012 1 Logic and Databases Extensive interaction

More information

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 2012 The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

More information

Chapter 7 Uncomputability

Chapter 7 Uncomputability Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction

More information

Rules of Inference Friday, January 18, 2013 Chittu Tripathy Lecture 05

Rules of Inference Friday, January 18, 2013 Chittu Tripathy Lecture 05 Rules of Inference Today s Menu Rules of Inference Quantifiers: Universal and Existential Nesting of Quantifiers Applications Old Example Re-Revisited Our Old Example: Suppose we have: All human beings

More information

Copyright 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

Copyright 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63 I.J. Information Technology and Computer Science, 2012, 1, 50-63 Published Online February 2012 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2012.01.07 Using Logic Programming to Represent

More information

Example: Backward Chaining. Inference Strategy: Backward Chaining. First-Order Logic. Knowledge Engineering. Example: Proof

Example: Backward Chaining. Inference Strategy: Backward Chaining. First-Order Logic. Knowledge Engineering. Example: Proof Inference Strategy: Backward Chaining Idea: Check whether a particular fact q is true. Backward Chaining: Given a fact q to be proven, 1. See if q is already in the KB. If so, return TRUE. 2. Find all

More information

2. The Language of First-order Logic

2. The Language of First-order Logic 2. The Language of First-order Logic KR & R Brachman & Levesque 2005 17 Declarative language Before building system before there can be learning, reasoning, planning, explanation... need to be able to

More information

Handout #1: Mathematical Reasoning

Handout #1: Mathematical Reasoning Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

More information

Relations: their uses in programming and computational specifications

Relations: their uses in programming and computational specifications PEPS Relations, 15 December 2008 1/27 Relations: their uses in programming and computational specifications Dale Miller INRIA - Saclay & LIX, Ecole Polytechnique 1. Logic and computation Outline 2. Comparing

More information

First-Order Theories

First-Order Theories First-Order Theories Ruzica Piskac Max Planck Institute for Software Systems, Germany piskac@mpi-sws.org Seminar on Decision Procedures 2012 Ruzica Piskac First-Order Theories 1 / 39 Acknowledgments Theories

More information

Lecture 19: Introduction to NP-Completeness Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400

Lecture 19: Introduction to NP-Completeness Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400 Lecture 19: Introduction to NP-Completeness Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Reporting to the Boss Suppose

More information

Predicate logic. Logic in computer science. Logic in Computer Science (lecture) PART II. first order logic

Predicate logic. Logic in computer science. Logic in Computer Science (lecture) PART II. first order logic PART II. Predicate logic first order logic Logic in computer science Seminar: INGK401-K5; INHK401; INJK401-K4 University of Debrecen, Faculty of Informatics kadek.tamas@inf.unideb.hu 1 / 19 Alphabets Logical

More information

The Classes P and NP

The Classes P and NP The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the

More information

First-Order Logics and Truth Degrees

First-Order Logics and Truth Degrees First-Order Logics and Truth Degrees George Metcalfe Mathematics Institute University of Bern LATD 2014, Vienna Summer of Logic, 15-19 July 2014 George Metcalfe (University of Bern) First-Order Logics

More information

We would like to state the following system of natural deduction rules preserving falsity:

We would like to state the following system of natural deduction rules preserving falsity: A Natural Deduction System Preserving Falsity 1 Wagner de Campos Sanz Dept. of Philosophy/UFG/Brazil sanz@fchf.ufg.br Abstract This paper presents a natural deduction system preserving falsity. This new

More information

Likewise, we have contradictions: formulas that can only be false, e.g. (p p).

