Chapter 16 Physics of Diagnostic X-Rays

Size: px
Start display at page:

Download "Chapter 16 Physics of Diagnostic X-Rays"

Transcription

1 1895, W. C. Roentgen Discovery of x-ray The first x-ray image: Fig.16.1 Radiology Diagnostic radiology (radiologist) Radiation therapy (therapeutic radiologist) Nuclear medicine 1. Production of X-Ray Beams High speed electron striking an atom x-ray X-ray unit: Fig Cathode or filament: source of electrons, T determines the number of electrons Vacuum tube: evacuated space for electron acceleration High positive voltage source in kvp (kilovolt peak) Mammography: 25 ~ 50 kvp Chest: ~350 kvp Anode or target: rotating Material with higher atomic number for efficiency High melting point Tungsten: Z = 74, melting point = 3400 C Power Electron current: 100 ~ 500 or 1000 ma 1 A and 100 kv 100 kw 99% appears as heat: damaged anodes in Fig kw boil a cup of cold water in < 1 s Line-focus principle in Fig ~ 20 Rotating anode: usually 3600 rpm, rpm for high-speed anode High speed rotation requires a good balance to prevent any vibration Tube loading chart in Fig Bremsstrahlung (Fig.16.7a) KHU, EI 468

2 High energy electrons deflected by target atom nucleus emits bremsstrahlung x-ray photon Braking radiation White radiation: broad spectrum with dominant component Z of the target and kvp determines the amount of x-ray Characteristic radiation (Fig. 16.7b) High energy electron ejects inner shell electron creating a hole outer shell electron fills hole emitting radiation with energy characteristic of the energy level spacings K α or K β x-ray (Table 16.1) High energy x-ray Used in mammography X-ray spectrum in Fig How X-Rays Are Absorbed Heavy elements such as calcium (bone) are better absorbers Light elements such as carbon, oxygen, hydrogen, air (fat, muscle, tumor) are poor absorbers X-ray image: Fig Attenuation of x-ray Reduction due to absorption and scattering Measurements of attenuation in Fig and 11 Soft x-ray (lower energy): more absorption Hard x-ray (high energy): less absorption, greater penetration For monoenergetic x-ray, I Ie µ x = o where µ is the linear attenuation coefficient µ depends on the energy of x-ray: smaller µ for harder beam HVL (half value layer) = : HVL = 2.5 mm for Al µ HVL = 0.1 mm for lead good shielding material for x-ray: 1.5 mm lead plate reduces x-ray energy by a factor of 2 15 = µ Mass attenuation coefficient, µ m = where ρ is density: Fig ρ KHU, EI 468

3 ( ) m x I = Ie µ ρ where ρx is area density in grams per cm 2 o Interaction of x-ray with matter (Fig ) Photoelectric effect (PE): Fig a Energy of x-ray excite electron photoelectron generation ionizing Compton effect (CE): Fig b X-ray photon collides with outer bound electron electron escapes (ionizing) and x-ray photon scatters (different direction) Pair production (PP): Fig c Occur for very high energy x-ray Of no use for diagnostic x-ray X-ray images: Fig , 16, 17, and 18 Contrast media: high Z material, iodine, barium compound Contrast media: low absorption material, air Subtraction technique for contrast enhancement (DSA, digital subtraction angiography) Compton effect (scattering) degrades x-ray images 3. Making an X-ray Image Roentgenogram: x-ray image Setup: x-ray tube subject film Factors governing image quality Tube setting kvp: lowest kvp with enough exposure highest contrast ma-s: tube current times exposure time, exposure adjustment, tube heating and patient motion limit ma-s Geometrical factors Small spot size reduces blurring (Fig ) Penumbra and patient movement limit sharpness (Fig ) Scatter Scatter produces fog, which degrades image contrast Grid reduces the amount of scattered x-ray that reaches the film (Fig ) Grid requires higher beam intensity which increases patient exposure KHU, EI 468

4 Patient movement Holding breath reduces blurring Heart movement cannot be hold blurring X-ray film Film-screen cassette in Fig High speed film: less exposure, more sensitive, less details Low speed film Film is processed using chemicals 4. Radiation to Patients from X-rays Radiation exposure Unit: roentgen (R) A measure of the amount of electric charge produced by ionization in air 1 R = C/kg of air Typical exposure in Table 16.2 EAP (exposure-area product) Unit: rap = R-cm 2, roentgen-area product 1 rap = 100 R-cm 2 High kvp high energy x-ray more penetration and less absorption but more scattering Reducing patient exposure Filtration or beam hardening (Fig and 28) remove low-energy x-ray which does not contribute forming an image due to absorption Collimation Unnecessary exposure (Fig ) Collimation: lead slabs confine the beam to the region of interest 5. Producing Live X-ray Images - Fluoroscopy X-ray image viewed on a sheet coated with a fluorescent material or fluorescent screen fluoroscopy (Fig and 31) Motion can be observed in real-time Modern fluoroscopy (Fig ) KHU, EI 468

