Introduction to Finite Systems: Z 6 and Z 7

Save this PDF as:

Size: px
Start display at page:

Download "Introduction to Finite Systems: Z 6 and Z 7"

Transcription

2 uv = 1. So what is the multiplicative inverse of 2? Check out the row of 2 in the table and notice that 2 4 = 1. So 4 is the inverse of 2. Now multiply on the left by 4 to get 4 2x = 4 1. Use the associativity of to get (4 2) x = 4. That is 1 x = 4. Finally, 1 x = x, so we have our solution x = 4. Of course, since Z 7 is finite we could simply list the values of 2x + 3 as a function of x to see if and when the value 4 pops up. x 2x You can see from this that the range of the linear function f (x) = 2x + 3 is the entire set of Z 7. This is the case for the real number system when the slope m of the line f (x) = mx + b is not zero. Moving on to Z 6, we will try to solve 2x + 3 = 4 in the same way we did in Z 7. First subtract 3 (note that in Z 6, 3 = 3) from both sides: and use associativity to get and finally (2x + 3) + 3 = x + 0 = 1 2x = 1. Notice that 3 is its own additive inverse. Why? Now look for the inverse of the number 2 (we use the word inverse here and elsewhere to mean multiplicative inverse because we have the word negative to use for the additive inverse of a number). In other words, look for a number we can multiply by 2 to get the multiplicative identity 1. Whoops, there isn t one. The reason is that the row of 2 in the times table of Z 6 does not have a 1. So 2 has no inverse. the equation 2x = 1 has no solutions. Since 2x = 1 is equivalent to our original equation, it follows that 2x + 3 = 4 2

3 has no solutions. What is the range of f (x) = 2x + 3 in Z 6? Look at the tables to see that 2x + 3 can be any of the number in the set {1, 3, 5}. Now we turn to solving quadratics. Solving Quadratic Equations As we did for linear equations, we will look carefully at the solution techniques we use in equations defined over real numbers to see the extent to which they can be used in Z 7 and Z 6. The general quadratic equation in one variable is ax 2 + bx + c = 0. There are two common techniques, factoring and using the quadratic formula. But we don t even know if the quadratic formula holds in Z 7 so we will have to think deeply about why it is true in the system R. Factoring Consider x 2 4x + 3 = 0. In R we write x 2 4x + 3 = (x 3) (x 1) without much thinking. Can we do this in Z 7? Let s see. Try to find the reason for each step below: (x 3) (x 1) = (x 3) x + (x 3) ( 1) = x 2 3x + x ( 1) + ( 3) ( 1) = x 2 + 4x + 6x + 4 6( 1 = 6 in Z 7 ) = x 2 3x + 6x + 3( 1 = 6 in Z 7 ) = x 2 + 3x + 3 = x 2 4x + 3. So it seems the factoring technique might work. Now given a factorable quadratic, how do we solve the corresponding equation? Of course, you know that we set each of the factors x 3 and x 1 equal to zero. We can do this because R satisfies the zero product property. That is to say, if the product of two numbers is zero, then one of the two numbers must actually be zero. Put another way, the product of two non-zero numbers is non-zero. Thus, x 2 4x + 3 = 0 has two solutions in Z 7, x = 3 and x = 1. Completing the square in R Often we resort to using the quadratic formula to solve quadratic equations when factoring isn t possible. To understand why the quadratic formula works, we 3