Likewise, we have contradictions: formulas that can only be false, e.g. (p p). CHAPTER 4. STATEMENT LOGIC 59 The rightmost column of this truth table contains instances of T and instances of F. Notice that there are no degrees of contingency. If both values are possible, the formula

More information

Incorporating Evidence in Bayesian networks with the Select Operator

Incorporating Evidence in Bayesian networks with the Select Operator Incorporating Evidence in Bayesian networks with the Select Operator C.J. Butz and F. Fang Department of Computer Science, University of Regina Regina, Saskatchewan, Canada SAS 0A2 {butz, fang11fa}@cs.uregina.ca

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

One More Decidable Class of Finitely Ground Programs

One More Decidable Class of Finitely Ground Programs One More Decidable Class of Finitely Ground Programs Yuliya Lierler and Vladimir Lifschitz Department of Computer Sciences, University of Texas at Austin {yuliya,vl}@cs.utexas.edu Abstract. When a logic

More information

DEFINABLE TYPES IN PRESBURGER ARITHMETIC

DEFINABLE TYPES IN PRESBURGER ARITHMETIC DEFINABLE TYPES IN PRESBURGER ARITHMETIC GABRIEL CONANT Abstract. We consider the first order theory of (Z, +,

More information

P NP for the Reals with various Analytic Functions

P NP for the Reals with various Analytic Functions P NP for the Reals with various Analytic Functions Mihai Prunescu Abstract We show that non-deterministic machines in the sense of [BSS] defined over wide classes of real analytic structures are more powerful

More information

Formalization of the CRM: Initial Thoughts

Formalization of the CRM: Initial Thoughts Formalization of the CRM: Initial Thoughts Carlo Meghini Istituto di Scienza e Tecnologie della Informazione Consiglio Nazionale delle Ricerche Pisa CRM SIG Meeting Iraklio, October 1st, 2014 Outline Overture:

More information

DISCRETE MATH: LECTURE 3

DISCRETE MATH: LECTURE 3 DISCRETE MATH: LECTURE 3 DR. DANIEL FREEMAN 1. Chapter 2.2 Conditional Statements If p and q are statement variables, the conditional of q by p is If p then q or p implies q and is denoted p q. It is false

More information

Fixed-Point Logics and Computation

Fixed-Point Logics and Computation 1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of

More information

Answers G53KRR 2009-10

Answers G53KRR 2009-10 s G53KRR 2009-10 1. (a) Express the following sentences in first-order logic, using unary predicates Fragile, Break, Fall, TennisBall. S1 Fragile things break if they fall S2 Tennis balls are not fragile

More information

Formal Engineering for Industrial Software Development

Formal Engineering for Industrial Software Development Shaoying Liu Formal Engineering for Industrial Software Development Using the SOFL Method With 90 Figures and 30 Tables Springer Contents Introduction 1 1.1 Software Life Cycle... 2 1.2 The Problem 4 1.3

More information

Lecture 1: Oracle Turing Machines

Lecture 1: Oracle Turing Machines Computational Complexity Theory, Fall 2008 September 10 Lecture 1: Oracle Turing Machines Lecturer: Kristoffer Arnsfelt Hansen Scribe: Casper Kejlberg-Rasmussen Oracle TM Definition 1 Let A Σ. Then a Oracle

More information

Jaakko Hintikka Boston University. and. Ilpo Halonen University of Helsinki INTERPOLATION AS EXPLANATION

Jaakko Hintikka Boston University. and. Ilpo Halonen University of Helsinki INTERPOLATION AS EXPLANATION Jaakko Hintikka Boston University and Ilpo Halonen University of Helsinki INTERPOLATION AS EXPLANATION INTERPOLATION AS EXPLANATION In the study of explanation, one can distinguish two main trends. On

More information

Global Properties of the Turing Degrees and the Turing Jump

Global Properties of the Turing Degrees and the Turing Jump Global Properties of the Turing Degrees and the Turing Jump Theodore A. Slaman Department of Mathematics University of California, Berkeley Berkeley, CA 94720-3840, USA slaman@math.berkeley.edu Abstract

More information

Propositional Logic. A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both.