5 Use minimal exposure Use image amplifier or image intensifier tube in Fig Use video recorder and monitor 6. X-ray Slices of the Body X-ray from many directions: projections or scans Computerized tomography (CT) or computerized axial tomography (CAT): Fig and 38 In 1972, Hounsfield Cut view Narrow x-ray beams with about 140 kvp Pixel value: -500 (air) ~ +500 (bone), 0 maps to the density of water (Fig ) Cross-sectional images: Fig and 41) < 1% difference in density can be imaged Requires image reconstruction algorithms 7. Radiographs Taken without Film DR (digital radiography) KHU, EI 468

Production of X-rays and Interactions of X-rays with Matter

Production of X-rays and Interactions of X-rays with Matter Production of X-rays and Interactions of X-rays with Matter Goaz and Pharoah. Pages 11-20. Neill Serman Electrons traveling from the filament ( cathode) to the target (anode) convert a small percentage

More information

Radiology Physics. Just take a deep breath. Books to Consider. Why worry about physics? The Game Plan. 1 st Period

Radiology Physics. Just take a deep breath. Books to Consider. Why worry about physics? The Game Plan. 1 st Period Radiology Physics Just take a deep breath OR: I DIDN T SIGN UP TO LEARN THIS STUFF Chris Ober, DVM, PhD, DACVR 7 February 2011 Why worry about physics? Know what the system can give you Know what the system

More information

Radiology. Floron C. Faries, Jr. DVM, MS

Radiology. Floron C. Faries, Jr. DVM, MS Radiology Floron C. Faries, Jr. DVM, MS Objectives Determine the appropriate machine settings for making a radiograph Describe essential radiograph accessories Describe the positions used to perform radiographs

More information

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

X-Ray is an electromagnetic waves the same as light, radio waves, microwaves, ultraviolet and ɣ-ray.

X-Ray is an electromagnetic waves the same as light, radio waves, microwaves, ultraviolet and ɣ-ray. X-Ray X-Ray is an electromagnetic waves the same as light, radio waves, microwaves, ultraviolet and ɣ-ray. These electromagnetic waves are different by their energy for example ultraviolet has higher energy

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Production of X-Rays. Yoichi Watanabe, Ph.D. Masonic Memorial Building M10-M (612) MPHY 5170/TRAD 7170, Fall semester

Production of X-Rays. Yoichi Watanabe, Ph.D. Masonic Memorial Building M10-M (612) MPHY 5170/TRAD 7170, Fall semester Production of X-Rays Yoichi Watanabe, Ph.D. Masonic Memorial Building M10-M (612)626-6708 watan016@umn.edu MPHY 5170/TRAD 7170, Fall semester Contents 1) Physics of X-ray production 2) The X-ray tube 3)

More information

Principles of X-Ray Imaging

Principles of X-Ray Imaging Principles of X-Ray Imaging 1 Already a few weeks after the discovery of X-rays in 1895 by Wilhelm Conrad R ontgen the first medical images with photographic plates and fluorescent screens were made. This

More information

Contents. X-ray and Computed Tomography. Characterization of X-rays. Production of X-rays

Contents. X-ray and Computed Tomography. Characterization of X-rays. Production of X-rays J. E. Wilhjelm Ørsted TU Technical University of enmark, Bldg. 348, K-2800 Kongens Lyngby, enmark. X-ray and Computed Tomography Contents History and characterization of X-rays Conventional (projection)

More information

Diagnostic x-ray imaging relies on the attenuation of

Diagnostic x-ray imaging relies on the attenuation of X-Ray Imaging Physics for Nuclear Medicine Technologists. Part 2: X-Ray Interactions and Image Formation* J. Anthony Seibert, PhD; and John M. Boone, PhD Department of Radiology, University of California

More information

X-ray Imaging Systems

X-ray Imaging Systems Principles of Imaging Science I (RAD 119) X-ray Tube & Equipment X-ray Imaging Systems Medical X-ray Equipment Classified by purpose or energy/current levels kvp, ma Radiographic Non-dynamic procedures

More information

Radiographic Image Production. Radiographic Image Production. Principles of Imaging Science I (RAD 119) Film, Screens, and Cassettes

Radiographic Image Production. Radiographic Image Production. Principles of Imaging Science I (RAD 119) Film, Screens, and Cassettes Principles of Imaging Science I (RAD 119) Film, Screens, and Cassettes Radiographic Image Production X-ray photons emitted from the x-ray tube interact with the body, exit the patient (exit beam) and interact

More information

X-Rays were discovered accidentally in 1895 by Wilhelm Conrad Röntgen

X-Rays were discovered accidentally in 1895 by Wilhelm Conrad Röntgen X-Rays were discovered accidentally in 1895 by Wilhelm Conrad Röntgen Due to their short wavelength, on the order of magnitude of cells, and their high energy, they can penetrate skin and other soft tissue.