4 must think about how to derive it. Recall that we derived the quadratic formula using a technique called completing the square. We will use this on x 2 4x + 3 = 0 in R to illustrate. First, note that x 2 4x + 4 = (x 2) 2. We can add 1 to both sides of x 2 4x + 3 = 0 to get x 2 4x + 4 = 1 and then write (x 2) 2 = 1. Take the square root of both sides to get x 2 = ±1 and solve the two equations x 2 = 1 and x 2 = 1 to get x = 3 and x = 1. Let us look carefully at the derivation of the quadratic formula in R. Divide by the non-zero coefficient a to get x 2 + b a x + c a = 0. Subtract c and then add the a b square of 2a to both sides to get x2 + b a x + b2 4a = c 2 a + b2. Since the left side is 4a2 a perfect square, we can write ( x + b ) 2 = c 2a a + b2 4a. 2 This leads to and finally x + b b 2 2a = ± 4a c 2 a 4a 4a x = b b 2 2a ± 4ac 4a 2 = b ± b 2 4ac. 2a The quadratic formula in Z 7 Can we do this in Z 7? Start with ax 2 + bx + c = 0, where a 0. Since each non-zero number in Z 7 has an inverse, we can write x 2 + a 1 bx + a 1 c = 0 and x 2 + a 1 bx = ( a 1 c ) 4

5 Can we add a number to x 2 + a 1 bx to make it a perfect square as we did above? The number we added above to the left side is (a 1 b/2) 2. So we get for the left side x 2 + a 1 bx + (a 1 b/2) 2. Try squaring x + a 1 b/2 and you ll see that it works. So now the right side is ( a 1 c ) + ( ) a 1 b = a 1 c + 1 ( ) 1 2 a 1 b 2 a 1 b = a 1 c + 4a 1 b ( 4a 1 b ) = a 1 c + 2a 1 a 1 bb = a 1 caa 1 + 2a 1 a 1 bb = a 1 a 1 ac + 2a 1 a 1 bb = ( 2b 2 ac ) a 2 = ( 4 2b 2 4 ac ) 4 1 a 2 = ( 1b 2 4ac ) (2a) 2. Notice that we have made use of several interesting properties in Z 7 ; for example 2 4 = 1 and 4 1 = 2. What we have is a situation with which we are quite familiar, namely that under some circumstances we can take the square root (and get a number in our number system). Thus and (x + a 1 b/2) 2 = ( x + 4a 1 b ) 2 = ( b 2 4ac ) (2a 1 ) 2 x + 4a 1 b = ± [( b 2 4ac ) (2a) 2] 1 2. Therefore, distributing the square root across the product, Ah ha! same formula. x = 4a 1 (b2 4ac) b ± 2a = (2 1 a 1 (b2 4ac) b) ± 2a = b 2a ± (b2 4ac) 2a = b ± b 2 4ac 2a 5

6 Which of the quadratic equations x 2 + x + 1 = 0, x 2 + x + 2 = 0, x 2 + x + 3 = 0, x 2 + x + 4 = 0, x 2 + x + 5 = 0 and x 2 + x + 6 = 0 have solutions in Z 7? Use the quadratic formula to solve them.the table below may help x x 2 + x In order that x 2 +x+k = 0 we must have x 2 +x = 7 k. For example, x 2 +x+4 = 0 if x 2 + x = 7 4 = 3, but 3 does not belong to the range of x 2 + x. Thus, x 2 + x + 1 = 0 has two solutions, x = 2, x = 4; x 2 + x + 2 = 0 has one solutions x = 3; x 2 + x + 3 = 0 has no solution; x 2 + x + 4 = 0 has no solution; x 2 + x + 5 = 0 has two solutions, x = 1, x = 5; and x 2 + x + 6 = 0 has no solution. Solving quadratic equations in Z 6 Can we do all this in Z 6? The answer here is no and the reason is similar to what we saw in the case of linear equations. Again, we ask what members of our system have square roots. Since 1 2 = 1, 2 2 = 4, 3 2 = 3, 4 2 = 4, 5 2 = 1, we see that 3 has a unique square root, 1 and 4 have two square roots and 2 and 5 do not have square roots. Consider the quadratic 3x 2 + c = 0 in Z 6. The list below has each of the equations, where c Z 6 and the solutions. For c = 1, 3x = 0 has no solution. For c = 2, 3x = 0 has no solution. For c = 3, 3x = 0 has three solutions x = 5, x = 3, x = 1. For c = 4, 3x = 0, has no solutions. For c = 5, 3x also has no solutions. Finally for c = 0, 3x 2 = 0 has three solutions, x = 0, x = 2, and x = 4. The main trouble here is that Z 6 does not satisfy the Zero Product Property. To see this, look at the times table for Z 6. Find a pair of nonzero numbers whose product is zero. There are two such pairs, {2, 3} and {3, 4}. Now suppose we want to solve (x 2)(x 3) = 0. With the Zero Product property, we would just say x 2 = 0 so x = 2 and x 3 = 0 so x = 3. But notice that x = 5 also satisfies the equation: (5 2)(5 3) = 3 2 = 0. Notice that also x = 0 satisfies the equation. 6