Propositional Logic. A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both. irst Order Logic Propositional Logic A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both. Are the following sentences propositions? oronto

More information

OPERATIONAL TYPE THEORY by Adam Petcher Prepared under the direction of Professor Aaron Stump A thesis presented to the School of Engineering of

OPERATIONAL TYPE THEORY by Adam Petcher Prepared under the direction of Professor Aaron Stump A thesis presented to the School of Engineering of WASHINGTON NIVERSITY SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF COMPTER SCIENCE AND ENGINEERING DECIDING JOINABILITY MODLO GROND EQATIONS IN OPERATIONAL TYPE THEORY by Adam Petcher Prepared

More information

Beyond Propositional Logic Lukasiewicz s System

Beyond Propositional Logic Lukasiewicz s System Beyond Propositional Logic Lukasiewicz s System Consider the following set of truth tables: 1 0 0 1 # # 1 0 # 1 1 0 # 0 0 0 0 # # 0 # 1 0 # 1 1 1 1 0 1 0 # # 1 # # 1 0 # 1 1 0 # 0 1 1 1 # 1 # 1 Brandon

More information

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

A Propositional Dynamic Logic for CCS Programs

A Propositional Dynamic Logic for CCS Programs A Propositional Dynamic Logic for CCS Programs Mario R. F. Benevides and L. Menasché Schechter {mario,luis}@cos.ufrj.br Abstract This work presents a Propositional Dynamic Logic in which the programs are

More information

The composition of Mappings in a Nautural Interface

The composition of Mappings in a Nautural Interface Composing Schema Mappings: Second-Order Dependencies to the Rescue Ronald Fagin IBM Almaden Research Center fagin@almaden.ibm.com Phokion G. Kolaitis UC Santa Cruz kolaitis@cs.ucsc.edu Wang-Chiew Tan UC

More information

This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.

This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements. 3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

Resolution. Informatics 1 School of Informatics, University of Edinburgh

Resolution. Informatics 1 School of Informatics, University of Edinburgh Resolution In this lecture you will see how to convert the natural proof system of previous lectures into one with fewer operators and only one proof rule. You will see how this proof system can be used

More information

Logical Foundations of Relational Data Exchange

Logical Foundations of Relational Data Exchange Logical Foundations of Relational Data Exchange Pablo Barceló Department of Computer Science, University of Chile pbarcelo@dcc.uchile.cl 1 Introduction Data exchange has been defined as the problem of

More information

The Recovery of a Schema Mapping: Bringing Exchanged Data Back

The Recovery of a Schema Mapping: Bringing Exchanged Data Back The Recovery of a Schema Mapping: Bringing Exchanged Data Back MARCELO ARENAS and JORGE PÉREZ Pontificia Universidad Católica de Chile and CRISTIAN RIVEROS R&M Tech Ingeniería y Servicios Limitada A schema

More information

1 Formulating The Low Degree Testing Problem

1 Formulating The Low Degree Testing Problem 6.895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Linearity Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz In the last lecture, we proved a weak PCP Theorem,

More information

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

More information

Extending Semantic Resolution via Automated Model Building: applications

Extending Semantic Resolution via Automated Model Building: applications Extending Semantic Resolution via Automated Model Building: applications Ricardo Caferra Nicolas Peltier LIFIA-IMAG L1F1A-IMAG 46, Avenue Felix Viallet 46, Avenue Felix Viallei 38031 Grenoble Cedex FRANCE

More information

! " # The Logic of Descriptions. Logics for Data and Knowledge Representation. Terminology. Overview. Three Basic Features. Some History on DLs

!  # The Logic of Descriptions. Logics for Data and Knowledge Representation. Terminology. Overview. Three Basic Features. Some History on DLs ,!0((,.+#$),%$(-&.& *,2(-$)%&2.'3&%!&, Logics for Data and Knowledge Representation Alessandro Agostini agostini@dit.unitn.it University of Trento Fausto Giunchiglia fausto@dit.unitn.it The Logic of Descriptions!$%&'()*$#)

More information

CSC 373: Algorithm Design and Analysis Lecture 16

CSC 373: Algorithm Design and Analysis Lecture 16 CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements

More information

System BV is NP-complete

System BV is NP-complete System BV is NP-complete Ozan Kahramanoğulları 1,2 Computer Science Institute, University of Leipzig International Center for Computational Logic, TU Dresden Abstract System BV is an extension of multiplicative