More information

The number of scatters per unit volume n is estimated as the molar mass times Avogadro s #. n = (! A )N A. ! di I

The number of scatters per unit volume n is estimated as the molar mass times Avogadro s #. n = (! A )N A. ! di I The Energy Loss of Particles in Matter I. Cross Section As a particle traverses a matter it has a probability to react by scattering, absorption, or to interaction in the material. The reaction probability

More information

Page: 1 of 6 Page: 1 of 6

Page: 1 of 6 Page: 1 of 6 Page: 1 of 6 Page: 1 of 6 CR Basics and FAQ Overview Computed Radiography is a term used to describe a system that electronically records a radiographic image. Computed Radiographic systems use unique

More information

C1 Medical Imaging Modalities & Characteristics. 4005-759 Linwei Wang

C1 Medical Imaging Modalities & Characteristics. 4005-759 Linwei Wang C1 Medical Imaging Modalities & Characteristics 4005-759 Linwei Wang Major Types of Medical Imaging Modalities X-ray Imaging Computed Tomography (CT) Magnetic Resonance Imaging (MRI) Nuclear Imaging Positron

More information

Radiographic Testing. Basic Principles

Radiographic Testing. Basic Principles Radiographic Testing Radiography is used in a very wide range of aplications including medicine, engineering, forensics, security, etc. In NDT, radiography is one of the most important and widely used

More information

Mammography: Risks and benefits. Zahra Anjomani

Mammography: Risks and benefits. Zahra Anjomani Mammography: Risks and benefits Zahra Anjomani Content Overview of Breast Cancer Mammography machine Risks and Benefits of Mammography Overview of Breast Cancer The most common form of cancer among women

More information

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS Department of Health and Human services Population Health Radiation Protection Act 2005 Section 17 CERTIFICATE OF COMPLIANCE: STANDARD FOR RADIATION APPARATUS - X-RAY MEDICAL DIAGNOSTIC (MAMMOGRAPHY) SECTION

More information

Interactions of Photons with Matter

Interactions of Photons with Matter Interactions of Photons with Matter Photons are elecomagnetic radiation with zero mass, zero charge, and a velocity that is always c, the speed of light. Because they are elecically neual, they do not

More information

1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range

1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range 1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range The radiation from orthovoltage units is referred to as x-rays, generated by bombarding

More information

Radiographic Grid. Principles of Imaging Science II (RAD 120) Image-Forming X-Rays. Radiographic Grids

Radiographic Grid. Principles of Imaging Science II (RAD 120) Image-Forming X-Rays. Radiographic Grids Principles of Imaging Science II (RAD 120) Radiographic Grids 1 Image-Forming X-Rays Four X-ray paths a. X-rays interact with patient and scatter away from the receptor b. X-rays interact and are absorbed

More information

Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique. Max Wiedmann

Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique. Max Wiedmann Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique Max Wiedmann Digital Tomosynthesis An imaging technique in which multiple X-rays of one object are take from a discrete number angles. These

More information

CHAPTER 5 QC Test For Radiographic Equipment. Prepared by:- Kamarul Amin bin Abdullah @ Abu Bakar School of Medical Imaging KLMUC

CHAPTER 5 QC Test For Radiographic Equipment. Prepared by:- Kamarul Amin bin Abdullah @ Abu Bakar School of Medical Imaging KLMUC CHAPTER 5 QC Test For Radiographic Equipment Prepared by:- Kamarul Amin bin Abdullah @ Abu Bakar School of Medical Imaging KLMUC Lesson Outcomes Describe the objectives of each QC test done.(importance)

More information

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza Medical Applications of radiation physics Riccardo Faccini Universita di Roma La Sapienza Outlook Introduction to radiation which one? how does it interact with matter? how is it generated? Diagnostics

More information

3701-72-03 Standards for accreditation of educational programs and approval of continuing education courses.

3701-72-03 Standards for accreditation of educational programs and approval of continuing education courses. 1 3701-72-03 Standards for accreditation of educational programs and approval of continuing education courses. (A) Any person may apply to the director for approval to conduct an educational program for

More information

CONTENT SPECIFICATIONS FOR THE FLUOROSCOPY EXAMINATION

CONTENT SPECIFICATIONS FOR THE FLUOROSCOPY EXAMINATION CONTENT SPECIFICATIONS FOR THE FLUOROSCOPY EXAMINATION Publication Date: November 2010 Implementation Date: March 2011 The purpose of the American Registry of Radiologic Technologists Fluoroscopy Examination

More information

What does DXA mean and why is it important? Principles of operation of DXA systems. How can we measure bone mineral density? What is radiation?