7 The digit tables for Z 6 and Z 7 Below you ll find the addition and multiplication tables for Z 6 and Z 7. Notice that in the tables for Z 7 we have dropped the cell notation even though the objects are cells. Its that at this point there is no compelling reason to emphasize that notation. Addition and multiplication in Z 6 [0] [1] [2] [3] [4] [5] [0] [0] [1] [2] [3] [4] [5] [1] [1] [2] [3] [4] [5] [0] [2] [2] [3] [4] [5] [0] [1] [3] [3] [4] [5] [0] [1] [2] [4] [4] [5] [0] [1] [2] [3] [5] [5] [0] [1] [2] [3] [4] [0] [1] [2] [3] [4] [5] [0] [0] [0] [0] [0] [0] [0] [1] [0] [1] [2] [3] [4] [5] [2] [0] [2] [4] [0] [2] [4] [3] [0] [3] [0] [3] [0] [3] [4] [0] [4] [2] [0] [4] [2] [5] [0] [5] [4] [3] [2] [1] Addition and multiplication in Z

8 Problems. 1. Construct the addition and multiplication tables for the digits of Z 11 in the space provided

9 Use the tables above to solve the equation 3x 4 = 9 showing each step and stating how you get from each step to the next one. 3. Use the grid below to sketch the graph of y = 3x 4. Notice that the origin has been labeled. (0, 0) 4. Which of the numbers in Z 11 have square roots? 9

10 5. Which of the following quadratics equations are solvable over Z 11? Find solutions to all that are solvable. Show you reasoning. (a) 2x 2 3x + 4 = 0 (b) 3x 2 4x + 2 = 0 (c) 4x 2 + 2x 3 = 0 10

MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

Polynomial and Rational Functions

Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

Step 1: Set the equation equal to zero if the function lacks. Step 2: Subtract the constant term from both sides:

In most situations the quadratic equations such as: x 2 + 8x + 5, can be solved (factored) through the quadratic formula if factoring it out seems too hard. However, some of these problems may be solved

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula

Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula An equation is a mathematical statement that two mathematical expressions are equal For example the statement 1 + 2 = 3 is read as

Solving Quadratic Equations by Completing the Square

9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

5.4 The Quadratic Formula

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

Chapter 8 Graphs and Functions:

Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes

For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)

Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

Chapter 8. Quadratic Equations and Functions

Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

3.4 Complex Zeros and the Fundamental Theorem of Algebra

86 Polynomial Functions.4 Complex Zeros and the Fundamental Theorem of Algebra In Section., we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons and

Linear Equations and Inequalities

Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

Situation: Dividing Linear Expressions

Situation: Dividing Linear Expressions Date last revised: June 4, 203 Michael Ferra, Nicolina Scarpelli, Mary Ellen Graves, and Sydney Roberts Prompt: An Algebra II class has been examining the product

Determinants can be used to solve a linear system of equations using Cramer s Rule.