More information

Monitoring Metric First-order Temporal Properties

Monitoring Metric First-order Temporal Properties Monitoring Metric First-order Temporal Properties DAVID BASIN, FELIX KLAEDTKE, SAMUEL MÜLLER, and EUGEN ZĂLINESCU, ETH Zurich Runtime monitoring is a general approach to verifying system properties at

More information

µz An Efficient Engine for Fixed points with Constraints

µz An Efficient Engine for Fixed points with Constraints µz An Efficient Engine for Fixed points with Constraints Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura Manchester University and Microsoft Research Abstract. The µz tool is a scalable, efficient

More information

Schedule. Logic (master program) Literature & Online Material. gic. Time and Place. Literature. Exercises & Exam. Online Material

Schedule. Logic (master program) Literature & Online Material. gic. Time and Place. Literature. Exercises & Exam. Online Material OLC mputational gic Schedule Time and Place Thursday, 8:15 9:45, HS E Logic (master program) Georg Moser Institute of Computer Science @ UIBK week 1 October 2 week 8 November 20 week 2 October 9 week 9

More information

Lecture Notes in Discrete Mathematics. Marcel B. Finan Arkansas Tech University c All Rights Reserved

Lecture Notes in Discrete Mathematics. Marcel B. Finan Arkansas Tech University c All Rights Reserved Lecture Notes in Discrete Mathematics Marcel B. Finan Arkansas Tech University c All Rights Reserved 2 Preface This book is designed for a one semester course in discrete mathematics for sophomore or junior

More information

3.2 The Factor Theorem and The Remainder Theorem

3.2 The Factor Theorem and The Remainder Theorem 3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

Scalable Automated Symbolic Analysis of Administrative Role-Based Access Control Policies by SMT solving

Scalable Automated Symbolic Analysis of Administrative Role-Based Access Control Policies by SMT solving Scalable Automated Symbolic Analysis of Administrative Role-Based Access Control Policies by SMT solving Alessandro Armando 1,2 and Silvio Ranise 2, 1 DIST, Università degli Studi di Genova, Italia 2 Security

More information

Predicate Logic Review

Predicate Logic Review Predicate Logic Review UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane 1 Grammar A term is an individual constant or a variable. An individual constant is a lowercase letter from the beginning

More information

5.3 Improper Integrals Involving Rational and Exponential Functions

5.3 Improper Integrals Involving Rational and Exponential Functions Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

More information

Computability Theory

Computability Theory CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.

More information

An Automated Approach to Deontic Reasoning

An Automated Approach to Deontic Reasoning An Automated Approach to Deontic Reasoning Alberto Artosi, Paola Cattabriga, Guido Governatori Dipartimento di Filosofia, Università di Bologna, via Zamboni,38, 40126 Bologna (Italy), Fax:+39-51-258326

More information

Plan-Space Search. Searching for a Solution Plan in a Graph of Partial Plans

Plan-Space Search. Searching for a Solution Plan in a Graph of Partial Plans Plan-Space Search Searching for a Solution Plan in a Graph of Partial Plans Literature Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning Theory and Practice, chapter 2 and 5. Elsevier/Morgan

More information

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

SPARQL: Un Lenguaje de Consulta para la Web

SPARQL: Un Lenguaje de Consulta para la Web SPARQL: Un Lenguaje de Consulta para la Web Semántica Marcelo Arenas Pontificia Universidad Católica de Chile y Centro de Investigación de la Web M. Arenas SPARQL: Un Lenguaje de Consulta para la Web Semántica

More information

Satisfiability Checking

Satisfiability Checking Satisfiability Checking SAT-Solving Prof. Dr. Erika Ábrahám Theory of Hybrid Systems Informatik 2 WS 10/11 Prof. Dr. Erika Ábrahám - Satisfiability Checking 1 / 40 A basic SAT algorithm Assume the CNF

More information

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system. Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

Aikaterini Marazopoulou

Aikaterini Marazopoulou Imperial College London Department of Computing Tableau Compiled Labelled Deductive Systems with an application to Description Logics by Aikaterini Marazopoulou Submitted in partial fulfilment of the requirements

More information

2.1 Complexity Classes

2.1 Complexity Classes 15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look

More information

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Mid-Session Test Summer Session 008-00

More information