What does DXA mean and why is it important? Principles of operation of DXA systems. How can we measure bone mineral density? What is radiation? What does DXA mean and why is it important? Principles of operation of DXA systems Dr Wil Evans Head of Medical Physics University Hospital of Wales, Cardiff DXA stands for Dual energy X-ray Absorptiometry

More information

Lectures about XRF (X-Ray Fluorescence)

Lectures about XRF (X-Ray Fluorescence) 1 / 38 Lectures about XRF (X-Ray Fluorescence) Advanced Physics Laboratory Laurea Magistrale in Fisica year 2013 - Camerino 2 / 38 X-ray Fluorescence XRF is an acronym for X-Ray Fluorescence. The XRF technique

More information

Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered

Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered vs. Wall-Mount X-Ray X Systems Edgar Bailey*, MSEHE, CHP Consultant Joel Gray*, PhD, FAAPM DIQUAD, LLC

More information

REGULATION: QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS N.J.A.C. 7:28-22

REGULATION: QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS N.J.A.C. 7:28-22 REGULATION: QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS N.J.A.C. 7:28-22 New Jersey Department of Environmental Protection Bureau of Radiological Health PO Box 415 Trenton NJ

More information

X-ray Imaging Systems

X-ray Imaging Systems Principles of Imaging Science I (RAD 119) X-ray Tube & Equipment X-ray Imaging Systems Medical X-ray Equipment Classified by purpose or energy/current levels kvp, ma Radiographic Non-dynamic procedures

More information

Mammography. What is Mammography?

Mammography. What is Mammography? Scan for mobile link. Mammography Mammography is a specific type of breast imaging that uses low-dose x-rays to detect cancer early before women experience symptoms when it is most treatable. Tell your

More information

In the previous presentation, we discussed how x-rays were discovered and how they are generated at the atomic level. Today we will begin the

In the previous presentation, we discussed how x-rays were discovered and how they are generated at the atomic level. Today we will begin the In the previous presentation, we discussed how x-rays were discovered and how they are generated at the atomic level. Today we will begin the discussion on the major components of the x-ray machine. Today

More information

SUBCHAPTER 22 QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS

SUBCHAPTER 22 QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS Note: This is a courtesy copy and is not the official version of this rule. The official, legally effective version of this rule is available through www.lexisnexic.com/bookstore (Phone: (800) 223-1940).

More information

GAMMA-RAY SPECTRA REFERENCES

GAMMA-RAY SPECTRA REFERENCES GAMMA-RAY SPECTRA REFERENCES 1. K. Siegbahn, Alpha, Beta and Gamma-Ray Spectroscopy, Vol. I, particularly Chapts. 5, 8A. 2. Nucleonics Data Sheets, Nos. 1-45 (available from the Resource Centre) 3. H.E.

More information

QUALITY CONTROL PROGRAM. X-Ray Equipment PROCEDURE MANUAL

QUALITY CONTROL PROGRAM. X-Ray Equipment PROCEDURE MANUAL QUALITY CONTROL PROGRAM DEPARTMENT OF RADIOLOGY MARY HITCHCOCK MEMORIAL HOSPITAL DARTMOUTH-HITCHCOCK MEDICAL CENTER LEBANON, NEW HAMPSHIRE X-Ray Equipment PROCEDURE MANUAL June 2009 Table of Contents Quality

More information

Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University

Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Clinical Physics Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Physics of Radiotherapy using External Beam Dose distribution PHANTOMS Basic dose distribution data are usually

More information

Advanced Physics Laboratory. XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF)

Advanced Physics Laboratory. XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF) Advanced Physics Laboratory XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF) Bahia Arezki Contents 1. INTRODUCTION... 2 2. FUNDAMENTALS... 2 2.1 X-RAY PRODUCTION... 2 2. 1. 1 Continuous radiation...

More information

X-ray Radiation Safety Course. James Kane & Rob Deters Office of Radiological Control 545-7581

X-ray Radiation Safety Course. James Kane & Rob Deters Office of Radiological Control 545-7581 X-ray Radiation Safety Course James Kane & Rob Deters Office of Radiological Control 545-7581 About the Course X-ray Radiation Safety X-ray radiation safety training is mandatory for radiation workers

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Quality control tests of diagnostic radiology equipment in Hungary, and its radiation protection aspects

Quality control tests of diagnostic radiology equipment in Hungary, and its radiation protection aspects Quality control tests of diagnostic radiology equipment in Hungary, and its radiation protection aspects Tamás Porubszky *, Csaba Váradi, László Ballay, Olivér Turák, Géza Gáspárdy, István Turai Frédéric

More information

CT scanning. By Mikael Jensen & Jens E. Wilhjelm Risø National laboratory Ørsted DTU. (Ver. 1.2 4/9/07) 2002-2007 by M. Jensen and J. E.