2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

2015 Junior Certificate Higher Level Official Sample Paper 1

2015 Junior Certificate Higher Level Official Sample Paper 1 Question 1 (Suggested maximum time: 5 minutes) The sets U, P, Q, and R are shown in the Venn diagram below. (a) Use the Venn diagram to list

2.5 Zeros of a Polynomial Functions

.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

Introduction to Diophantine Equations

Introduction to Diophantine Equations Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles September, 2006 Abstract In this article we will only touch on a few tiny parts of the field

5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

Lecture 7 : Inequalities 2.5

3 Lecture 7 : Inequalities.5 Sometimes a problem may require us to find all numbers which satisfy an inequality. An inequality is written like an equation, except the equals sign is replaced by one of

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

The Point-Slope Form

7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

Matrix Algebra and Applications

Matrix Algebra and Applications Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Matrix Algebra and Applications 1 / 49 EC2040 Topic 2 - Matrices and Matrix Algebra Reading 1 Chapters

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

2.1 QUADRATIC FUNCTIONS AND MODELS Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic functions. Write quadratic functions in standard form and use the results

Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

Linear Programming Problems

Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

Factoring Polynomials

Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations

Pythagorean Triples. Chapter 2. a 2 + b 2 = c 2

Chapter Pythagorean Triples The Pythagorean Theorem, that beloved formula of all high school geometry students, says that the sum of the squares of the sides of a right triangle equals the square of the

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

FOIL FACTORING. Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4.

FOIL FACTORING Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4. First we take the 3 rd term (in this case 4) and find the factors of it. 4=1x4 4=2x2 Now

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below.

Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School

4.1. COMPLEX NUMBERS

4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers

Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

a) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2

Solving Quadratic Equations By Square Root Method Solving Quadratic Equations By Completing The Square Consider the equation x = a, which we now solve: x = a x a = 0 (x a)(x + a) = 0 x a = 0 x + a = 0

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

Solutions of Linear Equations in One Variable

2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University

VISUAL ALGEBRA FOR COLLEGE STUDENTS Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS TABLE OF CONTENTS Welcome and Introduction 1 Chapter 1: INTEGERS AND INTEGER OPERATIONS

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

MathQuest: Linear Algebra. 1. Which of the following matrices does not have an inverse?

MathQuest: Linear Algebra Matrix Inverses 1. Which of the following matrices does not have an inverse? 1 2 (a) 3 4 2 2 (b) 4 4 1 (c) 3 4 (d) 2 (e) More than one of the above do not have inverses. (f) All

0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

Contents. Introduction and Notes pages 2-3 (These are important and it s only 2 pages ~ please take the time to read them!)

Page Contents Introduction and Notes pages 2-3 (These are important and it s only 2 pages ~ please take the time to read them!) Systematic Search for a Change of Sign (Decimal Search) Method Explanation

Sect The Slope-Intercept Form

Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action

Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00

18.781 Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list

Algebra 2: Q1 & Q2 Review

Name: Class: Date: ID: A Algebra 2: Q1 & Q2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which is the graph of y = 2(x 2) 2 4? a. c. b. d. Short

Zeros of Polynomial Functions

Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014))

SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014)) There are so far 8 most common methods to solve quadratic equations in standard form ax² + bx + c = 0.

1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

Factorising quadratics An essential skill in many applications is the ability to factorise quadratic expressions. In this unit you will see that this can be thought of as reversing the process used to

1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

3.2 The Factor Theorem and The Remainder Theorem

3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial

Class XI Chapter 5 Complex Numbers and Quadratic Equations Maths. Exercise 5.1. Page 1 of 34

Question 1: Exercise 5.1 Express the given complex number in the form a + ib: Question 2: Express the given complex number in the form a + ib: i 9 + i 19 Question 3: Express the given complex number in

The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

( yields. Combining the terms in the numerator you arrive at the answer:

Algebra Skillbuilder Solutions: 1. Starting with, you ll need to find a common denominator to add/subtract the fractions. If you choose the common denominator 15, you can multiply each fraction by one

Quadratic and Square Root Functions. Square Roots & Quadratics: What s the Connection?

Activity: TEKS: Overview: Materials: Grouping: Time: Square Roots & Quadratics: What s the Connection? (2A.9) Quadratic and square root functions. The student formulates equations and inequalities based

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

Solving Systems of Linear Equations. Substitution

Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

Determine If An Equation Represents a Function

Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

Linear Dependence Tests

Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.