CT scanning. By Mikael Jensen & Jens E. Wilhjelm Risø National laboratory Ørsted DTU. (Ver. 1.2 4/9/07) 2002-2007 by M. Jensen and J. E. 1 Overview CT scanning By Mikael Jensen & Jens E. Wilhjelm Risø National laboratory Ørsted DTU (Ver. 1.2 4/9/07) 2002-2007 by M. Jensen and J. E. Wilhjelm) As it can be imagined, planar X-ray imaging has

More information

On the Use of a Diagnostic X-Ray Machine for Calibrating Personal Dosimeters

On the Use of a Diagnostic X-Ray Machine for Calibrating Personal Dosimeters On the Use of a Diagnostic X-Ray Machine for Calibrating Personal Dosimeters A. T. Baptista Neto, T. A. Da Silva Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Rua

More information

PRACTICAL TIPS IN ENSURING RADIATION SAFETY IN THE USE OF MEDICAL DIAGNOSTIC X-RAY EQUIPMENT

PRACTICAL TIPS IN ENSURING RADIATION SAFETY IN THE USE OF MEDICAL DIAGNOSTIC X-RAY EQUIPMENT PRACTICAL TIPS IN ENSURING RADIATION SAFETY IN THE USE OF MEDICAL DIAGNOSTIC X-RAY EQUIPMENT Although the medical uses of X-rays to examine a patient without surgery became an amazing medical breakthrough,

More information

How does magnification affect image quality and patient dose in digital subtraction angiography?

How does magnification affect image quality and patient dose in digital subtraction angiography? How does magnification affect image quality and patient dose in digital subtraction angiography? Nikolaos A Gkanatsios *a, Walter Huda b, Keith R Peters c a Medical Physics (H-539), Baylor University Medical

More information

Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13

Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13 Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis Tushita Patel 4/2/13 Breast Cancer Statistics Second most common cancer after skin cancer Second leading cause of cancer

More information

Patient Exposure Doses During Diagnostic Radiography

Patient Exposure Doses During Diagnostic Radiography Patient Exposure Doses During Diagnostic Radiography JMAJ 44(11): 473 479, 2001 Shoichi SUZUKI Associated Professor, Faculty of Radiological Technology, School of Health Sciences, Fujita Health University

More information

BME 501 - Introduction to BME. Bioelectrical Engineering Part: Medical Imaging

BME 501 - Introduction to BME. Bioelectrical Engineering Part: Medical Imaging BME 501 - Introduction to BME Bioelectrical Engineering Part: Medical Imaging Reference Textbook: Principles of Medical Imaging, by Shung, Smith and Tsui Lecturer: Murat EYÜBOĞLU, Ph.D. Dept. of Electrical

More information

Jenniefer Kho, MD FLUOROSCOPY MODULE. I. Introduction to fundamentals of fluoroscopy. A. Background on fluoroscopy

Jenniefer Kho, MD FLUOROSCOPY MODULE. I. Introduction to fundamentals of fluoroscopy. A. Background on fluoroscopy FLUOROSCOPY MODULE Jenniefer Kho, MD I. Introduction to fundamentals of fluoroscopy A. Background on fluoroscopy The relationship between 2D imaging and 3D anatomy is a complex concept that is not formally

More information

5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION

5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION 5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION 5.2.1 Task The bremsstrahlung produced by the X-ray tube has a continuous spectrum, limited by the set and spreads

More information

Basic principles of computed tomography. MUDr. Lukáš Mikšík, KZM FN Motol

Basic principles of computed tomography. MUDr. Lukáš Mikšík, KZM FN Motol Basic principles of computed tomography MUDr. Lukáš Mikšík, KZM FN Motol Tomography tomos = slice; graphein = to write definition - imaging of an object by analyzing its slices Damien Hirst Autopsy with

More information

Wednesday 23 January 2013 Afternoon

Wednesday 23 January 2013 Afternoon Wednesday 23 January 2013 Afternoon A2 GCE PHYSICS A G485/01 Fields, Particles and Frontiers of Physics *G411600113* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Gamma Ray Attenuation Properties of Common Shielding Materials

Gamma Ray Attenuation Properties of Common Shielding Materials Gamma Ray Attenuation Properties of Common Shielding Materials Daniel R. McAlister, Ph.D. PG Research Foundation, Inc. 955 University Lane Lisle, IL 60532, USA Introduction In areas where people are likely

More information

PROFESSIONAL CERTIFICATION PROGRAMS FOR MEDICAL PHYSICISTS. Andy Miller, MS, CHP VA Medical Center Nashville, TN

PROFESSIONAL CERTIFICATION PROGRAMS FOR MEDICAL PHYSICISTS. Andy Miller, MS, CHP VA Medical Center Nashville, TN PROFESSIONAL CERTIFICATION PROGRAMS FOR MEDICAL PHYSICISTS Andy Miller, MS, CHP VA Medical Center Nashville, TN Introduction Medical Physics Areas of Specialization in Medical Physics Certifying Organizations

More information

LAUE DIFFRACTION INTRODUCTION CHARACTERISTICS X RAYS BREMSSTRAHLUNG

LAUE DIFFRACTION INTRODUCTION CHARACTERISTICS X RAYS BREMSSTRAHLUNG LAUE DIFFRACTION INTRODUCTION X-rays are electromagnetic radiations that originate outside the nucleus. There are two major processes for X-ray production which are quite different and which lead to different

More information

Role of the Medical Physicist in Clinical Implementation of Breast Tomosynthesis

Role of the Medical Physicist in Clinical Implementation of Breast Tomosynthesis Role of the Medical Physicist in Clinical Implementation of Breast Tomosynthesis Bob Liu, Ph.D. Department of Radiology Massachusetts General Hospital And Harvard Medical School Digital Breast Tomosynthesis

More information

Elements of required physical infrastructures: space, schielding, and patient flow..

Elements of required physical infrastructures: space, schielding, and patient flow.. Elements of required physical infrastructures: space, schielding, and patient flow.. IAEA Following the IAEA guidelines, adapded by Anna Benini for workshop on Health Technology IUPESM Task Group, Porto

More information

Radiation Interactions with Matter: Energy Deposition

Radiation Interactions with Matter: Energy Deposition Radiation Interactions with Matter: Energy Deposition Biological effects are the end product of a long series of phenomena, set in motion by the passage of radiation through the medium. Image removed due

More information

What is Radiology and Radiologic Technology?

What is Radiology and Radiologic Technology? What is Radiology and Radiologic Technology? Note: Prospective CSI Radiologic Technology students are encouraged to print this document out and study it thoroughly before applying for admission to the

More information

Beam-Restriction. Principles of Imaging Science I (RAD 119) Control of Scatter Using Beam-Restricting Devices. Beam Restrictors Basic Pathology

Beam-Restriction. Principles of Imaging Science I (RAD 119) Control of Scatter Using Beam-Restricting Devices. Beam Restrictors Basic Pathology Principles of Imaging Science I (RAD 119) Beam Restrictors Basic Pathology Beam-Restriction Methods employed or devices used to keep scatter radiation production to a minimum Purpose is to control and

More information

Skyscan 1076 in vivo scanning: X-ray dosimetry

Skyscan 1076 in vivo scanning: X-ray dosimetry Skyscan 1076 in vivo scanning: X-ray dosimetry DOSIMETRY OF HIGH RESOLUTION IN VIVO RODENT MICRO-CT IMAGING WITH THE SKYSCAN 1076 An important distinction is drawn between local tissue absorbed dose in

More information

INTENSIFYING SCREENS, CASSETTES AND SCREEN FILMS N. Serman & S. Singer

INTENSIFYING SCREENS, CASSETTES AND SCREEN FILMS N. Serman & S. Singer INTENSIFYING SCREENS, CASSETTES AND SCREEN FILMS N. Serman & S. Singer X-rays were discovered by W.C. Roentgen because of their ability to cause fluorescence. X-ray photons cannot be seen. The image produced

More information

LAB 8: Electron Charge-to-Mass Ratio

LAB 8: Electron Charge-to-Mass Ratio Name Date Partner(s) OBJECTIVES LAB 8: Electron Charge-to-Mass Ratio To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio.

More information

Patient Prep Information

Patient Prep Information Stereotactic Breast Biopsy Patient Prep Information Imaging Services Cannon Memorial Hospital Watauga Medical Center Table Weight Limits for each facility Cannon Memorial Hospital Watauga Medical Center

More information

X-RAY TUBE SELECTION CRITERIA FOR BGA / CSP X-RAY INSPECTION

X-RAY TUBE SELECTION CRITERIA FOR BGA / CSP X-RAY INSPECTION X-RAY TUBE SELECTION CRITERIA FOR BGA / CSP X-RAY INSPECTION David Bernard Dage Precision Industries Inc. Fremont, California d.bernard@dage-group.com ABSTRACT The x-ray inspection of PCB assembly processes

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

CIVA 10 RX module : Preliminary validation in a nuclear context

CIVA 10 RX module : Preliminary validation in a nuclear context CIVA 10 RX module : Preliminary validation in a nuclear context D. Tisseur, CEA-LIST, France F. Buyens, CEA-LIST, France G. Cattiaux, IRSN, France T. Sollier, IRSN, France 1 Outline Context presentation

More information

Screen-Film Mammography Equipment Unit 3. Bonnie A.Barnes,BA,R.T.(R)(M)(CT)(f) Xuan Ho, Ph.D., R.T. (R)

Screen-Film Mammography Equipment Unit 3. Bonnie A.Barnes,BA,R.T.(R)(M)(CT)(f) Xuan Ho, Ph.D., R.T. (R) Screen-Film Mammography Equipment Unit 3 Bonnie A.Barnes,BA,R.T.(R)(M)(CT)(f) Xuan Ho, Ph.D., R.T. (R) Equipment Dedicated Mammography Equipment Digital Mammography FDA/MQSA Requirements Quality Control

More information

INTRODUCTION. A. Purpose

INTRODUCTION. A. Purpose New York State Department of Health Bureau of Environmental Radiation Protection Guide for Radiation Safety/Quality Assurance Programs Computed Radiography INTRODUCTION A. Purpose This guide describes

More information

Lab 4: Magnetic Force on Electrons

Lab 4: Magnetic Force on Electrons Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

X-ray (Radiography), Chest

X-ray (Radiography), Chest X-ray (Radiography), Chest What is a Chest X-ray (Chest Radiography)? The chest x-ray is the most commonly performed diagnostic x-ray examination. A chest x-ray makes images of the heart, lungs, airways,

More information

Radiation safety in dental radiography

Radiation safety in dental radiography Radiation safety in dental radiography Dental Radiography Series The goal of dental radiography is to obtain diagnostic information while keeping the exposure to the patient and dental staff at minimum

More information

SUBCHAPTER 15. MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS

SUBCHAPTER 15. MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS SUBCHAPTER 15. MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS 7:28-15.1 Scope (a) This subchapter establishes the requirements for medical radiographic and fluoroscopic installations of certified and uncertified

More information

Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter

Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter T.M.Taha Radiation Protection Department, Nuclear Research Center, Atomic Energy Authority, Cairo.P.O.13759 Egypt.

More information

Radiation Safety Introduction

Radiation Safety Introduction Radiation Safety Introduction These notes review the fundamental principals of radiation protection, radiation dose limits and some of the precautions and risks associated with the different imaging modalities

More information

An Overview of Digital Imaging Systems for Radiography and Fluoroscopy

An Overview of Digital Imaging Systems for Radiography and Fluoroscopy An Overview of Digital Imaging Systems for Radiography and Fluoroscopy Michael Yester, Ph.D. University of Alabama at Birmingham Outline Introduction Imaging Considerations Receptor Properties General

More information

Fundamentals of Cone-Beam CT Imaging

Fundamentals of Cone-Beam CT Imaging Fundamentals of Cone-Beam CT Imaging Marc Kachelrieß German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de Learning Objectives To understand the principles of volumetric image formation

More information

I.7. SOFT TECHNIQUE STILL IN USE IN CHEST RADIOGRAPHY PROS AND CONS

I.7. SOFT TECHNIQUE STILL IN USE IN CHEST RADIOGRAPHY PROS AND CONS I.7. SOFT TECHNIQUE STILL IN USE IN CHEST RADIOGRAPHY PROS AND CONS A. Slavtchev 1, I. Manolov 2 1 National Centre of Radiobiology and Radiation Protection 2 Medrom Ltd. Abstract In recent years the number

More information

Easy Quality Control with - PTW Equipment. Code of Practice - Quality control of X-ray equipment in diagnostic radiology

Easy Quality Control with - PTW Equipment. Code of Practice - Quality control of X-ray equipment in diagnostic radiology Easy Quality Control with - PTW Equipment Code of Practice - Quality control of X-ray equipment in diagnostic radiology Revised edition October 2010 Code of Practice- Quality control of X-ray equipment

More information

Froedtert Hospital School of Radiology Curriculum Analysis Grid. Clinical Practice

Froedtert Hospital School of Radiology Curriculum Analysis Grid. Clinical Practice Professional Curriculum Clinical Practice Procedural Performance Clinical Competency Basic Principles of Digital Radiography Image Acquisition Image Acquisition Errors Fundamental Principles of Exposure

More information

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS Department of Health and Human Services Population Health Radiation Protection Act 2005 Section 17 CERTIFICATE OF COMPLIANCE: STANDARD FOR RADIATION APPARATUS - X-RAY MEDICAL DIAGNOSTIC (FIXED RADIOSCOPY)

More information

X-rays. How safe are they?

X-rays. How safe are they? X-rays How safe are they? X-RAY DEPARMEN hirty years ago, X-rays were the only way to see what was going on inside your body. Now other methods of medical imaging are available, some using different types

More information

X-ray (Radiography) - Abdomen

X-ray (Radiography) - Abdomen Scan for mobile link. X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small dose of ionizing radiation to produce pictures of the inside of the abdominal cavity. It is used to evaluate the stomach,

More information

CURRICULUM UPDATED COPY JUNE 2016

CURRICULUM UPDATED COPY JUNE 2016 CURRICULUM UPDATED COPY JUNE 2016 Diagnostic Radiology Residents Physics Curriculum Prepared by Imaging Physics Curricula Subcommittee AAPM Subcommittee of the Medical Physics Education of Physicians Committee

More information

DIRECTIONS FOR SHIELDING PLANS

DIRECTIONS FOR SHIELDING PLANS Bureau of Community Health Systems Radiation Control Program 1000 SW Jackson St., Ste 330 Topeka, KS 66612-1365 Phone: 785-296-1560 Fax: 785-296-0984 Xray@kdheks.gov DIRECTIONS FOR SHIELDING PLANS MEDICAL

More information

P R E S E N T S Dr. Mufa T. Ghadiali is skilled in all aspects of General Surgery. His General Surgery Services include: General Surgery Advanced Laparoscopic Surgery Surgical Oncology Gastrointestinal

More information

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008.

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. X-Ray Fluorescence (XRF) is a very simple analytical technique: X-rays excite atoms

More information

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. III - Medical and Industrial Tomography - W.B.Gilboy

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. III - Medical and Industrial Tomography - W.B.Gilboy MEDICAL AND INDUSTRIAL TOMOGRAPHY Department of Physics, University of Surrey, Guildford, Surrey, U.K. Keywords: Radiography, transmission tomography, emission tomography, microtomography, SPECT (single

More information

Digital radiography conquers the veterinary world

Digital radiography conquers the veterinary world Digital radiography conquers the veterinary world Author: Dirk De Langhe Increasingly, veterinarians are using medical imaging to diagnose their patients. There is a corresponding tendency towards replacing

More information

Radiation safety in dental radiography

Radiation safety in dental radiography Radiation safety in dental radiography Kodak s dental radiograph series The goal of dental radiography is to obtain diagnostic information while keeping the exposure to the patient and dental staff at

More information

The Field. Radiologic technologists take x-rays and administer nonradioactive materials into patients' bloodstreams for diagnostic purposes.

The Field. Radiologic technologists take x-rays and administer nonradioactive materials into patients' bloodstreams for diagnostic purposes. Radiologic Technologist Overview The Field - Specialty Areas - Preparation - Day in the Life - Earnings - Employment - Career Path Forecast - Professional Organizations The Field Radiologic technologists

More information

Physics testing of image detectors

Physics testing of image detectors Physics testing of image detectors Parameters to test Spatial resolution Contrast resolution Uniformity/geometric distortion Features and Weaknesses of Phantoms for CR/DR System Testing Dose response/signal

More information

X-ray imaging: Fundamentals and planar imaging

X-ray imaging: Fundamentals and planar imaging X-ray imaging: Fundamentals and planar imaging By Mikael Jensen and Jens E. Wilhjelm Risø National laboratory Ørsted DTU (Ver..2.1 3/12/07) 2004-2006 by M. Jensen and J. E. Wilhjelm 1 Overview X-ray imaging

More information

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY 243 CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY B. Chyba, M. Mantler, H. Ebel, R. Svagera Technische Universit Vienna, Austria ABSTRACT The accurate characterization of the spectral distribution

More information

Teaching DR/CR with Best Dose Practices

Teaching DR/CR with Best Dose Practices Teaching DR/CR with Best Dose Practices WCEC 2013 Dennis Bowman RT(R) Clinical Instructor/Staff Radiographer Community Hospital of the Monterey Peninsula (CHOMP) Cabrillo Clinical Instructor Speaker/Consultant

More information

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects.

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects. RADIATION SAFETY: HOW TO EDUCATE AND PROTECT YOURSELF AND YOUR STAFF John Farrelly, DVM, MS, ACVIM (Oncology), ACVR (Radiation Oncology) Cornell University Veterinary Specialists The Veterinary Cancer

More information

Bon Secours St. Mary s Hospital School of Medical Imaging Course Descriptions by Semester 18 Month Program

Bon Secours St. Mary s Hospital School of Medical Imaging Course Descriptions by Semester 18 Month Program Bon Secours St. Mary s Hospital School of Medical Imaging Course Descriptions by Semester 18 Month Program First Semester RAD 1101 Patient Care, Ethics, Law and Diversity Credits This 16 week course prepares

More information